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Abstract: Nationwide and consistent information on agricultural land use forms an important basis
for sustainable land management maintaining food security, (agro)biodiversity, and soil fertility,
especially as German agriculture has shown high vulnerability to climate change. Sentinel-1 and
Sentinel-2 satellite data of the Copernicus program offer time series with temporal, spatial, radiomet-
ric, and spectral characteristics that have great potential for mapping and monitoring agricultural
crops. This paper presents an approach which synergistically uses these multispectral and Synthetic
Aperture Radar (SAR) time series for the classification of 17 crop classes at 10 m spatial resolution
for Germany in the year 2018. Input data for the Random Forest (RF) classification are monthly
statistics of Sentinel-1 and Sentinel-2 time series. This approach reduces the amount of input data
and pre-processing steps while retaining phenological information, which is crucial for crop type
discrimination. For training and validation, Land Parcel Identification System (LPIS) data were
available covering 15 of the 16 German Federal States. An overall map accuracy of 75.5% was
achieved, with class-specific F1-scores above 80% for winter wheat, maize, sugar beet, and rapeseed.
By combining optical and SAR data, overall accuracies could be increased by 6% and 9%, respectively,
compared to single sensor approaches. While no increase in overall accuracy could be achieved
by stratifying the classification in natural landscape regions, the class-wise accuracies for all but
the cereal classes could be improved, on average, by 7%. In comparison to census data, the crop
areas could be approximated well with, on average, only 1% of deviation in class-specific acreages.
Using this streamlined approach, similar accuracies for the most widespread crop types as well as for
smaller permanent crop classes were reached as in other Germany-wide crop type studies, indicating
its potential for repeated nationwide crop type mapping.

Keywords: agriculture; random forest classification; multispectral data; radar data; spectral statistics;
temporal statistics; IACS

1. Introduction

About 50% of the German land area is dedicated to agriculture, including managed
and unmanaged grassland [1]. Intensification of agriculture, i.e., the overuse of fertilizers,
pesticides and herbicides, agricultural expansion, and the focus on few crop types, leads
to decline in soil fertility and biodiversity, to increased surface runoff, greenhouse gas
emissions, water consumption, and to nitrogen and chemicals leaching to the groundwater.
The agricultural sector is of high economic importance in Germany, but recent years
have shown its vulnerability to climate change effects, such as more frequent heat waves,
spring frosts, floods and droughts [2–6]. Therefore, in order to support sustainable land
management, and as a basis for assessing climate change-related ecological, economic and
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societal effects on agriculture, timely, reliable and area-wide information on agricultural
land use is necessary. Even though information on grown crop types is collected for
Germany at the Federal State level in the context of managing agricultural subsidies
through the Land Parcel Identification System (LPIS) of the Integrated Administration and
Control System (IACS), this data does not provide information on all agricultural land
(areas without subsidy application are not included). It is usually neither openly accessible
for all German Federal States, nor available in a timely manner.

The availability of optical and Synthetic Aperture Radar (SAR) satellite data with
high spatial detail of up to 10 m and a temporal resolution of approximately 5–6 days
in cloud-free conditions has improved the capacity to map crops at field level. Many
approaches rely on optical satellite time series with its strong capability to track vegetation
phenology in a comprehensible way. Sentinel-2 data have been used in a number of studies
to map agricultural areas worldwide (e.g., [7,8]), in Europe (e.g., [9–20]), and in Germany
(e.g., [21–24]) with promising accuracies, sometimes in combination with Landsat or other
optical satellite data (e.g., for Europe [25] and for Germany [26–28]). A major drawback
of optical data, however, is that observations of crucial phenological crop stages can be
lost due to cloud cover. In this context, and particularly since the availability of Sentinel-1
acquisitions, advances have been made in the analysis of radar data for crop mapping,
and in its combination with optical images, to create robust classification approaches for
agricultural areas [29]. Various studies have shown the potential to map crop types based on
Sentinel-1 time series without additional optical data input in Europe (e.g., [30–41]) and in
Germany (e.g., [42–44]). However, particularly promising are approaches combining optical
and SAR data (e.g., for Asia [45], Africa [46,47], Europe [48–55], and Germany [56–58]).
Such synergistic approaches consistently showed better overall accuracies than mono-
sensor classifications (e.g., [48,51,56,57]), particularly in the case of challenging cloud
situations [49].

Regarding the image classification approaches used for crop type mapping, there is a
tendency over the last decade towards non-parametric machine learning classifiers, such
as support vector machines, Random Forest (RF), and other decision trees which do not
make any a priori statistical assumption on data distribution [29]. Classifications generated
with such approaches generally achieve higher accuracies than parametric classifiers (see
e.g., [59]). Other promising approaches for crop type mapping comprise deep learning
techniques for fusion and application to radar and optical time series (see e.g., [23,55]).

When focusing on national-scale crop type mapping in Germany, previous studies
have looked into different time periods and class detail. In two studies the crop type
distribution for all of Germany was mapped based on optical data for the year 2016. The
first study [26] discriminated seven crop types and five non-cropland classes at 30 m spatial
resolution based on best-pixel 10-day, monthly and seasonal composites of a harmonized
Landsat and Sentinel-2A time series. With reference data for three German Federal States,
they achieved overall accuracies of up to 81%. In the other national-scale mapping study, the
authors of [22] differentiated 18 crop types and 5 non-cropland classes in Germany at 20 m
spatial resolution. Input data of this study were Sentinel-2A composites with dynamically
varying data-driven composite periods, which required generating multiple regionalized
input datasets and classification models in order to account for the inhomogeneous optical
data availability throughout Germany [22]. Overall accuracies range between 86% and 90%.
A first study jointly using optical and radar time series for crop type mapping in Germany
was conducted by [57], combining bi-weekly features of Sentinel-1 and Sentinel-2 data, and
differentiating 15 crop types in the Federal State of Brandenburg at 10 m spatial resolution
with an overall accuracy of 72%. More recently, the authors of [56] have mapped 22 crop
types and 2 non-cropland classes for Germany for 2017–2019 at 10 m spatial resolution based
on Landsat-8, Sentinel-2, Sentinel-1, and 39 environmental variables related to topography,
temperature, and precipitation. Equidistant 5-day time series were generated from the
optical data sources by filling gaps with a radial basis convolution function filter ensemble.
Sentinel-1 data (VV, VH, Radar Vegetation Index (RVI), VH/VV) was used in form of
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monthly mean composites. With reference data for 4–5 German Federal States, the authors
of [56] achieved overall map accuracies of 78%, 79%, and 80% for the three investigated
years.

