
Review Article

Mapping Crop Phenology in Near Real-Time Using Satellite
Remote Sensing: Challenges and Opportunities

Feng Gao 1 and Xiaoyang Zhang2

1USDA Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville,

MD 20705, USA
2Geospatial Sciences Center of Excellence, Department of Geography and Geospatial Sciences, South Dakota State University,

Brookings, SD 57007, USA

Correspondence should be addressed to Feng Gao; feng.gao@usda.gov

Received 13 November 2020; Accepted 23 February 2021; Published 24 March 2021

Copyright © 2021 Feng Gao and Xiaoyang Zhang. Exclusive Licensee Aerospace Information Research Institute, Chinese Academy
of Sciences. Distributed under a Creative Commons Attribution License (CC BY 4.0).

Crop phenology is critical for agricultural management, crop yield estimation, and agroecosystem assessment. Traditionally, crop
growth stages are observed from the ground, which is time-consuming and lacks spatial variability. Remote sensing Vegetation
Index (VI) time series has been used to map land surface phenology (LSP) and relate to crop growth stages mostly after the
growing season. In recent years, high temporal and spatial resolution remote sensing data have allowed near-real-time mapping
of crop phenology within the growing season. This paper summarizes two classes of near-real-time mapping methods, i.e.,
curve-based and trend-based approaches. The curve-based approaches combine the time series VIs and crop growth stages from
historical years with the current observations to estimate crop growth stages. The curve-based approaches are capable of a short-
term prediction. The trend-based approaches detect upward or downward trends from time series and confirm the trends using
the increasing or decreasing momentum and VI thresholds. The trend-based approaches only use current observations. Both
curve-based and trend-based approaches are promising in mapping crop growth stages timely. Nevertheless, mapping crop
phenology near real-time is challenging since remote sensing observations are not always sensitive to crop growth stages. The
accuracy of crop phenology detection depends on the frequency and availability of cloud-free observations within the growing
season. Recent satellite datasets such as the harmonized Landsat and Sentinel-2 (HLS) are promising for mapping crop
phenology within the season over large areas. Operational applications in the near future are feasible.

1. Introduction

Crop phenology defines physiological development stages of
crop growth from planting to harvest. Crop growth manage-
ment and yield estimation require accurate crop phenology
information during the growing season [1]. For example,
water stress in different crop growth stages may impact crop
yield differently [2, 3]. For this reason, irrigation may be
scheduled depending on the crop growth stage. Some crop
growth stages, such as the latter part of the reproductive
growth stages for soybeans and the earlier tasseling period
for corn, are more beneficial for irrigation application. Crop
phenology can also be used for fertilization scheduling, pest
management, and harvesting operation. Crop phenology
and growth condition provide information for crop growth
modeling and yield estimation [4].

Crop phenology (growth stage) varies by year and loca-
tion and is affected by climate variation, local weather, soil
properties, and anthropogenic activities. The crop growth
stage starts with planting or emergence and ends with the
harvest. Crop planting dates depend on soil temperature, soil
moisture, weather condition, and farmer practices. Wet
weather may delay crop planting. In 2019, corn planting
dates in the United States (U.S.) Corn Belt (Midwestern
states) were delayed for about 1-2 weeks in Iowa and 3-4
weeks in Illinois compared to the 5-year average due to heavy
springtime precipitation [5]. In this case, farmers switched
crops from corn to soybean or other later-growing crops.
Some fields could not be planted due to the inclement
weather and were covered by the federal crop insurance.
After planting, emergence is the first vegetative growth stage
and the first predictor of crop success. Knowing the crop
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emergence at the early growing period is critical for early
crop mapping and crop condition monitoring. Harvest is
the last growth stage and represents the end of the season
for crops. The harvest dates may vary on the weather condi-
tion and equipment availability. The emergence and harvest
dates define the crop growing period for biomass and yield
production. Other crop growth stages during the growing
period differ among crop types. In the United States, the
U.S. Department of Agriculture (USDA) National Agricul-
tural Statistics Service (NASS) publishes crop growth stages
weekly at district (multicounties) or state level based on
ground observations. Corn in the Corn Belt region is usually
planted in late April to early June, while the usual harvest
time for corn spanned from middle September to middle
November [6].

Winter cover crops have been recognized as an important
component of watershed conservation implementation plans
to achieve water quality goals [7]. For example, in the lower
Chesapeake Bay (LCB) in the Delmarva peninsula, eastern
shore of U.S., cost-share programs have been established to
encourage the planting of cover crops for reducing nutrient
and sediment losses from farmland and for achieving water
quality objectives [8]. The programs require that cover crops
be planted and terminated within a specified time window. In
the 2019-2020 winter cover crop management agreement,
the Maryland Department of Agriculture cost-share program
requires that cover crops terminate/eradicate between March
1, 2020, and June 14, 2020 [8]. The terminations after May 1
are encouraged and will receive additional payments for
higher nutrition uptake. Traditionally, farmers report the
cover crop termination dates, and conservation district staffs
confirm the report through field surveys. The process is
labor-intensive and time-consuming. For operational winter
cover crop assessment, cover crop phenology such as emer-
gence and termination dates is needed in weeks or even days.

