
 Open access Book Chapter DOI:10.1007/978-3-642-04133-4_8

Mapping CMMI Level 2 to Scrum Practices: An Experience Report — Source link

Jessica Díaz, Juan Garbajosa, Jose A. Calvo-Manzano

Institutions: Technical University of Madrid

Published on: 02 Sep 2009 - European conference on Software Process Improvement

Topics: Capability Maturity Model Integration, Empirical process (process control model), LeanCMMI, Process area and
Agile software development

Related papers:

 Agile methods and CMMI: compatibility or conflict?

 Blending Scrum practices and CMMI project management process areas

 Extreme programming from a CMM perspective

 Agile Software Development with SCRUM

 Mature Agile with a Twist of CMMI

Share this paper:

View more about this paper here: https://typeset.io/papers/mapping-cmmi-level-2-to-scrum-practices-an-experience-report-
2r241d9ikf

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-04133-4_8
https://typeset.io/papers/mapping-cmmi-level-2-to-scrum-practices-an-experience-report-2r241d9ikf
https://typeset.io/authors/jessica-diaz-3uycg3v4m3
https://typeset.io/authors/juan-garbajosa-20wh46n3ti
https://typeset.io/authors/jose-a-calvo-manzano-4s1ch2at3g
https://typeset.io/institutions/technical-university-of-madrid-1ety5u2c
https://typeset.io/conferences/european-conference-on-software-process-improvement-1y3pisq4
https://typeset.io/topics/capability-maturity-model-integration-3oxrjs8t
https://typeset.io/topics/empirical-process-process-control-model-ok0grulg
https://typeset.io/topics/leancmmi-1vm5c7fl
https://typeset.io/topics/process-area-3nnh9jkj
https://typeset.io/topics/agile-software-development-1bzklcac
https://typeset.io/papers/agile-methods-and-cmmi-compatibility-or-conflict-1yv3m8sukl
https://typeset.io/papers/blending-scrum-practices-and-cmmi-project-management-process-4jxdfl2h57
https://typeset.io/papers/extreme-programming-from-a-cmm-perspective-42xzy0s2ni
https://typeset.io/papers/agile-software-development-with-scrum-1wvi4f5bqm
https://typeset.io/papers/mature-agile-with-a-twist-of-cmmi-1bfvphobxw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mapping-cmmi-level-2-to-scrum-practices-an-experience-report-2r241d9ikf
https://twitter.com/intent/tweet?text=Mapping%20CMMI%20Level%202%20to%20Scrum%20Practices:%20An%20Experience%20Report&url=https://typeset.io/papers/mapping-cmmi-level-2-to-scrum-practices-an-experience-report-2r241d9ikf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mapping-cmmi-level-2-to-scrum-practices-an-experience-report-2r241d9ikf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mapping-cmmi-level-2-to-scrum-practices-an-experience-report-2r241d9ikf
https://typeset.io/papers/mapping-cmmi-level-2-to-scrum-practices-an-experience-report-2r241d9ikf

Mapping CMMI Level 2 to Scrum Practices:

An Experience Report

Jessica Diaz1, Juan Garbajosa1, and Jose A. Calvo-Manzano2

1 Systems & Software Technology Group (SYST), E.U. Informática
2 Dpto. LSIIS, Facultad de Informática,

Technical University of Madrid (UPM), Madrid, Spain
yesica.diaz@upm.es, jgs@eui.upm.es, jacalvo@fi.upm.es

Abstract. CMMI has been adopted advantageously in large companies
for improvements in software quality, budget fulfilling, and customer sat-
isfaction. However SPI strategies based on CMMI-DEV require heavy
software development processes and large investments in terms of cost
and time that medium/small companies do not deal with. The so-called
light software development processes, such as Agile Software Develop-
ment (ASD), deal with these challenges. ASD welcomes changing require-
ments and stresses the importance of adaptive planning, simplicity and
continuous delivery of valuable software by short time-framed iterations.
ASD is becoming convenient in a more and more global, and changing
software market. It would be greatly useful to be able to introduce agile
methods such as Scrum in compliance with CMMI process model. This
paper intends to increase the understanding of the relationship between
ASD and CMMI-DEV reporting empirical results that confirm theoreti-
cal comparisons between ASD practices and CMMI level2.