The mentioned previous crop type mapping studies for Germany or other large
study areas revealed that major challenges are related to strong within-class phenological
variabilities that are caused by varying management practices and meteorological crop
growing conditions in different years and subregions [56]. Different strategies to overcome
this obstacle have been presented. A stratification or regionalization of the study area
was suggested to reduce the intra-class variability [7,22,60]. Other studies suggest the
additional use of meteorological variables describing crop phenology [56] or the correction
of the spectral-temporal profiles of crop types to the agro-meteorological conditions [61–63].
However, these latter two approaches either rely on additional input information, local
expert knowledge, or on pixel-wise adapted time series requiring complex workflows,
making them computationally heavy or difficult to transfer in space and time.

In this context, the objective of this study is to investigate how large-area crop type
mapping approaches can be simplified in comparison to the above-mentioned studies
while maintaining high map accuracies, making them applicable for efficient, repeated and
timely national-scale crop type mapping in Germany. We present a classification approach
for identifying 17 main crop types in Germany in 2018 based on monthly temporal metrics
of SAR from the Sentinel-1 mission and optical data from Sentinel-2. Grassland, a class
that usually can be mapped with a high accuracy, is not part of the selected classification
legend, potentially decreasing overall accuracy in comparison to other studies. It is tested if
monthly predictors are able to distinguish crop types throughout their growing season and
to pinpoint differences in their vegetative development. As further objective, the potential
benefit of combining optical and radar data and the respective contributions of the two
signals, so far assessed on a national scale for Germany only by [56], should be analyzed
for overall mapping accuracies as well as in detail for individual crop classes, as this is only
rarely assessed. To still account for the regional growth condition differences that inevitably
prevail in an area as large as Germany, the effect of simple study area stratification is
tested to potentially improve national scale crop type mapping. Specifically, the following
research questions are assessed:

1. How does the combination of monthly multispectral and SAR features influence the
overall and class-wise accuracy of a Germany-wide crop type map?

2. Could the overall or class-wise accuracies of the generated crop type map be improved
through regional stratification?

3. Is it possible to rely on a simple and processing efficient approach for national-scale
crop type mapping while maintaining good classification accuracies?

A special aspect of this study is the use of high-quality reference data from the LPIS
parcel system for 15 of the 16 German Federal States, making the training robust and the
results more representative for the entire country compared to former studies. Furthermore,
the synergistic yet simplified and exclusive use of radar and multispectral data for large-
area crop type mapping in Germany is investigated for the first time.

2. Materials and Methods

In this study, optical and radar data are used synergistically in a RF approach, firstly
to delineate the cropland area, and, secondly, to classify crop types. An overview on the
workflow is given in Figure 1.

2.1. Study Area

Of its total area of 357,587 km2, approximately 52% of Germany was under agricultural
use and 32.8% was arable land in 2018, with maize, winter wheat, rapeseed, and winter
barley being the main crops [1]. Despite its small share in total economic output, with
a total standard output of EUR 46,503 million in 2020 [64], agricultural production is of
great importance in Germany for ensuring an adequate food supply for the population.
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Crop type diversity is high within, as well as among, German regions. Due to maritime,
continental, and alpine climates, as well as due to heterogeneous soil conditions influenced
by divers geomorphological processes, the growing conditions vary strongly. This results
in regionally varying dominance of crop types, diverse cropping calendars (see Figure S1),
shifts in phenophases, and different landscape structures, with, for example, larger fields
in the north and smaller parcels in the south [65]. The former East German Federal States
show the same north–south gradient in parcel size, but have, on average, much larger fields
due to land reforms in the former German Democratic Republic. All of these aspects pose
special challenges to a Germany-wide cropland mapping as they lead to high variance of
the spectral-temporal signal within one crop class.
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As with most Central European agricultural systems, agricultural production and
agricultural landscapes in Germany face a range of challenges, such as biodiversity con-
servation, the reduction of fertilizer use, and the preservation of a high quality of surface
waters and groundwater, as well as achieving higher resilience to climate change [66].
Although a sound nationwide data basis is crucial to meet these challenges, the federal
structure in Germany, in some parts, hampers a timely and easy compilation of such
information, and, for example, LPIS data has to be gathered via the individual federal
institutions. Access to ground-truth data is, hence, regarded as one of the most important
constraints to crop classification at a national scale in Germany.

2.2. Satellite Data and Pre-Processing

The main input data for the classification are time series of the Sentinel-1 and Sentinel-
2 missions for the year 2018. The Multi-Spectral Instrument (MSI) on Sentinel-2 provides
pixel reflectances in 10, 20, and 60 m spatial resolution [67]. The red edge (bands 5, 6,
7), near infrared (band 8A), and shortwave infrared bands (bands 11 and 12), available
in 20 m spatial resolution, were resampled to 10 m using the nearest neighbor algo-
rithm. The atmospheric correction algorithm “Python-Based Atmospheric COrrection”
(PACO) [68] was applied to obtain Level-2A Bottom-Of-Atmosphere (BOA) reflectance
from the Level-1C data. Given only low altitudinal differences within the cropland regions
of Germany, a digital elevation model was not used in the atmospheric correction process.
PACO produces an additional layer for each image indicating water, clouds, cloud shadows,
snow, and invalid pixels, which was used in the further processing to mask invalid data.

For Sentinel-1, all available Ground Range Detected SAR datasets for 2018 were
used. We decided to use Sentinel-1 data in descending mode only, as previous studies on
crop development have shown very similar behavior of ascending and descending mode
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data [48]. The steps to obtain Sigma_0 backscatter values included orbit correction, thermal
noise removal, radiometric calibration, border noise removal, speckle-noise filtering, terrain
correction, and conversion from linear values to decibel units. These pre-processing
steps were applied using the SNAP Sentinel-1 toolbox [69]. From this data base, VV
and VH polarization modes were used. Other backscatter-based ratios, such as RVI and
VH/VV ratio, were not considered as previous studies showed that they did not improve
crop classifications as long as VV and VH were integrated [48,56]. The Sentinel-1 data
were further resampled and co-registered to Sentinel-2 resolution using nearest neighbor,
as suggested in [51,56,57,70], and Sentinel-1 subsets aligning to the Sentinel-2 tile grid
were generated. Computationally more expensive co-registration/resampling methods
(e.g., [71,72]), were not applicable given the large number of input data sets.