Satellite remote sensing provides frequent observations of
land surface properties, which can characterize crop and veg-
etation phenology. Phenological timing and magnitude are
frequently derived from satellite spectral Vegetation Indices
(VIs), representing the seasonal dynamics of vegetation
community in a pixel instead of the features of a specific
plant. For distinguishing field-based observations of plant
phenology, satellite-derived phenological dynamics are often
referred to as land surface phenology (LSP) [9–11] or simply
remote sensing phenology [12]. LSP products may include VI
metrics and phenological dates. The VI metrics provide VI
values at the specific phenological dates, as well as other time
series features such as minimum, maximum, amplitude (the
difference between maximum and minimum), or the integral
of VI during a period. In this paper, we focus on phenological
dates. Once phenological dates are determined, the VI met-
rics are straightforward to generate using the VI time series.

Remote sensing phenology or LSP may use different ter-
minologies, such as greenup vs. start of the season and dor-
mancy vs. end of the season. This paper uses terminology
inherited from MODIS and VIIRS data products (i.e.,
greenup onset, maturity onset, senescence onset, and dor-
mancy onset). However, remote sensing phenological dates
are different from crop growth stages. The greenup event

may be related to emergence, and dormancy onset may be
related to harvest. Their connections depend on crop types
and the remote sensing phenology method used [12]. Remote
sensing phenology is determined by the change of green veg-
etation status observed from remote sensing sensors. Such
change could be related to the fitting function’s inflection
point or a certain level of change in the VI time series [12].
Crop growth stages are reported according to physiological
growth stages. They are observed from the ground by trained
observers [5]. Phenocams can provide information for cer-
tain growth stages but still cannot replace ground observa-
tions. Table 1 lists the key crop growth stages for corn and
soybean in the USDA NASS crop progress reports and their
possible relations to remote sensing phenology. In Table 1,
land surface phenology from remote sensing includes
greenup onset, midgreenup phase, maximum greenup onset,
senescence onset, midsenescence onset, and dormancy onset,
which are detected based on the changes of the VI time series
[10–14]. Not all crop growth stages can be directly related to
LSP from remote sensing.

LSP has been detected from a variety of satellite observa-
tions. Among satellite remote sensing sensors, the Landsat
Multispectral Scanner (MSS) is the first space-borne sensor
that was launched in 1972 for characterizing the seasonality
of vegetation [15]. However, the 16-day repeat cycle of Land-
sat observations is not well suitable for monitoring vegetation
phenology. Remote sensing phenology or LSP detections
only became applicable after daily satellite observations were
available since 1981 from the Advanced Very High-
Resolution Radiometer (AVHRR) [16].

LSP at a spatial resolution of 1-8 km has been widely
derived from AVHRR data for climate trend analyses during
the past four decades [13, 17–20]. The widely used AVHRR
datasets include (1) global biweekly 8 km Normalized Differ-
ence Vegetation Index (NDVI) (since 1981) from NASA’s
Global Inventory Modeling and Mapping Studies (GIMMS)
[21], (2) 10-day 1 km NDVI (since 1989) over the contiguous
United States from USGS (U.S. Geological Survey) EROS
(Earth Resources Observation and Science) Data Center
[22], (3) weekly 4 km Global Vegetation Index (GVIx) prod-
uct (since 1981) from NOAA NESDIS (National Environ-
mental Satellite, Data, and Information Service) [23], and
(4) daily 5 km NDVI (since 1981) globally from the NASA
Long-Term Data Record (LTDR) [24]. LSP has also been
extracted using a 10-day 1 km Satellite Pour l’Observation
de la Terre (SPOT) Vegetation (VGT) sensor, available from
1998 to 2014 [25, 26].

LSP at 250m–1000m pixels has been increasingly pro-
duced with the availability of Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard TERRA (launched
in 1999) and AQUA (launched in 2001) [27–29]. For LSP
detections, NDVI and Enhanced Vegetation Index (EVI)
are commonly computed from MODIS Nadir bidirectional
reflectance distribution function- (BRDF-) adjusted reflec-
tance (NBAR) products (daily or 8 days at 500m) [14, 30]
and Vegetation Index products (16-day composite at 250m,
500m, and 1000m) [28, 31]. Similarly, LSP has also been
detected from the Visible/Infrared Imager/Radiometer Suite
(VIIRS) that builds on MODIS and AVHRR heritage [32].
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For improving the spatial resolution for relatively homo-
geneous pixels, LSP at 30m or finer pixels has been recently
retrieved from Landsat, Sentinel-2, the harmonized Landsat
and Sentinel-2 (HLS) [12, 33–40], and the Vegetation and
Environment monitoring New MicroSatellite (VENμS)
[35, 41]. To improve the temporal resolution in the time
series with fewer cloud contaminations, LSP was detected
from the new generation of geostationary satellites that pro-
vides red and near-infrared reflectances at a revisit frequency
of 5-15 minutes [42].

Most of the satellite LSP products are produced annually.
They are generated in a few months to a year after the grow-
ing season. Retroactive LSP products are mainly used for
research purposes. They are not suitable for operational
applications that need crop phenology information within
the season, usually a few days or weeks after the change of
crop growth stages. This paper defines the near-real-time
term, similar to the crop progress reporting interval, ranging
from a few days to weeks required by operational applica-
tions and statistics purposes. From the data production point
of view, the total time of detection depends on the latency of
satellite observations and the time needed to confirm phenol-
ogy in the remote sensing phenology algorithm. From the
algorithm point of view, the real-time or near-real-time
approaches do not require a full year of data and can run as
soon as remote sensing observations become available.
Real-time or near-real-time algorithms depend on data
availability and may not produce real-time or near-real-
time data products.