Keywords: CMMI, Agile Software Development, Scrum.

1 Introduction

A wide range of large organizations rely on the Capability Maturity Model In-
tegration (CMMI) as indicator for organizational maturity and they enforce
that all their processes are a certain capability level of compliance. The rea-
son is that improvements in software quality, budget and milestones fulfilling,
and customer satisfaction usually have been associated with higher levels of
CMMI compliance [1] [2]. These improvements have been reported for example
by Galin et al. [3] who analyzed more than 400 projects during the 1990s about
plan-driven software development methods where continuous CMMI-based SPI
(Software Process Improvement) strategies were applied. However, medium and
small organizations, usually featured by sparse resources, have a lot of difficul-
ties to apply CMMI [4] [5] [6]. Some reported data prove that over 77 percent
of process improvements have taken longer than expected, and over 68 percent
have cost more than expected too [7].

At the same time organizations look for the improvement of their processes
and they must respond continually to changing environments in a global market.

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 93–104, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

94 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

The rapid change increases frustration to the heavyweight plans, specifications,
and other documentation imposed by plan-driven software development with
maturity model compliance criteria [8]. Some authors assert even CMMI is not
applicable to turbulent and volatile business environments [9] concluding that
processes not only must respond to change but embrace it [10].

The competitiveness and evolution of the software market has led software
companies to avoid heavy software development methodologies and to follow
light software development methodologies, which are open for new changes. From
these needs, Agile Software Development (ASD) [11, 12] emerged with the def-
inition of the Agile Manifesto [13]. The Agile Manifesto is a statement of the
principles that underpin agile software development, some of them are continuous
delivery of valuable software, simplicity, on-site customer, and welcome changing
requirements. ASD is mainly based on the improvement of the software develop-
ment productivity, the human relationships of the development team, the tacit
knowledge processes with little ware, adaptive planning, and lightweight. These
values are preserved by introducing the customer as another member of the devel-
opment team and by doing short time-framed software development iterations.
These short iterations allow the checking of partial results of the work product
and the introduction of new changes in a simple way. As a result, software devel-
opment is more effective and adaptable; so agile methodologies have proved its
effectiveness in projects with very changing requirements [14] [15]. ASD is grow-
ing mature for large projects, and this is demonstrated by its increasing put into
practice at the industry [16, 17, 18], even for outsourcing projects [19]. In fact,
the data reported in [16] show that over 69 percent of analyzed organizations
are putting into practice agile practices on their projects.

But, what about CMMI compliant organizations that need to introduce light
software development methods for adapting to turbulent markets? And, what
about agile organizations whose clients require a certain CMMI level of compli-
ance? These issues lead to the challenge for embracing CMMI-based SPI strate-
gies and agile principles, as well as understanding the relationship between both
approaches. This challenge may be addressed through an effort to stretch agile to
fit CMMI analyzing the interrelations, constraints, and adjustments between ag-
ile and CMMI. Comparisons between CMMI and ASD have often been criticized
comparing them like oil and water [20]. However the literature has summarized
that CMMI and agile are compatible [20, 10] because agile methods are devel-
opment process descriptions and CMMI is a reference process model that it is
used for appraisals and improvements [21]. This means, CMMI tells us what to
do, while agile methods tells us how to do it.