Subsequently, temporal features were calculated from the time series of Sentinel-1
and Sentinel-2. Temporal feature generation allows to capture average spectral changes
in crops over a certain period of time, and (for optical data) to avoid data gaps due
to cloud coverage. Per-pixel monthly statistics (average, minimum and maximum) were
calculated for 10 Sentinel-2 bands (bands 2–8, 8A, and 11–12) and the Normalized Difference
Vegetation Index (NDVI), ranging from March to October 2018. In order to avoid data
gaps in few locations due to persistent cloud coverage during a month, all pixels with no
observation were linearly interpolated using the respective feature value of the preceding
and following months. This procedure was chosen due to its computational efficiency
compared to other commonly used filters (e.g., Savitzky–Golay). To enable the interpolation
for March and October, the features for February and November have also been calculated.
Data gaps in these features have been filled class-wise using the mean feature value of
the respective Copernicus high-resolution layer (HRL) class, i.e., imperviousness, water,
grassland, and forests, or of the “incora” cropland class (see Section 2.4). For Sentinel-1 data
(VV and VH polarizations), monthly per-pixel statistics (average, minimum and maximum)
were calculated from January to December 2018. As C-band data are hardly affected by
clouds, there was always a high number of valid observations available for calculating the
backscatter temporal features within the monthly periods. Overall, a streamlined data set
with a total of 336 features was generated, 264 optical and 72 radar features, based on a
relatively easy procedure involving only few pre-processing steps.

2.3. Reference Data

LUCAS (Land Use/Cover Area Frame Survey) data of 2018 provided by the Statis-
tical Office of the European Commission (Eurostat) [73] were used in a first step for the
crop mask generation (see Section 2.7). In the LUCAS survey, data are collected every
three years on-site at points distributed in a regular 2 km grid over the entire EU within
74 land cover and 40 land use classes (however, not differentiating crop type classes). For
Germany, more than 88,000 samples are available, grouped into eight main categories.
LUCAS data was used as reference to discriminate five classes: cropland (“arable land”
and “permanent crops”), grassland, forests (“wooded areas” and “shrub”), inland wa-
ter, and all other classes (“bare surfaces” and “artificial constructions”). For each class,
4000 reference samples were randomly selected from the LUCAS points over Germany.

Independent of the LUCAS data-based cropland mask estimation, information on
cultivated crop types from the LPIS data sets was used in the main classification (see
Section 2.7). Training and validation data for the crop type mapping were extracted from
individual parcels of the LPIS 2018 data, that was available for 15 of the 16 German Federal
States (all but North Rhine-Westphalia). Given this unprecedented exhaustive coverage
of LPIS data for a Germany-wide crop classification, we expect that the procedure is also
valid for the Federal State of North Rhine-Westphalia, assuming that the training and
validation data from the surrounding states are sufficiently representative. LPIS data were
provided for our research purposes by the Federal authorities in form of anonymized
field boundaries with information on the crop types cultivated in the year 2018. The LPIS
polygon data as provided individually by the German Federal States was harmonized and
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prepared for its integration into the classification procedure. This included the elimination
of geometric inconsistencies such as overlapping polygon areas and the harmonization of
crop type class codes.

2.4. Ancillary Data

The Copernicus Pan-European HRLs Imperviousness Built-up, Water & Wetness,
Grassland, and Forest Type for the year 2018 in 10 m spatial resolution [74], as well as the
cropland class of the incora (“Inwertsetzung von Copernicus-Daten für die Raumbeobach-
tung”) product for the year 2019 [75], were used for the gap filling of the shoulder month
(see Section 2.2).

Apart from the LUCAS data, further inputs to the crop mask were OpenStreetMap [76]
layers over Germany as well as the World Settlement Footprint (WSF) map to improve
the detection of all settlement areas. The WSF product [77] is a binary mask outlining the
extent of human settlements at 10 m resolution based on Landsat and Sentinel-1 images.

For the stratification of the Germany-wide classification, the landscape regions (“Groß-
landschaften”) as defined by the German Federal Agency for Nature Conservation (by
Hauke and Ssymank (not published) based on [78]) have been used. From this data
set, six regions (Northwestern Lowlands—NWL, Northeastern Lowlands—NEL, Western
Uplands—WUL, Eastern Uplands—EUL, Southwestern Uplands—SWUL, and Alpine
Foreland—AFL) have been selected, leaving out only the marine areas as well as the alpine
area, since the German Alps comprise almost no cropping areas (see Figure 2).
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In addition to the field-level validation measures calculated with LPIS data, the areas
covered by crop types according to the classification map are compared to national statistics
on crop acreage published by the Federal Statistical Office [1,79–81] and the Bavarian State
Research Centre for Agriculture [82].
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2.5. Crop Type Classes

From the very detailed LPIS data (see Section 2.3), a selection and aggregation of
LPIS classes and subclasses was conducted (see Table 1) in order to approximate the
classes usually used for statistical reporting (e.g., by the Federal Statistical Office). The
focus of this study is on the mapping of arable land crop types; hence, managed and
unmanaged permanent grasslands (meadows and pastures), as well as fallow areas, were
not included. Arable grass and clover/alfalfa, however, are kept as individual classes.
Further, only crops with an area that exceeded 0.5% of the total agricultural area recorded
by the LPIS data were included in the sample dataset, leading to the exclusion of industrial
crops such as sunflower or vegetable classes. Although hops, vineyards, and stone fruits
did not reach this threshold, they were included due to their relevance at regional level,
exceeding a coverage of 10% for specific Federal States. Sub-categories of maize, winter
wheat, clover/alfalfa, fruit trees, and potato, for which no potential for differentiation with
multispectral and SAR data was expected, were merged, and the classes peas, beans, soy,
and lupins, as well as winter triticale and winter spelt, respectively, were combined. This
resulted in a total of 17 crop classes that were selected for classification (Table 1).

Table 1. Crop types analyzed in this study and their translation from LPIS classes.

Crop Type Class Code LPIS Classes Included

winter wheat 11 winter wheat, durum wheat
winter barley 12 winter barley

winter rye 13 winter rye
other winter cereals 14 winter triticale, winter spelt

spring wheat 21 spring wheat
spring barley 22 spring barley

spring oat 23 spring oat

maize 30 maize, maize (biogas), maize (silage), grain maize,
maize with flower strip/hunting aisle

legumes 40 peas, beans, peas-beans mixtures, soy, lupins
potato 50 potatoes, starch potato, seed potato

sugar beet 60 sugar beet
rapeseed 70 winter rapeseed

clover/alfalfa 81 clover sorts, alfalfa, clover/alfalfa-grass-mixtures
arable grass 82 arable grass

vineyard 90 vineyard
fruit trees 100 stone fruits, pomaceous fruits, orchard meadows