The after-season phenology mapping approaches and
LSP data products have been reviewed in several publications
[40, 43, 44]. Misra et al. summarized general phenological
research using Sentinel-2 and discussed future improvements

[40]. Zeng et al. summarized methods for LSP detection and
focused on the after-season approaches [43]. Berra and Gaul-
ton examined LSP studies related to temperate and boreal
forests [44]. The objective of this paper is to present the latest
advancement in crop phenology mapping in near real-time
using multisource satellite images. Opportunities, challenges,
and future development for the near-real-time crop phenol-
ogy mapping are discussed.

2. Crop Phenology Mapping Methods

2.1. Classification of Remote Sensing Approaches. Remote
sensing phenology mapping approaches may be categorized
in different ways. From the data production point of view,
the methods can be classified as after-season and within-
season approaches. After-season approaches have been used
in producing LSP annual products, including from MODIS,
VIIRS, and HLS [14, 32, 33]. The MODIS land cover
dynamic product (MCD12Q2) uses three consecutive years
of MODIS time series to produce LSP for the middle year
[30]. The VIIRS and HLS use two years of time series data,
i.e., the year of interest plus 6 months of Vegetation Index
prepended and appended [32, 33]. The after-season LSP
products are produced in 6 months to 1 year after the grow-
ing season. They usually cover a complete cycle of vegetation
growth and include a full LSP from greenup to dormancy.
The within-season approaches use the latest available remote
sensing observations to produce LSP using any period of time
series data. Since the within-season approaches can run any
time using the latest observations, they are also referred to
as real-time or near-real-time approaches [45]. A near-real-
time approach has been developed to monitor vegetation
(including crop) growth at 500m pixels using MODIS and

Table 1: Key crop growth stages and description for corn and soybean (adopted from USDA NASS) and remote sensing phenology (LSP).

Corn Description Soybean Description
Phenology from remote

sensing

Planting
When the seeds are placed in

the ground
Planting

When the seeds are placed in
the ground

No detection, but correlate to
greenup onset or midgreenup

phase

Emergence
As soon as the plants are

visible
Emergence

As soon as the plants are
visible

Greenup onset (or correlate to
midgreenup phase)

Silking
The emergence of silk-like
strands from the end of ears

Blooming As soon as one bloom appears Maximum greenness onset

Dough
Half of the kernels show dent
with some thick or dough-like

substance in all kernels
Setting pods

Pods develop on the lower
nodes, with some blooming
still occurring on the upper

nodes

Senescence onset

Dent
All kernels are fully dented and
the ear is firm and solid, but no
milk present in most kernels

Turning yellow
Leaves of soybean start to turn

yellow
Between senescence onset and

midsenescence onset

Mature

Safe from frost and is about
ready to harvest with shucks
opening, no green foliage

present

Dropping leaves

Leaves near the bottom of the
plant are yellow and dropping,
while leaves at the very top
may still be green, leaves are

30-50 percent yellow

Midsenescence onset

Harvest
Cut, threshed, or gathered

from the field
Harvest

Cut, threshed, or gathered
from the field

Dormancy onset
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VIIRS data [45–47]. Recently, within-season approaches
have been developed to map crop phenology at the field scale
using VENμS, Sentinel-2, and HLS datasets [35, 41]. The
within-season approaches are aimed at producing the spe-
cific crop growth stages (e.g., emergence or harvest dates)
near real-time for operational applications.

Recent within-season phenology approaches can be cate-
gorized as curve-based and trend-based approaches. The
curve-based approaches require vegetation development
information from historical years as ancillary information
for the current year. They are also called reference-based
approaches [48]. In these approaches, the standard curves
for the same land cover type from historical years are used
to match remote sensing observations from the current year.
Sakamoto et al. [49, 50] developed a two-step filtering
approach to detect maize and soybean phenology using a
shape model from MODIS Wide Dynamic Range Vegetation
Index (WDRVI). The crop-specific shape serves as a priori
information to fit observed MODIS WDRVI data using scale
and shift parameters. Crop growth stages were estimated
once the parameters are determined [49–51]. Sun et al.
extended a similar idea to fuse MODIS and Landsat/Senti-
nel-2 data [48]. The annual NDVI curves from MODIS were
used to fit observed Landsat and HLS data for the same crop
type. The fused data were then used to estimate crop phenol-
ogy at 30m resolution. Zhang et al. proposed an approach to
monitor vegetation phenology in real time and forecast it in
the short term ahead by combining timely available satellite
observations with the climatology of vegetation phenology
[45]. Liu et al. used this approach to monitor corn and soy-
bean phenology in the Midwestern United States in 2014
and 2015 using MODIS and VIIRS [47]. The curve-based
approaches use ancillary information of crop phenology
and are robust under normal conditions.

Unlike the curve-based approach, the trend-based
approaches only use recent remote sensing data observed
from the current growing season. They search the changing
trend from the VI time series and detect the transition dates
that show a substantial change [13, 35, 41]. Reed et al. [13]
used the DelayedMoving Average (DMA) approach to detect
vegetation greenup within the season from the AVHRR time
series. Gao et al. [35, 41] used the Moving Average Conver-
gence Divergence (MACD) [35, 41] as an indicator to detect
the increasing or decreasing trend in the VENμS, Sentinel-2,
and HLS time series. The trend-based approaches do not
depend on the crop curve or conditions from previous years
and do not need crop type information. Since the trend-
based approaches are based on the latest observations, they
cannot predict phenology. We will describe both approaches
and applications in detail in the following subsections.