The primary purpose of this paper is to increase the understanding of the
relationship between ASD and CMMI-DEV [22]. This paper reports empirical
results that confirm the theoretical comparisons [23, 24, 25, 26, 27] between agile
practices (in particular Scrum method) and three processes related to CMMI ca-
pability level 2. The paper is organized as follows. Section 2 analyzes background
and related work. A mapping between CMMI specific practices and agile prac-
tices is described in section 3. Section 4 presents an internal CMMI appraisal in

Mapping CMMI Level 2 to Scrum Practices 95

a software development process in which agile practices are used. Finally, some
conclusions and future work are presented in section 5.

2 Background

2.1 CMMI Overview: CMMI v1.2

CMMI for Development [22] is a reference model that consists of best practices
that address development and maintenance activities applied to products and
services. CMMI-DEV contains practices that cover project management, process
management, systems engineering, hardware engineering, software engineering,
and other supporting processes used in development and maintenance.

2.2 ASD Overview: Scrum

Agile methodologies provide the infrastructure (i) to evaluate the state of the
product, (ii) to identify new changes in the development process, and (iii) to
incorporate them in the final product by means of continuous integration. There
are different agile methodologies such as Scrum [28] or eXtreme Programming
(XP) [29]. Each one of them defines their own techniques for planning, estimat-
ing, or reviewing, but all of them are based on the same values defined by Agile
Manifesto. Even, some of them share some practices, for example requirements
in agile are captured as User Stories (US) [30]. The US objective is to reduce
the cost of the requirement elicitation and management by means of scenarios
written by customers without techno-syntax versus conventional methodologies
based on formal requirements specification documents. These previous guide-
lines have offered a general vision of agile methodologies but this work has been
focused on the Scrum methodology. Following Scrum is described in detail.

Fig. 1. Scrum Lifecycle

Scrum implements an iterative, incremental life cycle (see Figure 1) which
involves three stakeholders: the Product Owner, the Team, and the ScrumMas-

ter [28]; all together make up the Scrum Team. The Scrum life cycle defines
a pre-game phase at the project beginning; planning, review, and retrospective
meetings in an iterative way; and daily meetings during the whole iteration. The

96 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

pre-game phase consists in a light planning process where representative cus-
tomers and members of the Scrum Team capture requirements as US; the result
is the product backlog, a list of known US. Then US are prioritized and divided
into short time-framed iterations called sprints. A sprint is a 2-4 weeks period
of development time. Each sprint has a sprint planning meeting at the sprint
beginning where the Product Owner and Team plan together about what to be
done for the next sprint; the result is the sprint backlog, a list of US and tasks
that must be performed to achieve the sprint goal, i.e., to deliver an increment
valuable functionality of the final product. During the execution of each sprint,
the team meets daily in 15-minute meetings to track the work progress answer-
ing three questions [28]: What have I done since the last Scrum meeting?, What

will I do before the next Scrum meeting?, What prevents me from performing

my work as efficiently as possible?

Anything that prevents a team member from performing his work as efficiently
as possible is an impediment. The ScrumMaster is in charge of ensuring imped-

iments get resolved; for it project adjustments could be necessary. At the end
of the sprint, in the sprint review meeting, the Team asks the Product Owner
whether the goals were met, the Product Owner could change US, add US, etc.
Finally a retrospective meeting is held between the Team and ScrumMaster to
discuss what was well and what could be improved for the next sprint; this is
an estimate and tracking activity to achieve continuous improvement; i.e., ret-
rospective meetings provide feedback to apply needed changes and adjustments
for the next sprint.

2.3 Related Work

Existing literature has summarized that CMMI and agile are compatible [10,20,
31,23,24,25,26,27,32,33,34,35], even that hybrid approaches that combine both
agile methods and methods based on the CMM1 are feasible and necessary [36].