hops 110 hops

2.6. Crop Type Sampling Methodology

For each of the above defined LPIS classes, data for training and validation were
randomly sampled. A 10 m inward buffer, as well as a minimum size threshold of 0.5 ha,
was applied to each LPIS parcel to exclude very small and overlapping parcels, to ensure
a minimum distance between the samples, as well as to reduce noise in the spectral and
backscatter information due to mixed pixel effects. From the remaining elements, a total
of 5000 LPIS parcels were randomly selected per class. As shown in previous studies,
training data class imbalance has a strong effect on the classification accuracy, as large
classes are mapped on the expense of smaller classes [22], while equal stratified sampling
avoids underrepresentation of small classes in the classification and favors the estimation
of user’s accuracy by reducing its standard error [83]. Therefore, an equal sampling scheme
was used to avoid potential bias when training the RF models with the existing large class
imbalance. From each parcel one single pixel was selected, resulting in 85,000 samples
overall. At each sample point, the information from the Sentinel-1 and Sentinel-2 temporal
feature raster datasets was extracted. These reference data were randomly split for each
class into 50% for validation and 50% for training.
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Additionally, six subsets were generated from the German-wide data set for the land-
scape regions [78] in order to test the effect of stratification on the classification result. Since
the distribution over the landscape regions for some crop types are quite heterogeneous
(such as wine or hops), classes for which fewer than 300 samples per class could be found,
or which are cultivated on less than 1% of the respective region, were excluded from the
regional classifications. This led to the exclusion of clover/alfalfa, vineyards, and hops
from the North-western Lowlands; of spring barley, clover/alfalfa, vineyards, and hops
from the North-eastern Lowland; of clover/alfalfa, arable grass, potatoes, and hops from
the Western Uplands; of winter rye, potatoes, sugar beet, arable grass, vineyards, and hops
from the Eastern Uplands; of arable grass and hops from the Southwestern Uplands; and
to the exclusion of winter rye, spring wheat, arable grass, and vineyards from the Alpine
Foreland region. For these data sets, a 50% split between training and validation data was
applied as well.

2.7. Crop Type Classification Approach

The crop type classification workflow is shown in Figure 1. A supervised pixel-based
RF classifier [12] was used. RF has been extensively tested for different land cover and crop
type classifications (e.g., [22,26,41,56,57,60,84]) and has proven to be robust and efficient
when dealing with different scales or data ranges [85], making it suitable for the joint use
of SAR and optical data. Model building and classification was done using the Python
“scikit-learn” package (version 0.24.1) [86].

For identifying cropland areas all over Germany, a basic land cover classification
was generated as a first step that will be used as cropland mask. The spectral–temporal
features of Sentinel-1 and Sentinel-2, as described in Section 2.2, as well as the LUCAS
data as described in Section 2.3, served as input data to a RF with 500 trees. From the
resulting classification, the classes were aggregated to two classes, “cropland” and “other”.
The resulting map was further refined by masking pixels from the cropland class that
were assigned to other land cover classes according to the Copernicus HRLs 2018 and
the WSF. Additionally, the OpenStreetMap vector layers “shopping centers”, “airport and
airfields”, “cemetery”, “commercial areas”, “industrial area”, “military fields”, “public
recreational green spaces”, “parks”, “schools and universities”, “playing fields”, “sport
centers”, and “residential areas” were used to eliminate remaining non-agricultural areas
from the cropland class. The generated mask was validated against all available LUCAS
points over Germany.

In the subsequent main classification crop types were identified. In scikit-learn, RF
relies on the probabilistic prediction of a number of individual classification trees, where
each tree is built using a random bootstrap sample of the training data and random subsets
of features (max_features) at each node for identifying the best split. After testing multiple
ranges of parameters, it was finally decided to build the RFs with 500 trees and to set
max_features to the square root of the total number of features.

The RFs were built using the training data sampled from the LPIS data as described
in Section 2.4, and the remote sensing features as described in Section 2.1. From the
5000 samples per class, 2500 training and 2500 validation pixels were used. To assess the
effect of multispectral and SAR data on the classification accuracies, three experiments
have been conducted: (i) Using all available Sentinel-1 and Sentinel-2 features (n = 336
input features, named “S12”), (ii) using only the Sentinel-1 features (n = 72, “S1”), and
(iii) using only the Sentinel-2 features (n = 264, “S2”).

In order to assess the relevance of the input features, we calculated impurity-based
feature importance scores (Gini feature importance) as implemented in scikit-learn [86].
Here, the importance of a feature is calculated as the total reduction of the Gini impurity
criterion that is induced by the feature, averaged over all trees in the RF. The feature
importance scores are normalized such that the scores of all used features sum to 1. The Gini
feature importance is widely used to assess the relevance of features for RF approaches [51,87,88].
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Additionally, six individual regional RF models were trained for the German landscape
zones (Figure 2) with the respective six training and validation data subsets described in
Section 2.6, but otherwise with the same parameters (model settings and input features) as
used for the entire country.

A minimum mapping unit of 0.25 ha was applied by assigning small patches to the
largest surrounding class using the GDAL sieve function (nConnectedness = 4). As last step,
the crop type classification was restricted to agricultural areas by applying the cropland mask.

2.8. Accuracy Assessment

We used independent data for the validation of the resulting crop type maps. Of the
randomly sampled LPIS data, 50%, i.e., for the Germany-wide classification 2500 pixels
per class, was used to generate confusion matrices and to calculate the overall accuracy
(OA), as well as the class-specific metrics precision (i.e., user’s accuracy UA), recall (i.e.,
producer’s accuracy PA) [83,89], and the F1-score. The F1-score is the harmonic mean of
precision and recall and hence an adapted measure for imbalanced classes in a multi-class
classification [90]:

F1 = 2 × precision × recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

(1)

where precision is a measure of exactness, recall is a measure of completeness, TP are true
positives, FP are false positives, and FN are false negatives.

Following the suggestions of [56,83,91], we calculated model accuracy and map ac-
curacy for each model run, to assess both the RF model validity and the map reliability,
as well as to allow for comparisons to previous studies. The model accuracy is useful
to quantify the separability of classes in each RF model and, thereby, weighing the class
accuracy estimates irrespectively of the class sizes, i.e., without reducing the significance
of accuracy estimates for small classes. For that purpose, the above-mentioned accuracy
measures are calculated based on the sample counts, i.e., the absolute number of pixels
used for validation which are assigned to the different classes in the confusion matrix.

However, to estimate the probability of any given pixel in a map to be correctly
classified [89], additionally the map accuracy was calculated. The map accuracy is a useful
measure to quantify the reliability of the generated map, for which the area covered by
each class is important. For example, if large classes are classified with a low accuracy, the
probability of a given pixel being correctly classified in the map is smaller than the model
accuracy might suggest. As detailed by [83], the error matrix used as basis for estimating
map accuracy is, therefore, reported in terms of estimated area proportions per class.
Through this approach, the class accuracies are put in relation with each crop’s acreage,
i.e., the proportions of each class area are used as weights to standardize their respective
UAs, and, hence, to adapt the F1-scores and OA estimates. As suggested by [83], we did
not derive the proportions of each class used as strata from the resulting classification map
but from the LPIS data, in order to avoid introducing bias due to classification errors. This
procedure was pursued for the Germany-wide as well as for the regional classifications.
Class coverage information for North Rhine-Westphalia, which was not accessible for 2018,
was taken as approximation from the available 2019 LPIS data.