From the technical point of view, LSP can be extracted by
using the predefined thresholds, the curvature of time series,
the adjustment from the previous phenology, and the chang-
ing trend. The threshold-based approaches use the VI values
or the percentage of the amplitude VI as a predefined thresh-
old [52], which was also used in the MODIS Collection 6 and
HLS phenology data products [30, 33]. The curvature-based
approaches use the curvatures of the fitting function to deter-
mine the inflection dates [14]. The MODIS Collection 5 and

VIIRS LSP products used the curvature-based approach
[46, 53]. The adjustment of previous phenology is a
curve-based approach that uses the crop growth stages
from previous years and then adjusts to the current year
using timely available observations [45, 47–50]. Alterna-
tively, the changing trend approaches use moving average
techniques [13, 35, 41] to detect the increasing or decreas-
ing trend in the VI time series.

2.2. Curve-Based Near-Real-Time Phenology Approach.
Zhang et al. proposed a curve-based approach to monitor
vegetation phenology in near real-time by combining timely
available satellite observations with the climatology of veg-
etation phenology [45]. The approach has the capability of
a short-term forecast, which is performed based on the
following steps.

First, climatological phenometrics are detected from
long-term satellite observations. The climatology could be
derived fromMODIS time series because this dataset is avail-
able since 2000 and was designed for monitoring land surface
properties [54]. The phenometrics includes both phenologi-
cal timing and phenological greenness. The phenological
timing includes greenup onset, maturity onset, senescence
onset, and dormancy onset. The phenological greenness is
the greenness at greenup onset (close to the minimum green-
ness during a growing season), greenness at maturity onset
(close to the maximum greenness during a growing season),
and greenness during dormancy phase representing back-
ground condition. For each individual year, VI time series
is reconstructed using the hybrid pieces logistic models
(HPLM) [20]. The phenological timing is identified using
the extreme values in the curvature change rate of HPLM
[14], and the phenological greenness is then calculated from
HPLM instead of raw VI time series. Using the phenometrics
from the long-term MODIS time series, the climatology of a
specific phenometric, which represents the potential range of
vegetation greenness variations, is calculated using the mean
value (MV) and standard deviation (SD) for the metrics
separately.

Second, the potential temporal VI trajectories are simu-
lated in near real-time. For a given day (the time of the latest
satellite observation), the available VI observations are com-
bined with the climatological phenometrics to simulate the
temporal VI trajectory for a greenup phase or senescence
phase using HPLM [45, 47] (Figure 1). A set of potential tem-
poral VI trajectories are simulated using the HPLM at the
time at each VI observation with the climatological pheno-
metrics varying between MV-SD and MV+SD. The interval
of climatological variation is set as 0.002 in phenological
greenness and one day in phenological timing. This process
is conducted separately for greenup phase and senescence
phase.

Third, the simulation of potential temporal trajectories
starts when the following criteria are met for the greenup or
senescence phases. During the greenup phase, the criteria
for the starting date are as follows: (1) a date for a given year
could be as early as one month before the climatology of
greenup onset; (2) land surface temperature (LST) is larger
than 278K (5°C) [45]; and (3) VI is larger than background
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values with an increase of >0.02 during the consecutive two
3-day periods [47]. During the senescence phase, the criteria
are as follows: (1) the date for a given year is one month ear-
lier than climatology of senescence onset; and (2) VI is
smaller than maximum values with a decrease of 0.02 for
the consecutive two 3-day periods [47].

Fourth, phenological values are calculated for real-time
monitoring and short-term forecasting. From a set of poten-
tial VI trajectories for a given day, a set of phenometrics are
detected. Their mean value is taken as the prediction, and
the standard deviation is considered as uncertainty. The pre-
diction before the occurrence of a phenological event is called
“short-term forecasting,” while detection around the pheno-
logical occurrence is called “real-time monitoring.” After
passing a phenological event, the detection is defined as
“near-real-time monitoring.”

The vegetation monitoring from satellite data is continu-
ously conducted during the period of vegetation develop-
ment. The second to fourth steps are repeated every 3 days
for the real-time monitoring and short-term forecasting of
phenology with the accumulation of satellite observations.

2.3. Trend-Based Near-Real-Time Approaches. Trend-based
approaches only use available observations from the current
growing season [13]. They target the specific crop growth
stages, such as emergence and harvest, for operational
applications. Two approaches have recently been devel-
oped to map within-season crop emergence (WISE) [35]
and within-season crop termination (WIST) [41]. Both
approaches can run in near real-time using a partial year
of observations. The processes include three steps.