Only few works show how to achieve CMMI levels with agile practices, some of
them are high level, theoretical and difficult to implement in a general full soft-
ware product life cycle, and often do not provide specific details and examples.
Theoretical comparisons between XP and CMM claim that XP does not fulfill
CMM requirements but it may be possible to construct a process that fulfills
CMM level 2 and 3 by adding sound practices to XP [34,23,33]. Vriens suggests
that it is possible to achieve CMM levels 2 process areas using a combination of
XP and Scrum as the base for the software development process [24]. Kähkönen
and Abrahamsson [35] have reported empirical evidences when CMMI is used
for assessing software development processes where XP practices are used. Af-
terward, some works haver assert that CMMI level 5 may be possible [32, 27].
Fritzsche and Keil [25], in turn, state that level 4 or 5 are not feasible under the
current specifications of CMMI and XP, and describe the limitations of CMMI in
an agile environment. Pikkarainen and Mäntyniemi [21] propose an approach for
agile software development assessment and improvement strategies using CMMI;

1 Some studies are related to the previous version of CMMI.

Mapping CMMI Level 2 to Scrum Practices 97

this approach is based on a mapping between CMMI specific goals and agile prac-
tices and supported by empirical evidences. However only two process areas are
supported (Project Planning and Requirements Management) and only from a
CMMI goal (not specific practice). Marcal et. al [26] describe a more detail map-
ping between CMMI Project Management Process Area to Scrum practices but
do not provide empirical evidences.

Unlike these researches, our work tries to increase the detail of previous map-
pings between Scrum and CMMI, and to illustrate this mapping with a case
study providing empirical evidences of the obtained results.

3 Mapping between CMMI Specific Practices and Scrum

Practices

Software requirements elicitation, budgeting, and scheduling are very relevant
process areas in software development. For it Project Planning (PP), Project
Monitoring and Control (PMC) and Requirements Management (REQM) CMMI
process areas were mapped with SCRUM practices.

3.1 Project Planning (PP)

According to CMMI-DEV, the aim of PP is to establish and maintain plans that
define project activities. PP has 3 specific goals (SG) that enclose 14 specific
practices (SP). A detailed description is carried out below:

– SP1.1 Estimate the Scope of the Project. Basically it consists in the identi-
fication of work packages in sufficient detail to specify estimates of project
tasks, roles, responsibilities, and schedule. It is covered by the Scrum pre-
game phase where the product backlog and the sprints are defined; both
items provide the resources for estimate the scope of the project.

– SP1.2 Establish Estimates of Work Product and Task Attributes. Estimate is
carried out in two levels: product level and sprint level. So, Scrum establishes
a first estimation in the pre-game phase and an iterative estimate in the
sprint beginning (planning meeting). Estimates usually are based on size or
complexity attributes. Some agile practices recommend the Planning Poker2

estimation technique; it is based on the consensus of the participants (similar
to Wideband Delphi) for estimating relative size of US. Some units might
include story points [37] or function points.

– SP1.3 Define Project Lifecycle. This specific practice is fully addressed by
Scrum because it defines the lifecycle shown in Figure 1.

– SP1.4 Determine Estimates of Effort and Cost. Again estimation is carried
out in two levels: product level and sprint level. Product estimates are high
level and less accurate and sprint estimates are low level and more accu-
rate than the first ones. Scrum practitioners estimate the US effort in ideal

2 http://www.planningpoker.com/

98 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

engineering days based on previous sprints (historical base of sprint back-
logs), previous projects (historical base of product backlogs), capacity for
the forthcoming sprint and the relative US complexity required to deliver
the sprint goal. Burndown and Burnup models [37] facilitating the effort
estimate.

– SP2.1 Establish the Budget and Schedule. During pre-game phase initial
milestones (sprint goals), schedule (sprints), constraints and budget are setup
according to the initial product backlog. Additional milestones or budget
may be assigned to the project in each sprint during its planning. Correc-
tive action criteria are identified during retrospective meeting. The Product
Owner is an outstanding figure to implement these practices in a successful
way.