In addition, the crop class acreages derived from the resulting crop type map are
compared to the official national statistical census data on acreage estimates published by
the Federal Statistical Office [79–81] and the Bavarian State Research Institute for Agricul-
ture [82] (see Section 2.4), in order to assess the plausibility of the mapped crop areas.

3. Results
3.1. Cropland Mask

The cropland mask derived for this study is displayed in Figure 2. The generated mask
achieved an OA of 85%. The relative low recall value of 0.7 of the cropland class points to a
slight underestimation of cropland area, and a class-wise assessment (not shown) indicates
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that most of the missing areas were assigned to the grassland class. Nevertheless, the
cropland area of this mask of 115,245.82 km2 compares well to the official statistics, according
to which cropland and permanent crops in Germany 2018 covered 119,303 km2 [1].

3.2. Overall Accuracy for Different Input Feature Sets and Overall Feature Importance

To assess the effect of optical and radar input data, three experiments using different
combinations of radar and optical features have been conducted for the Germany-wide
classification (see Table 2). The highest overall map accuracy (75.5%) could be achieved
with the S12 run employing Sentinel-1 and Sentinel-2 data together, while using only the
Sentinel-2 monthly features resulted in a map OA of 69.7%. Building the model only
with Sentinel-1 features achieved the lowest map OA of 66.6%. The same tendency was
observed for the estimated model accuracies with 69.9% (S12), 64.9% (S2) and 61.2% (S1).
The consistently higher map vs. model accuracies indicate that the large classes could
be modeled more accurately, irrespectively of the input features. Overall, the joint use of
Sentinel-1 and -2 data clearly outperformed the mono-sensor approaches.

Table 2. Overall map (area adjusted) and model accuracies of the crop type classifications for the
Germany-wide RF model using Sentinel-1 and Sentinel-2 features combined as input feature sets
(“S12”) and using the two sensors independently (“S1” and “S2”, respectively).

S12 S1 S2

Map accuracy [%] 75.5 66.6 69.7
Model accuracy [%] 69.9 61.2 64.9

RF feature importance quantifies the impact of individual features on the classification
accuracy. Given the high number (336) of features used in this study, the discussion
of importance scores of individual features is not meaningful. We, therefore, focus the
presentation of our results on the importance of groups of features (Figure 3). Features
are grouped considering their membership to a sensor, temporal interval, or variable
(i.e., band or index) and the importance scores of the features in each group are added
up. It must be noted that feature importance per category was summed over different
numbers of variables, e.g., when grouping per month, 33 Sentinel-2 features were used
per month, but only 6 Sentinel-1 features. Nevertheless, comparing the different groups
is meaningful, as at each split in a RF only a single feature is used; hence, features with
similar information content will rather share the variable importance than each having as
high importance scores as if only one of them would be used. Adding them up should,
therefore, approximate the feature group importance well.

Figure 3a illustrates the importance of features when regarding the mono-sensor clas-
sification approach with only Sentinel-2 data. NDVI (integrating information of the red
and the near-infrared bands) is identified being the most important Sentinel-2 variable, fol-
lowed by the red-edge bands (band 6 and band 5) and the green (band 3), red (band 4) and
near infrared (band 8). The least importance was calculated for the blue band around
490 nm (band 2), which is usually most sensitive to atmospheric conditions so that dis-
tortions are still likely even after atmospheric correction. In the inner circle of Figure 3a,
it is shown that the months of major vegetation growth (April to August) are more rele-
vant for crop type discrimination than early spring (March), and late summer/autumn
(September–October). May is the most important month, followed by July and August.

The feature importance analysis for Sentinel-1 temporal features (Figure 3b, outer
circle) shows that—similar to Sentinel-2—with the start of the growing season in April,
importance scores rise, peak in May, and decrease towards the late growing season in
September. Sentinel-1 features of autumn, winter, and early spring (October–March) are of
lower relevance (around 6%). VH-based features show a slightly higher contribution (53%)
to reducing node impurity, compared to VV (47%, Figure 3c inner circle).
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When analyzing the feature importance for the combined Sentinel-1 and Sentinel-2
feature space (Figure 3c), similar patterns regarding the importance of the temporal intervals
(outer circle) can be observed as when using the sensors separately. However, the relative
importance of the Sentinel-2 features from August and July increase slightly at the expense
of the Sentinel-2 May feature importance, and the Sentinel-1 June features become more
important than the radar features from May. A possible explanation could be that both
sensors are able to detect the important growth stage changes occurring in May, but being
used together, must share the relevance for class discrimination during that period of
time, which, hence, reduces their individual importance compared to other times. Overall,
Sentinel-2 feature importance (73%) outweighs the contribution of the Sentinel-1 features
(27%) when used in combination (Figure 3c, inner circle).
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3.3. Class-Wise Accuracies and Influence of Sentinel-1 and Sentinel-2 Features on Class Separability

As shown in the previous section, the combined use of Sentinel-1 and Sentinel-2 data
achieved highest overall accuracies. Accordingly, the approach combinedly using optical
and radar features reached highest accuracies for most classes (Figure 4). Considering the
map accuracies (dark colors in Figure 4), the S12 model achieved highest accuracies for all
classes except for the classes other winter cereals and fruit trees, for which the S1 model and
the S2 model achieved higher F1-scores, respectively. The pattern of the model accuracies
is very similar in this regard (bright colors in Figure 4).