First, the discrete remote sensing observations are
smoothed and gap-filled using a local moving Savitzky–
Golay (SG) filter. Clouds, cloud shadows, and low-quality
remote sensing data are excluded from the processing. Since
clear observations are unevenly distributed and some periods
have a large temporal gap than others, a flexible sampling
strategy is considered to fill large temporal gaps while keep-
ing small variations in time series. The flexible sampling

strategy considers the number of samples rather than the
fixed window size used in the original SG filtering approach.
Thus, the flexible sampling strategy uses a small moving win-
dow size for the time that has frequent observations and
enables a large moving window for the time with fewer obser-
vations. In this way, a large temporal gap can be filled using a
large moving window, while local variations can be preserved
using a small moving window [35]. The SG filter is a local
moving window approach and can be applied to any time
series, no matter a few weeks or months. It has less assump-
tion on the shape of time series than other mathematical
functions used in phenology algorithms, such as harmonic
regression, asymmetric Gaussian, and double logistic func-
tions. The SG filter can remove noises (spikes) in time series
and is an effective approach for generating a complete time
series [55].

Once the smoothed and gap-filled time series is gener-
ated, the second step is to determine the significance of the
trend. The trend-based approaches use the Moving Average
Convergence Divergence (MACD) technique that has been
used as an indicator to track the change of stock prices
[56]. Figure 2 illustrates MACD terms and changing trends
detected using the VENμS time series. The VENμS satellite
is an experimental satellite and collects remote sensing
images over the selected site in visible to near-infrared bands
at 5m resolution every two days [57]. The MACD time series
is computed using the difference between two Exponential
Moving Averages (EMA) with different lengths (periods)
based on the smoothed and gap-filled time series VI. The
short-term EMA (“a”) tracks the rapid change of VI, and
the long-term EMA (“b”) tracks the slow changes. The differ-
ences (MACD) between two EMAs can capture the changing
trend. Since MACD may be affected by small variations in
NDVI time series, Gao et al. used the momentum threshold
to determine a substantial upward or downward trend to dis-
tinguish a small variation from a meaningful change [35].
The momentum is computed as the cumulative values of
MACD during the upward or downward period (blue-
shaded areas in Figure 2). To confirm a trend, the cumulative

Day of year (DOY)

Real-time monitoring 

Climatological greenup 
onset and variance

Climatological maturity
onset and variance

Climatological 
maximum VI and 
variance

Timely available VI

Cloud VI or no 
observations

Short-term forecasting

(a)

Day of year (DOY)

Climatological VI and 
variance at dormancy onset 

Real-time monitoring 

Timely available VI 
observations

(b)

Short-term forecasting

V
I

V
I

Figure 1: A scheme for monitoring phenology in near real-time and short-term forecasting from timely available satellite observations for (a)
spring vegetation growing phase and (b) autumn senescence phase. The red circles are the VI data available at the time of simulating the
temporal trajectories. The black bar represents the potential range of VI values at the climatological phenology timing. The trajectories are
calculated from the available observations and the climatological VI. The curves are potential trajectories varying with the standard
deviation in climatology (modified from Zhang [46]).

5Journal of Remote Sensing



MACD must be larger than the predefined threshold. The
threshold may depend on location and crop types. A lower
threshold can capture small variations and detect a greenup
event earlier. However, it may produce some false detections
in the early stage. Once more observations become available,
a greenup event (Figure 2(a)) can be confirmed by a large
momentum. In addition to using the MACD threshold, the
within-season termination (WIST) algorithm (Figure 2(b))
has a VI threshold that requires a substantial rate of decrease
of VI during the senescent period for confirming a downward
trend.

After a changing trend is confirmed, the third step uses
the VI test to refine the phenology dates. For a greenup event
(Figure 2(a)), the moving average of time series VI must
show the increasing trend of VI. For cover crop termination/-
harvest (Figure 2(b)), senescence and dormancy onsets are
first detected during the downward (senescent) period. The
termination dates are determined by the two observation
dates that show the most rapid rate of decrease of VI during
the senescent period (Figure 2(b)). By combining the chang-
ing trend and VI test, crop emergence and cover crop termi-
nation/harvest dates can be detected within 1-3 weeks after
emergence and termination using VENμS time series [35,
41]. The WISE algorithm is a general approach and can be
applied to many crops, including cover crops. The WIST
algorithm is a more specific approach designed for detecting
cover crop termination dates.

3. Applications Using Remote
Sensing Phenology

3.1. Crop Growth Stages from VIIRS Using Curve-Based
Approach. The HPLM-derived phenometrics provide a proxy
of crop growth stages, although the six phenological timing
metrics are not necessarily the same as the stages of crop
development observed in the field (Table 1).

The HPLM for real-time monitoring of crop phenology
was tested in the central United States [47]. First, climatolog-
ical phenometrics were calculated from daily 500m MODIS

MCD43A4 product (Collection 6) from 2003 to 2012. The
MCD43A4 provides 500m daily Nadir BRDF-adjusted
reflectance (NBAR). The two-band Enhanced Vegetation
Index (EVI2) was calculated using red and near-infrared
reflectance bands in theMCD43A4 product. The annual time
series EVI2 was fitted to HPLM to retrieve historical
phenometrics.

The timely available VIIRS observations were collected to
monitor crop phenology in real time. The VIIRS observa-
tions were obtained from the NOAA VIIRS Environmental
Data Record (EDR) products that are distributed through
NOAA’s CLASS (Comprehensive Large Array-Data Stew-
ardship System) with a default latency of 6 hours. The prod-
ucts include daily spectral reflectance (375m at nadir and
800m at the scan edge in red and near-infrared reflectance),
daily land surface temperature (LST), quality assessment
(QA), and surface type containing dynamics of snow cover
for each VIIRS granule. The VIIRS observations from
granules were aggregated to 500m grids using the nearest
neighbor algorithm. Then, daily EVI2 was calculated and
generated 3-day composites using maximum EVI2 from
cloud-free observations.