– SP2.2 Identify Project Risks. In Scrum risks are captured as impediments
(list of impediments). Their identification is not carried out in the initial
plan or in a systematic manner. But this practice is partially satisfied in
an iterative way, during daily meetings, and impediments are revised in
retrospective meeting. The ScrumMaster is the outstanding figure in this
identification process.

– SP2.3 Plan for Data Management. Any data generated by the project is
stored in public folders or white-boards available to everyone [28], but there
is no formal data management plan or procedure to collect this data [26].
Privacy and security are another weaknesses.

– SP2.4 Plan for Project Resources. During pre-game phase the staffing re-
quirements and equipment list are defined. As the result the Scrum Team is
established. During the sprints execution, the ScrumMaster is in charge of
providing new resources it should be necessary.

– SP2.5 Plan for Needed Knowledge and Skills. Knowledge and skills needs
are identified during pre-game phase, however the definition of mechanisms
to provide knowledge and skills not found in the organization are considered
as impediments and resolved during daily and retrospectives meetings.

– SP2.6 Plan Stakeholder Involvement. Scrum defines roles, responsibilities,
and involvement of the stakeholders at the beginning and end or each sprint.
This involvement is monitored by the ScrumMaster who is in charge of as-
suring the fulfilling of Scrum practices by all stakeholders.

– SP2.7 Establish the Project Plan. To start a Scrum project a vision and a
product backlog are the basis for the project plan [28].

– SP3.1 Review Plans That Affect the Project. Plans reviews are carried out
during planning and retrospectives meetings.

– SP3.2 Reconcile Work and Resource Levels. Work reconciliation occurs dur-
ing planning meetings because product backlog is dynamic, so new estima-
tions or schedules are possible.

– SP3.3 Obtain Plan Commitment. The commitment is obtained in an iterative
way during face to face planning meetings in which stakeholders are involved.

Mapping CMMI Level 2 to Scrum Practices 99

3.2 Project Monitoring and Control (PMC)

According to CMMI-DEV, the aim of PMC is to establish and maintain plans
that define project activities. PMC has 2 specific goals (SG) that enclose 10
specific practices (SP). The mapping described in Table 1 was carried out.

3.3 Requirements Management (REQM)

According to CMMI-DEV, the aim of REQM is to manage the requirements of
the projects products. REQM has 1 specific goal (SG) that encloses 5 specific
practices (SP). The mapping described in Table 2 was carried out.

Table 1. Mapping between PMC specific practices and Scrum practices

PMC specific practices Scrum practices

SP1.1 Monitor Project Planning Parameters
SP1.2 Monitor Commitments
SP1.3 Monitor Project Risks Daily and Retrospective meetings

SP1.4 Monitor Data Management Not supported

SP1.5 Monitor Stakeholder Involvement Retrospective meetings

SP1.6 Conduct Progress Reviews Review meetings. Burndown and Burnup graphs

SP1.7 Conduct Milestone Reviews Review meetings

SP2.1 Analyze Issues Daily and Retrospective meetings

SP2.2 Take Corrective Action Review meetings

SP2.3 Manage Corrective Action Retrospective meetings

Table 2. Mapping between REQM specific practices and Scrum practices

REQM specific practices Scrum practices

SP1.1 Obtain an Understanding of Requirements User Stories (US) in an iterative way (sprints)

SP1.2 Obtain Commitment to Requirements Planning meetings. Backlogs

SP1.3 Manage Requirements Changes Planning and Review meetings

SP1.4 Maintain Bidirectional Traceability of
Requirements User Stories (US)

SP1.5 Identify Inconsistencies Between
Project Work and Requirements Pre-game and Planning meetings

4 An Experience Report: An Internal CMMI Appraisal

Once theoretical comparisons between Scrum and CMMI (level 2 for PP, PMC
and REQM) were established, an internal assessment was carried out to con-
firm these hypotheses. An internal assessment against a CMMI reference model
provided evidences about good agile practices, strengths and weaknesses for
achieving a CMMI level 2 in agile contexts.