The S12 model reached high (≥0.8) map F1-scores for the classes winter wheat (0.82),
maize (0.90), sugar beet (0.91), and rapeseed (0.93). Although slightly lower, the individual
S1 and S2 models also achieve high (≥0.8) map F1-scores for these classes (apart from
winter wheat, for which both mono-sensor models reach 0.75). The classes winter barley
(0.76), winter rye (0.65), spring barley (0.65), potato (0.66), clover/alfalfa (0.54), arable grass
(0.50), and vineyards (0.62) could be mapped with medium high (0.5–0.8) map F1-scores.
Only the classes other winter cereals (0.41), spring wheat (0.32), spring oat (0.35), legumes
(0.48), fruit trees (0.23), and hops (0.33) were model with low map accuracies (F1-score ≤ 0.5).
When looking only at the mono-sensor approaches, in the cases of winter rye, other winter
cereals, and rapeseed, the S1 model delivered higher map accuracies than the S2 model.
For the remaining 14 classes, the S2 classification reached equal or higher accuracies than
when using only Sentinel-1 data (Figure 4).
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In addition to Figure 4, Table S1 gives an overview of the class-specific model and map
accuracies, detailing precision, recall, and F1-score for the three crop type classification
experiments. The class-wise differences between map and model accuracies are related
to the class size (see Figure 5a for class proportions) and the type of error committed. For
large classes which are rather overestimated (winter wheat and maize), the map accuracy
is much higher (around 10%) than when weighing all classes equally. For large classes that
are well estimated or rather underestimated (winter barley and rapeseed), the difference
between the two measures is not large (around 2%). For all classes covering less than 10%
of the of the agricultural area, model accuracy is higher than map accuracy. This pattern
is especially striking for the three smallest classes vineyard, fruit trees and hops. While
achieving high (>0.6, fruit trees) and very high (>0.8, vineyards and hops) model F1-scores,
which underlines their overall good separability from other classes, all of these classes
are rather overestimated on the expense of classes such as legumes, clover/alfalfa, arable
grass, and cereals. While an overestimation of 10–15% in sample counts is not reducing
the model UA much, a four- to six-fold area proportion overestimation (cf. fruit trees and
hops) is reducing map UA of these classes drastically (see dark and bright violet colors
in Figure 4, and Figure 5a for area proportions). The only deviation from that pattern is
spring barley, for which a higher map accuracy was calculated. In that case, the relatively
high confusion with the other spring cereals (see below) leads to a low model accuracy, but
being the largest of these spring cereals classes, this confusion is not that important in the
spatial domain.

To better understand the separability and confusion of single classes in the presented
classification approach, model accuracy is analyzed in more detail in the following. The
sample-based CM for the 17 crops classified over Germany using the S12 RF is shown in
Figure 5b. Certain patterns can be observed in terms of higher commission and omission
errors, highlighted by shades of orange. The most confusion occurred among the four
winter cereal classes (winter wheat, winter barley, winter rye, and other winter cereals), the
three spring cereals (spring wheat, spring barley, and spring oats), and the two forage crops
(clover/alfalfa and arable grass). Apart from these blocks, a commission error between
winter and spring wheat is apparent. Further, the potato class has a high rate of omission
errors with all spring cereals and legumes, while legumes, rather, have commission errors



Remote Sens. 2022, 14, 2981 13 of 29

with the spring cereals and potato. The class of fruit trees has many commission and
omission errors with the forage crops as well as with vineyards.
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Figure 5. Confusion matrices for the “S12” crop type classification for Germany 2018 based
on (a) area proportion and (b) sample counts.

Figure 6 highlights more clearly where the joint use of optical and radar data reduced
confusion between crop types. The matrices in Figure 6 show the differences between pairs
of the confusion matrices of the S12, S2 and S1 models. Figure 6a displays the differences
in the confusion matrices for S12 minus S2. Violet colors mark cells where confusions were
reduced (off-diagonal), or—for the diagonal—where correct assignments were increased by
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using the S12 feature set, compared to using only optical data, i.e., where the use of Sentinel-
1 benefits the result. In contrast, green colors mark cells where better results were identified
for S2. The numbers in the off-diagonal cells indicate by how many validation samples
the confusions were reduced, or—for the diagonal—by how many validation samples the
correct assignments were increased. Likewise, Figure 6b highlights improvements in the
classification for using S1 (blue colors) and for using S12 (violet colors), i.e., additionally
including Sentinel-2. Figure 6c compares the two mono-sensor approaches and shows
where S1 (blue colors) and S2 (green colors) delivered better results.

Figure 6a shows that confusions within all winter cereals were considerably reduced
by using Sentinel-1 and -2 data instead of only Sentinel-2 (darker violet colored square in
the top left corner). In contrast, Sentinel-2 based confusions of winter cereals with other
crop types were not as significantly reduced by the S12 approach. For a number of class
combinations, no, or even a slightly negative, effect when including Sentinel-1 data was
observed (green colors). Figure 6a shows similar effects as for winter cereals for confusions
within the group of spring cereals, but also for legumes and potatoes and their confusion
with spring cereals, and for rapeseed (confused with cereal classes based on S2 only) and
the forage classes (confusion with almost all other classes but spring cereals). Moreover, in
these cases, confusions resulting from optical data could be reduced integrating Sentinel-1 data.

The improvements of the synergistic approach when compared to the S1 model
show different patterns (Figure 6b). Here, the reductions in class-wise confusions are not
as concentrated on phenologically similar groups of crops, but rather spread over the
confusion matrix. Still, particularly strong improvements by including Sentinel-2 could
be achieved in increasing the accuracies of the winter cereals (wheat, barley, rye), and of
spring barley, maize, legumes, potato, and clover/alfalfa. A distinct deviation from this
pattern is the class other winter cereals, where the confusion with winter rye, barley, and
wheat classes increased through the inclusion of Sentinel-2 (see accordingly the F1-scores
of that class in Figure 4). Further, the classes spring oat and rapeseed stand out. Spring
oat is strongly underestimated in the S1 model; hence, including Sentinel-2 data increased
the true positive, as well as—to a lower degree—the false positive detections, leading to a
significantly higher number of correct assignments (dark violet in Figure 6b) while also
increasing commission errors (dark blue colors on the off-diagonal in Figure 6b). The other
way around, the class rapeseed is strongly overestimated using only Sentinel-1; hence,
reducing a large share of the commission errors when including Sentinel-2 comes at the
cost of a (nevertheless lower) omission error, resulting in an overall slightly lower number
of correct assignments.

Figure 6c, finally, illustrates the class-wise benefit of using either only Sentinel-1 (blue
colors) or Sentinel-2 (green colors). For most classes, a higher number of correctly assigned
samples or fewer commission/omission errors could be achieved when using Sentinel-
2. However, the translation of this confusion matrix to overall F1-score metrics is more
complex, as partly the off-diagonal changes are stronger than the increase in correct class
assignments (see e.g., class winter rye or spring wheat). Overall, less distinct patterns can
be identified for the mono-sensor comparison.

To illustrate the influence of the sensor selection on the spatial representation of crop
classes, Figure S2 displays two subsets of the maps generated in the three experiments in
the Magdeburger Börde region in in Saxony-Anhalt and in the Eichsfeld region in Thuringia.
While the above revealed differences in class separability and frequent class confusions
are not as clearly visible on such small patches as in the condensed form of the confusion
matrices, it still can be seen that through adding Sentinel-1 or Sentinel-2 data, largest
differences occur within the winter and spring cereal classes (see different shades of blue
in the upper row subsets of Figure S2, and different shades of brown in the bottom row
subsets, respectively). Large classes, such as winter wheat, maize, sugar beet, or rapeseed,
are, however, not as much influenced by the selection of sensors. Most apparently, it can be
concluded that the combined use of Sentinel-1 and Sentinel-2 (subsets on the right-hand),
overall, increases the within field homogeneity of the crop type maps for all classes.