Based on climatological phenometrics from MODIS and
timely available VIIRS observations, the algorithm described
in Section 2.2 was used to monitor corn and soybean phenol-
ogy in 2014 and 2015 [47]. The real-time monitoring of
greenup onset caused large uncertainty because the available
VIIRS observations were limited and frequently contami-
nated by clouds. Therefore, the test was focused on real-
time monitoring of the midday greenup phase and maturity
onset (onset of greenness reaching maximum) (Figure 3),
which was detected around the phenological occurrence
(within ±3 days).

The results of real-time monitoring were comparable
with the progress of growth stages from USDA NASS weekly
crop progress reports across the Midwestern United States in
both 2014 and 2015 [47]. The midgreenup phase monitored
in real time was able to predict the planting dates of corn at
each state with a lag of varying from 27 to 44 days and the
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emergence dates that occurred with an early time from 15
to 31 days at different states. The VIIRS maturity onset
(maximum greenness onset) was significantly correlated to
the NASS corn silking dates with a lag of 8-11 days ahead.
Similarly, real-time VIIRS phenology shows the capability
of closely tracking NASS soybean progress. The midgreenup
phase was able to estimate the planting date that occurred 22
to 39 days earlier and emergence dates that occurred from 12
to 26 days earlier in different states. The real-time monitoring
of maximum greenness onset consistently indicated the soy-
bean blooming dates with a lag of 1 to 14 days.

3.2. Within-Season Crop Emergence Using Trend-Based
Approach. Crop emergence is hard to detect within the sea-
son (near real-time) since green vegetation changes over soil
background are small at the pixel level. Using the within-
season emergence (WSIE) approach described in Section
2.3, Gao et al. detected early crop greenup dates using VENμS
observations (5m, 2 days) [35]. The remote sensing greenup
dates were within the early growth stages for corn and soy-
beans. The greenup dates were detected about 4-5 days after
emergence, much earlier than the previous studies using cur-
vature or threshold approaches. In those after-season
approaches, greenup events were detected 2-4 weeks after
emergence using the entire year of time series VI [12].

Figure 4 shows greenup dates detected using VENμS,
Sentinel-2, and PlanetScope time series over the Beltsville
Agricultural Research Center (BARC) experimental fields
during the 2019 growing season. Greenups were mapped
within two weeks after emergence using VENμS [35].
Sentinel-2 data (10m, 5 days) detected the most greenup
events, and results are close to those of VENμS. However,
greenups for several fields in the BARC east were missing
due to the lack of Sentinel-2 observations. BARC west locates
in an overlapped area of two Sentinel-2 swathes and thus
received more observations than BARC east. PlanetScope
level 3 harmonized (L3H) data (3m, 1 day) were used in this
review for comparison. PlanetScope detected greenup events
for crop fields similar to VENμS. More recent greenups were
captured by PlanetScope L3H time series (Figure 4(c)) since
the L3H data have been smoothed and gap-filled before using
the WISE program. When enough clear observations are
available, crop emergence dates detected from VENμS,
Sentinel-2, and PlanetScope are close.

The routine HLS dataset [58] was also used to map crop
emergence in the Choptank River watershed in the Delmarva
peninsula, United States. The 30m resolution remote sensing
data are sufficient for agricultural landscapes in the U.S. [59].
The 3-4 days revisit for the combined Landsat-8 and
Sentinel-2 data captured crop emergences for large fields 1-
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Figure 3: Spatial patterns in real-time monitoring of crop phenology (DOY, day of year) in the Midwestern United States in (a, b) 2014 and
(c, d) 2015. (a, c) Midgreenup phase and (b, d) maximum greenness onset. ND: North Dakota; SD: South Dakota; NE: Nebraska; KS: Kansas;
MN: Minnesota; IA: Iowa; MO: Missouri; WI: Wisconsin; IL: Illinois; IN: Indiana (adopted from Liu et al. [47]).
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3 weeks after emergences [35]. In this review, we applied the
WISE approach to the Corn Belt region. Figure 5 shows
greenup dates from the WISE approach for the state of Iowa,
USA, using HLS time series from January 1, 2018, to August
27, 2018. The remote sensing greenup dates detected within
the growing season agree with the crop emergence dates

reported by NASS. Figure 5 captures the spatial variability
of crop emergences at the field scale across agricultural dis-
tricts. Most of the fields have been mapped. Some pixels
(black) were not mapped due to clouds or lacking clear obser-
vations. The stripes in Figure 5 are caused by the different
numbers of observations from different satellite swathes.

(a) VEN�S

(b) Sentinel-2

(c) Planet

3/1 7/156/1 7/15/14/1

N

N
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0 1 2
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0 1 2
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Figure 4: Greenup dates detected from (a) VENμS (modified from Gao et al. [35]), (b) Sentinel-2 (modified from Gao et al. [41]), and (c)
PlanetScope time series over the Beltsville Agricultural Research Center (BARC) experimental fields in Beltsville, Maryland, USA, during
the 2019 growing season. Satellite acquisitions from January 1, 2019, to July 27, 2019, were used to detect the most recent greenup events.
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The overlapped area from neighboring swathes received
more observations and thus mapped crop emergence
(greenup dates) more than other areas.