100 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

4.1 Case Study Description

The assessed project consisted in a software evolution of a product called Test
and OPeration Environment (TOPEN) [38]. TOPEN is an acceptance testing
tool built in-house that provides mechanisms for the definition and execution
of operation and test cases through a domain specific language. The product
evolution consisted in adapting TOPEN to test a biogas plant. The product
evolution was developed following Scrum method in 6 sprints and 15 weeks. The
Scrum Team was composed of 8 engineers: a Product Owner, a ScrumMaster,
and a Team of six developers. An internal proxy customer was taken into account
too. The Scrum methodology was applied as it is described following.

During the pre-game phase, US were first captured, together with the proxy
customer, which formed a product backlog. The US were grouped in sprints of
two weeks approximately. A planning meeting was established for every sprint.
During the planning meeting, the sprint ending date is defined and the initial
US are further elaborated together with the Product Owner and the Team in
by means of a planning game. The planning game is technique that guides the
estimating of the US involving all the Scrum Team. However, the developers
found that the US estimations were too optimistic in the first planning games,
which made several deviations during the first sprints. Through sprints devel-
opers learned more about Scrum practices, the needs of the customer and the
product under development. As a consequence, the US estimations became more
precise. After the planning game, the sprint backlog is formed. Product backlog
and sprint backlogs were stored and managed through a tool named Rally3. Rally
is a web based tool for managing user stories, tasks, backlogs, plan, releases, test
cases, and defects.

During the sprint, daily meetings solved small problems in an agile way mak-
ing technical decisions by themselves (self organizing teams). At the end of the
sprint, a progress report was elaborated in the review meeting. The customer
representatives validated the work products (documents, releases, or other arte-
facts), and thus the inconsistencies between their needs, plans and project work
were continuously followed. Changes in the client needs were discussed, and the
product backlog was updated correspondingly. Finally a retrospective meeting
was established at the end of every sprint for analyzing strengths, weaknesses,
problems, and improvements of the methods, the team and the project. The
feedback obtained was applied to the following sprints.

4.2 A CMMI Appraisal Process Approach

Once the empirical case project has been described, the next step is the appraisal
process description. We are selected the appraisal process defined by [21]. It is
characterized by (i) appraisal teams of 3-4 members, (ii) appraisal time of 2-3
weeks, (iii) require considerable resources, (iv) medium intrusiveness, and (v)
medium reliability and validity of the appraisal results.

3 http://www.rallydev.com/

Mapping CMMI Level 2 to Scrum Practices 101

Three participants in the appraisal have scored each subpractice related to
CMMI on a questionnaire; this questionnaire is supported by interviews with
participants and reviews of the project documentation.

4.3 Results

Figure 2 and Figure 3 and Figure 4 show the results of the appraisal for some
PP, PMC and REQM specific goals. Figure 2 shows the results of the appraisal
for PP process area. Subpractices for SG1 are satisfied for this case study where
Scrum method was applied. This process area is a challenge for the team because
this case study was the first contact with Scrum method. However, since planning
is an iterative process repeated at the beginning of the sprints, the team had
the chance to improve the process practices in each sprint. So, the iterative
planning enabled development teams to estimate more accuracy and answer to

Fig. 2. PP - SG1 Establish Estimates

Fig. 3. PMC - SG1 Monitor Project Against Plan

102 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

Fig. 4. REQM - SG1 Manage Requirements

changes quickly. As the project progressive, historical data of previous sprints
were collected and used in order to estimate effort and cost.

Figure 3 shows the results of the appraisal for PMC process area. Subpractices
for SG1 are largely satisfied because the Scrum lifecycle defines explicitly times
for monitoring and control through daily, review, and retrospective meetings.
Finally Figure 4 shows the results of the appraisal for REQM process area.
Subpractices for SG1 are largely satisfied. Customers must not specify most of
the requirement at the project beginning, so understanding of requirements is
easier through iterative sprints and requirements change processes are flexible
and largely supported by Scrum method.