Remote Sens. 2022, 14, 2981 15 of 29

Remote Sens. 2022, 14, x 15 of 29 
 

 

(nevertheless lower) omission error, resulting in an overall slightly lower number of cor-
rect assignments. 

(a) 

 

(a) and (b): S12 
Additional cor-

rect assignments 
(diagonal) 

 
Fewer omission or 
commission errors 

(off-diagonal) 
1 − 19 or −1 − −19 

20 − 39 or −20 − −39 

40 − 59 or −40 − −59 

60 − 79 or −60 − −79 

80 − 200 or −80 − −200 

> 200 or < −200 
 

(a) and (c): S2 
Fewer omission or 
commission errors  

(off-diagonal) 
 

Additional cor-
rect assignments 

(diagonal) 
1 − 19 or −1 − −19 

20 − 39 or −20 − −39 

40 − 59  or −40 − −59 

60 − 79  or −60 − −79 

80 − 200  or −80 − −200 

> 200 or < −200 
 

(b): S1 
Fewer omission or 
commission errors 
compared to S12 

(off-diagonal) 

 

Additional cor-
rect assignments 
compared to S12 

(diagonal) 
1 − 19 or −1 − −19 

20 − 39  or −20 − −39 

40 − 59  or −40 − −59 

60 − 79  or −60 − −79 

80 − 200 or −80 − −200 

> 200 or < −200 
 

(c): S1 
Additional cor-

rect assignments 
compared to S2 

(diagonal) 

 

Fewer omission or 
commission errors 

compared to S2 
(off-diagonal) 

1 − 19 or −1 − −19 

20 − 39  or −20 − −39 

40 − 59  or −40 − −59 

60 − 79  or −60 − −79 

80 − 200 or −80 − −200 

> 200 or < −200 
 

(b) 

 

(c) 

 

11 12 13 14 21 22 23 30 40 50 60 70 81 82 90 100 110
l l l l l l l l l l l l l l l l l l

winter wheat 11 - 224 11 -94 -130 32 10 9 2 -11 15 -7 -8 7 6 -2 2 0

winter barley 12 - -28 128 -123 -59 -1 -5 1 1 4 6 4 -34 -5 -13 0 0 3

 winter rye 13 - -153 -78 203 -27 -34 -17 -12 -2 -8 -13 0 -33 -13 -24 -8 -13 -1

other winter cereals 14 - -51 -40 49 254 -12 6 -8 1 4 -1 6 -18 -18 -13 1 -5 3

spring wheat 21 - -5 2 -20 -9 150 -5 58 1 -40 8 -2 -6 0 5 0 -6 -1

spring barley 22 - 3 -6 -11 -7 -29 162 -81 -3 -72 -54 -2 -24 6 2 1 0 0

spring oat 23 - 11 6 -7 -23 4 -66 171 8 -16 -29 -1 -11 25 25 5 11 3

maize 30 - 1 3 -1 2 0 0 -8 54 5 -44 -4 0 31 12 -1 -1 -3

legumes 40 - -7 -5 5 16 -110 -76 -99 4 156 -11 7 10 -16 -15 2 -7 -3

potato 50 - -2 -2 -2 -1 -13 -14 -17 -20 -52 143 11 -2 -22 -14 0 -5 1

sugar beet 60 - 5 -1 2 -1 8 -1 6 -15 -6 -3 3 -1 -31 -9 -6 -3 5

rapeseed 70 - -14 -13 2 -16 0 -10 -3 -3 27 3 -3 156 1 -1 2 6 3

clover / alfalfa 81 - 9 -1 2 17 7 7 -12 15 15 0 0 -16 123 -5 -4 -24 -4

arable grass 82 - 3 -32 -21 -21 1 8 16 9 1 -12 -2 -17 -16 157 13 -9 4

vineyard 90 - -3 3 2 -5 -4 3 -7 3 -4 -2 -3 -5 -38 -31 4 13 -12

fruit trees100 - 6 24 19 13 5 0 -9 3 2 -8 -2 9 -6 -53 2 56 17

hops110 - 1 1 -5 -3 -4 -2 -5 -58 -5 2 -5 0 -28 -29 -9 -15 7

Pr
ed

ic
te

d
Reference

11 12 13 14 21 22 23 30 40 50 60 70 81 82 90 100 110
l l l l l l l l l l l l l l l l l l

winter wheat 11 - 209 -25 -20 39 21 -30 -150 -7 -6 13 -3 3 -25 -33 -3 -1 -3

winter barley 12 - -21 244 21 70 -14 -26 -109 -12 -13 4 2 8 -30 -3 0 10 0

 winter rye 13 - -6 -3 263 171 -10 -5 -319 -2 -9 -4 1 4 -3 -6 1 5 2

other winter cereals 14 - 170 69 20 4 17 -20 -191 -1 -16 10 3 10 0 17 0 24 4

spring wheat 21 - -61 -17 -5 -31 10 -173 -9 -29 -16 -148 0 -1 -76 -62 0 -32 0

spring barley 22 - -63 5 -10 -15 -80 267 45 -30 3 41 1 -2 -29 -19 0 -10 -4

spring oat 23 - -42 -42 -47 -24 283 208 970 32 105 97 7 -1 22 20 4 8 7

maize 30 - -36 -19 -22 -24 -36 -42 -20 335 -100 -105 -79 4 -70 -53 -9 -38 -1

legumes 40 - -9 -13 -8 -31 26 28 49 -17 221 51 5 10 -31 -5 8 -2 11

potato 50 - -4 -2 -9 -10 -2 0 5 -56 24 286 -50 0 -2 4 -1 0 -5

sugar beet 60 - -2 -8 -6 -15 5 -8 -1 -36 -39 -106 169 0 11 8 -1 2 -13

rapeseed 70 - -20 -7 -20 -13 -12 -3 -10 -8 -32 -8 -2 -35 -6 -7 0 -8 -5

clover / alfalfa 81 - -20 -39 -32 -48 -81 -72 -127 -37 -11 -8 -2 5 364 39 -41 6 -24

arable grass 82 - -16 -31 -38 -11 -37 -40 -51 -3 -9 -15 2 -5 -8 180 -2 62 0

vineyard 90 - -17 -40 -33 -23 5 -17 17 -23 -13 -3 -7 -4 -10 8 116 -49 -18

fruit trees100 - -48 -46 -40 -23 -92 -61 -94 -99 -39 -31 -9 11 -101 -78 -49 33 -9