3.3. Within-Season Cover Crop Termination Using Trend-
Based Approach. Cover crops are planted during the off-
season. They are harvested/terminated when crops are green.
Mapping cover crop termination using remote sensing at the
field scale has been challenging due to the lack of suitable
remote sensing data and methods.

Using the within-season termination (WIST) approach,
Gao et al. detected cover crop termination dates from the
BARC experimental fields in 2019 and 2020 [41]. Results
show that termination dates detected using the VENμS
time series NDVI agree with the harvest/termination oper-
ation records with a mean absolute difference of 2 days.
The Sentinel-2 (5-day) time series also detected correct
termination dates but with 7% missing and 10% false
detections. A near-real-time simulation shows that the
average delay times of detection were about 4-8 days after
termination or harvest operations when satellite data have
no delay. If considering the latency of satellite data, cover
crop termination can be detected within 1-3 weeks.
Figure 6 demonstrates the concept of near-real-time map-
ping of cover crop termination using remote sensing
observations. In the weekly simulation, newly terminated/-
harvested cover crops were detected by using recent satel-
lite observations.

4. Discussions

4.1. Challenges. Mapping crop growth stages using remote
sensing is challenging. LSP or remote sensing phenology is
different from crop physiological growth stages. Remote
sensing phenology needs to be correlated to crop growth
stages for agricultural management. For operational applica-
tions, crop phenology mapping within the growing season
(or near real-time) is required. There are several challenges
to mapping crop growth stages in near real-time using
remote sensing.

First, near-real-time mapping requires that remote sens-
ing phenology approaches can detect crop growth stages
using a partial year of remote sensing observations. In the
early growth stages, crop emergence or early vegetative devel-
opment may not be apparent at the pixel level in remote sens-
ing images. The sensitivity of remote sensing signals to
vegetative development depends on the characteristics of
sensors such as bandwidths and signal-to-noise ratio. In crop
phenology mapping, temporal consistency of time series
remote sensing data is critical and required. During the early
crop development, a small change of emergence may be com-
plicated with the change of soil moisture, such as snow melt-
ing or rainfall. In addition, the availability of usable remote
sensing observations is affected by clouds and thus affects
phenology results [60]. For these reasons, near-real-time
monitoring of crop emergence may be delayed. Recent stud-
ies show that crop emergence may be detected in 1-3 weeks

3/1 4/1 5/1 6/1 7/1

N

500 25 75 100
km

Figure 5: Greenup dates detected from HLS time series over the state of Iowa, USA, during the 2018 growing season using the WISE
approach. Satellite acquisitions from January 1, 2018, to August 27, 2018, were used to detect the substantial greenup events.
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after emergence when green leaves have been developed, and
the change of VI can be confirmed [35, 47].

Second, satellite observations are affected by many fac-
tors, and uncertainty always exists in an individual observa-
tion. These noises may come from the undetected clouds,
cloud shadows, atmosphere effects, calibration errors, etc.
The change of crop conditions from biotic and abiotic factors
such as soil conditions, insect, and water stress may also
affect VI time series. In the near-real-time mapping, a small
variation in a few recent satellite observations may not reflect
an actual change in crop growth conditions. As a result, the
relative increase or decrease of vegetation greenness in the
latest observation compared to previous values does not nec-
essarily indicate actual vegetation greenness dynamics in the
curve-based model. On the other hand, a real change signal
may be mistreated as noise in reconstructing VI time series
[61]. For example, alfalfa can be harvested a few times a year
and regrow quickly after each harvest. If only 1 or 2 clear
remote sensing observations capture the drop of VI, it will
be a challenging case for phenology algorithms using optical
remote sensing data to distinguish a real change of VI from a
noise. In trend-based approaches, Gao et al. [35, 41] use the
SG filter and require a minimum of 5 observations within
±60 days to fill temporal gaps. The combination of parame-
ters captures all greenup and termination events for an
alfalfa field in BARC using the 2-day revisit VENμS time
series. The SG filter is more robust in capturing multiple
growing seasons than the preassumed mathematical func-
tions. However, when using the 5-day revisit Sentinel-2 time
series, some greenup and termination events were missed.
The capability of near real-time monitoring using optical
remote sensing depends on crop type and satellite data used.

High spatial resolution radar data may be an option to com-
plement the optical remote sensing [62].

Third, crop growth stages may not be directly related to
remote sensing phenology. For example, the within-season
termination approach can detect terminations when cover
crops are terminated in green. However, it cannot detect har-
vest dates for summer crops since the changes of VI are not
substantial during the mature stages when leaves turn brown
or yellow [41]. Remote sensing phenology or LSP has differ-
ent relationships to the crop growth stages depending on
crop types and methods used [63]. The curve-based
approaches are useful to connect remote sensing phenology
and crop growth stages based on remote sensing and ground
observations from historical years [45–50]. However, the
curve-based approaches usually require crop type informa-
tion in the early growing season, which may not be available
for most areas. The curve-based approaches assume the
current year has a similar VI pattern to previous years.
The assumption works for the normal years but may not
work if crop condition changes due to biotic or abiotic
reasons such as drought, floods, or insect damage. The
trend-based approaches do not require crop type informa-
tion but may be sensitive to small variations such as the
growth of weeds. A hybrid model that combines informa-
tion from remote sensing, crop growth knowledge,
weather, and soil conditions may be a solution for crop
growth monitoring near real-time.