5 Conclusions and Further Work

Agile methodologies are associated commonly to informal and lightweight doc-
umentation that do not emphasize process definition or measurement to the
degree that models such as the CMMI do. However the literature has proved
that CMMI model can be applied in a lightweight manner without incurring in
excessive documentation. In particular, this paper has proved that Scrum pro-
cesses can be considered valid under the CMMI paradigm. So, the appraisal has
provided evidences that those process areas related to CMMI-DEV level 2 were
largely covered. These results will be used for learning and selecting practices
for the following agile projects.

The conclusion is that agile methodologies provide many good engineering
practices, and together with CMMI, both approaches can achieve very positive
synergies. Since Scrum method provides criteria to identify a minimum set of
good practices to achieve CMMI capability level 2, small-medium organizations
can take advantage of more flexible and lightweight methods to achieve a certain
CMMI level compliance.

Mapping CMMI Level 2 to Scrum Practices 103

Acknowledgment

The work reported here has been partially sponsored by the OVAL/PM TIC2006-
14840 project, the FLEXI FIT-340005-2007-37 (ITEA2 6022) project and UPM
under their Researcher Training program.

References

1. Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of cmm-based
software process improvement: Initial results. Technical report, CMU/SEI-94-TR-
013, Software Engineering Institute (1994)

2. Goldenson, D.R., Gibson, D.L.: Demonstrating the impact and benefits of cmmi:
An update and preliminary results. Technical report, CMU/SEI-2003-SR-009, Soft-
ware Engineering Institute (2003)

3. Galin, D., Avrahami, M.: Are cmm program investments beneficial? analyzing past
studies. IEEE Software 23(6), 81–87 (2006)

4. Paulk, M.: Using the software cmm in small organizations. In: Proc. Joint 16th
Pacific Northwest Software Quality Conf. and 8th Int’l Conf. Software Quality,
Washington, DC, USA, pp. 350–360. IEEE Computer Society, Los Alamitos (1998)

5. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An ex-
ploratory study of why organizations do not adopt cmmi. Journal of Systems and
Software 80(6), 883–895 (2007)

6. Pino, F.J., Garćıa, F., Piattini, M.: Software process improvement in small and
medium software enterprises: a systematic review. Software Quality Control 16(2),
237–261 (2008)

7. Goldenson, D.R., Herbsleb, J.D.: After the appraisal: A systematic survey of pro-
cess improvement, its benefits, and factors that influence success. Technical report,
CMU/SEI-95-TR-009, Software Engineering Institute (1995)

8. Boehm, B.: A view of 20th and 21st century software engineering. In: ICSE 2006:
Proceedings of the 28th international conference on Software engineering, pp. 12–
29. ACM, New York (2006)

9. Lebsanft, K.: Process improvement in turbulent times – is cmm still an answer?
Product Focused Software Process Improvement, 78–85 (2001)

10. Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. Advances in
Computers 62, 2–67 (2004)

11. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn.
Addison-Wesley Professional, Reading (2006)

12. Abrahamsson, P.: Agile software development methods review and analysis. Tech-
nical report, VTT Electronics, 112 (2002)

13. K. Beck et al.: The agile manifesto, www.agilemanifesto.org (accessed, February
2009)

14. Dingsoyr, T., Dyb̊a, T., Abrahamsson, P.: A preliminary roadmap for empirical
research on agile software development. In: AGILE 2008: Proceedings of the Agile
2008, Washington, DC, USA, pp. 83–94. IEEE Computer Society, Los Alamitos
(2008)

15. Dyb̊a, T., Dingsoyr, T.: Empirical studies of agile software development: A sys-
tematic review. Inf. Softw. Technol. 50(9-10), 833–859 (2008)