Field observations are needed to associate remote sensing
phenology with crop growth stages, especially after crop
emergence. Previous validations mostly focused on a few
stages using summarized statistics, such as the weekly NASS
crop progress reports [12, 47, 49–51, 63]. The field-level
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validation of crop growth stages is limited. In recent years,
phenocams have been used to monitor vegetation phenology
[64]. Phenocams network in the U.S. includes about 100 phe-
nocams over agricultural sites [65], which is sparse and lim-
ited. For crop phenology monitoring, phenocams cannot
replace ground observations since some crop growth stages
cannot be observed from photos alone. Nevertheless, the
near-surface phenocam network provides a way to validate
land surface phenology and a quick assessment of crop
growth stages and conditions. Ground observations of differ-
ent crop physiological stages are needed for validation at the
field level.

4.2. Opportunities. Previously, crop phenology mapping at
field scale has been limited due to the lack of high temporal
and spatial resolution data. These data from satellite remote
sensing have become available in recent years. Several satel-
lite constellations have provided the solution. For example,
the two Sentinel-2 satellites (A and B) provide 10-20m reso-
lution imagery in visible and near-infrared bands every five
days [66]. The harmonized Landsat and Sentinel-2 (HLS)
dataset provides a global 30m resolution surface reflectance
product every 3-4 days since 2017 [58]. The commercial Pla-
netScope satellite constellation provides daily observations
from a small satellite constellation at 3m spatial resolution
[67]. A recent study shows that crop emergence and cover
crop harvest can be detected accurately using the 2-day
revisit VENμS time series over BARC where about 25-30%
clear pixels per day are available. The 5-day revisit Sentinel-
2 detected emergence and harvest for most of the fields but
with some missing and false detections. The harmonized
Landsat and Sentinel-2 with a 3- to 4-day revisit can be used
for a large area where field sizes are relatively large. As
Landsat 9 and Sentinel-2C are scheduled to launch in 2021
and 2023, respectively, the medium-resolution Landsat
and Sentinel-2 virtual constellation can provide continuous
global observations every 1-2 days. Mapping crop phenology
at the subfield to field scales in the near future is promising.

Data fusion approaches have been used to fill large
temporal gaps using data sources in different spatial and tem-
poral resolutions (e.g., polar-orbiting MODIS/VIIRS and
Landsat/Sentinel-2) [68, 69] and for after-season crop
phenology mapping [12, 38, 39]. The effectiveness of crop
phenology mapping using data fusion depends on the avail-
ability of clear MODIS, Landsat, and Sentinel-2 images. In
addition to polar-orbiting satellites, a new generation of
geostationary satellites can image the Earth’s surface every
10-15min at 0.5-1 km spatial resolution. Geostationary
observations provide more cloud-free observations and show
the potential to improve LSP mapping [42, 70]. The geosta-
tionary data at coarse spatial resolution may be fused with
the medium spatial resolution data (e.g., Landsat/Sentinel-
2) to produce high temporal and spatial resolution data for
crop phenology mapping at the field scale. Now, since high
temporal and spatial resolution remote sensing observations
are available, data fusion may not be critical for crop phenol-
ogy mapping in near real-time for the region without persis-
tent cloud cover, but further study is still needed. Data fusion
is still a solution for crop phenology mapping for retroactive

study, especially when frequent medium-resolution observa-
tions were not available in the early years.

Near-real-time remote sensing phenology approaches
have been developed in recent years. They can be generalized
for operational uses in agricultural management and agroe-
cosystem services. The timely crop phenology provides infor-
mation for irrigation and fertilization scheduling, crop
condition monitoring, and yield estimation. Recent studies
show that comparing VI or evapotranspiration at the same
crop growth stages is more robust for crop condition moni-
toring and yield estimation than traditional approaches that
compare VI at the same calendar date [4, 71]. Cover crop
emergence and termination detected from remote sensing
provide information for quantifying conservation practice
implementation and enabling estimation of biomass accu-
mulation [7, 8, 41].

5. Summary

Crop growth information is required for agricultural man-
agement and agroecosystem assessment. Remote sensing
data have been used for mapping land surface phenology
(LSP) and relating to crop growth stages. This paper reviews
the within-season phenology mapping approaches that use
timely available remote sensing observations to detect the
recent crop phenological events in near real-time. Two
groups of within-season approaches are presented. One
group of methods uses time series shapes or curves from
historical years and combines them with observations
from the current year to estimate crop growth stages.
Another group detects the changing trend and strength
(momentum of change) using the latest available observa-
tions. Both approaches show promising results by compar-
ing to the field observations and the summary of crop
growth stages. However, near-real-time mapping of crop
phenology is still very challenging since remote sensing
observations may not be sensitive to the change of crop
growth stages. Some crop growth stages may need a few days
or weeks to confirm from the latest VI time series. Recent
studies show that crop emergence and cover crop termina-
tion may be detected within 1-3 weeks after events when clear
observations are available. As high temporal and spatial res-
olution satellite datasets such as the harmonized Landsat
and Sentinel-2 (HLS) and PlanetScope become available,
within-season or near-real-time crop phenology mapping at
high (<10m) to medium (10-30m) spatial resolution is
conceivable.
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