16. Ambysoft: Agile adoption rate survey (February 2008),
http://www.ambysoft.com/surveys/agileFebruary2008.html

www.agilemanifesto.org
http://www.ambysoft.com/surveys/agileFebruary2008.html

104 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

17. Ambler, S.W.: Has agile peaked? let’s look at the numbers (May 2008),
http://www.ddj.com/architect/207600615?pgno=1

18. Flexi research project: Flexi newsletter (February 2008) ISBN 978-951-42-8586-8
19. Fowler, M.: Using an agile software process with offshore development (July 2006),

http://www.martinfowler.com/articles/agileOffshore.html
20. Turner, R., Jain, A.: Agile meets cmmi: Culture clash or common cause? In: Pro-

ceedings of the Second XP Universe and First Agile Universe Conference on Ex-
treme Programming and Agile Methods - XP/Agile Universe 2002, London, UK,
pp. 153–165. Springer, Heidelberg (2002)

21. Pikkarainen, M., Mäntyniemi, A.: An approach for using cmmi in agile software
development assessments: Experiences from three case studies. In: Proceedings of
SPICE 2006 (2006)

22. CMMI Product Team: Cmmi for development, version 1.2. Technical report,
CMU/SEI-2006-TR-008, ESC-TR-2006-008, Software Engineering Institute (2006)

23. Paulk, M.C.: Agile methodologies and process discipline. The Journal of Defence
Software Engineering (October 2002)

24. Vriens, C.: Certifying for cmm level 2 and is09001 with xp@scrum. In: Proceedings
of the Agile Development Conference. ADC 2003, June 2003, pp. 120–124 (2003)

25. Fritzsche, M., Keil, P.: Agile methods and cmmi: Compatibility or conflict? e-
Informatica Software Engineering Journal 1(1) (2007)

26. Marcal, A.S.C., Soares, F.S.F., Belchior, A.D.: Mapping cmmi project management
process areas to scrum practices. In: SEW 2007: Proceedings of the 31st IEEE Soft-
ware Engineering Workshop, Washington, DC, USA, pp. 13–22. IEEE Computer
Society, Los Alamitos (2007)

27. Sutherland, J., Jakobsen, C., Johnson, K.: Scrum and cmmi level 5: The magic
potion for code warriors. In: AGILE 2007, August 2007, pp. 272–278 (2007)

28. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall,
Englewood Cliffs (2002)

29. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading (1999)

30. Cohen, M.: User Stories Applied for Agile Software Development. The Addison-
Wesley Signature Series (2004)

31. Paulk, M.C.: Extreme programming from a cmm perspective. IEEE Software 18(6),
1–8 (2001)

32. Anderson, D.J.: Stretching agile to fit cmmi level 3 - the story of creating msf for
cmmi R©process improvement at microsoft corporation. In: ADC 2005: Proceedings
of the Agile Development Conference, pp. 193–201. IEEE Computer Society, Los
Alamitos (2005)

33. Glazer, H.: Dispelling the process myth: Having a process does not mean sacrificing
agility or creativity. The Journal of Defence Software Engineering (November 2001)

34. Martinsson, J.: Maturing xp through the cmm. In: Extreme Programming and
Agile Processes in Software Engineering (2003)

35. Kähkönen, T., Abrahamsson, P.: Achieving CMMI level 2 with enhanced extreme
programming approach. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS,
vol. 3009, pp. 378–392. Springer, Heidelberg (2004)

36. Barry, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
37. Buglione, L., Abran, A.: Improving estimations in agile projects: issues and av-

enues. In: Proceedings of the 4th Software Measurement European Forum (SMEF
2007), May 9-11, pp. 265–274 (2007)

38. Magro, B., Garbajosa, J., Perez-Benedi, J.: A software product line definition for
validation environments. In: Software Product Lines Conference, SPLC (2008)

http://www.ddj.com/architect/207600615?pgno=1
http://www.martinfowler.com/articles/agileOffshore.html