hops110 - -14 -26 -14 -16 -3 -6 -5 -7 -50 -74 -38 -7 -6 -10 -23 -10 58

Pr
ed

ic
te

d

Reference

11 12 13 14 21 22 23 30 40 50 60 70 81 82 90 100 110
l l l l l l l l l l l l l l l l l

winter wheat 11 - 15 36 -74 -169 11 40 159 9 -5 2 -4 -11 32 39 1 3 3

winter barley 12 - -7 -116 -144 -129 13 21 110 13 17 2 2 -42 25 -10 0 -10 3

 winter rye 13 - -147 -75 -60 -198 -24 -12 307 0 1 -9 -1 -37 -10 -18 -9 -18 -3

other winter cereals 14 - -221 -109 29 250 -29 26 183 2 20 -11 3 -28 -18 -30 1 -29 -1

spring wheat 21 - 56 19 -15 22 140 168 67 30 -24 156 -2 -5 76 67 0 26 -1

spring barley 22 - 66 -11 -1 8 51 -105 -126 27 -75 -95 -3 -22 35 21 1 10 4

spring oat 23 - 53 48 40 1 -279 -274 -799 -24 -121 -126 -8 -10 3 5 1 3 -4

maize 30 - 37 22 21 26 36 42 12 -281 105 61 75 -4 101 65 8 37 -2

legumes 40 - 2 8 13 47 -136 -104 -148 21 -65 -62 2 0 15 -10 -6 -5 -14

potato 50 - 2 0 7 9 -11 -14 -22 36 -76 -143 61 -2 -20 -18 1 -5 6

sugar beet 60 - 7 7 8 14 3 7 7 21 33 103 -166 -1 -42 -17 -5 -5 18

rapeseed 70 - 6 -6 22 -3 12 -7 7 5 59 11 -1 191 7 6 2 14 8

clover / alfalfa 81 - 29 38 34 65 88 79 115 52 26 8 2 -21 -241 -44 37 -30 20

arable grass 82 - 19 -1 17 -10 38 48 67 12 10 3 -4 -12 -8 -23 15 -71 4

vineyard 90 - 14 43 35 18 -9 20 -24 26 9 1 4 -1 -28 -39 -112 62 6

fruit trees100 - 54 70 59 36 97 61 85 102 41 23 7 -2 95 25 51 23 4

hops110 - 15 27 9 13 -1 4 0 -51 45 76 33 7 -22 -19 14 -5 -51

Pr
ed

ic
te

d

Reference

Figure 6. Sample count Confusion Matrices (CM) generated by subtracting (a) the S2 CM from the
S12 CM, (b) the S1 CM from the S12 CM, and (c) the S2 CM from the S1 CM. The colors indicate
if the S12 (violet) approach achieved more correct class assignments (diagonal)/less omission and
commission errors (off-diagonal), or if S2 (green), or S1 (blue) features only achieved better results.
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3.4. Country-Wide Crop Type Classification

The best classification model using the S12 RF (overall map accuracy of 75.5%) was
used for the Germany-wide wall-to-wall crop type map 2018 (Figure 7). The map shows
high spatial consistency and field parcels are overall well delineated and homogenous, i.e.,
most fields were classified as a single crop type (see subsets in Figure 7). This is a promising
result for a pixel-based approach. The difference in size between agricultural parcels in the
former East and West Germany states is well discernable (see Figure 7B). The map depicts
the distribution of cropland in Germany within the fertile areas of the Northern lowland
plains, the Central German Loess areas (at the northern foreland of the German Central
Uplands, the so-called “Börden” characterized by high nutrient content and water holding
capacity), and of the South-Western German Scarplands and the hilly landscape of Bavaria,
as well as of the Loess areas and flood plains along the main rivers.
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Figure 7. Crop type classification for Germany 2018 based on the S12 model. The class other comprises
non-agricultural land use such as forest, urban, or water, as well as permanent grasslands. The subset
maps show growing regions in (A) the very fertile and intensively used “Hildesheimer Börde” in
Lower Saxony, (B) the “Eichsfeld” in the former border region of Eastern and Western Germany,
(C) Rhineland-Palatinate west of Mannheim with a part of the “German Wine Route”, and (D) Bavaria
between Ingolstadt and Landshut, the so-called “Hallertau” famous for hop production.
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Areas that appear in shades of blue and brown indicate the prevalence of winter
and spring cereals, e.g., winter cereals along the coast of the Baltic Sea and the Eastern
North German Plains in Mecklenburg-Western Pomerania, in the Loess areas of Saxony,
Saxony-Anhalt and Thuringia (see Figure 7B), and in parts of Hesse, Rhineland-Palatinate,
and Franconia, and, e.g., spring cereals in parts of the Lower Saxony Loess area or Rhenish
Hesse. Large areas of maize cultivation, marked in orange, are mapped in Bavaria, Lower
Saxony, and Schleswig-Holstein. The main growing region of rapeseed is marked in yellow
in the North-East and in the Central German Loess areas. Apart from these largest crop
classes, growing regions of sugar beet are locally important in the Börde regions of Southern
Lower Saxony, the Cologne-Aachen Lowlands, along the main rivers in Franconia (Main),
Lower Bavaria (Danube), and the Northern Upper Rhine, as well as to a smaller extent in
Württemberg, in Saxony-Anhalt in the Magdeburger Börde, and in Saxony around Leipzig
(in red, see also subset A in Figure 7). Furthermore, high abundances of potato, e.g., in
the Central North, the Emsland, the Lower Rhine region, the Palatinate region, or Lower
Bavaria (dark brown color, see also subset C in Figure 7), are detected locally. Legumes are
mainly grown in the Lower Rhine Bay and the Northern Upper Rhine region.

The spatial distribution of crops is further characterized by perennial crops, such as
vineyards, which are mainly found in Rhineland-Palatinate (subset C in Figure 7) and to
lesser extents in Baden-Württemberg and Franconia. Fruit trees are grown in the Lake
Constance region of Baden-Württemberg and Bavaria and in Lower Saxony (e.g., the “Alte
Land”), in the Upper Rhine region, and extensively in South-Western Rhineland-Palantine,
Saxony, and Franconia. Hops are almost exclusively cultivated in the Bavarian Hallertau
region (subset D in Figure 7).

3.5. Comparison with National Agricultural Statistical Data

The classes with the largest extent in the 2018 S12 crop type map are winter wheat
(24.0%), maize (22.8%), and rapeseed (11.7%). All other winter cereals make up for 19.2%
of the area share, while all spring cereals together cover 9.4%. Legumes (3.1%), potatoes
(2.8%), and sugar beet (4.4%) together cover about one tenth of the mapped arable land,
while the fodder crops and the permanent cultures cover ≤1.0% each.

The mapped areas align overall well with agricultural statistics at the national level,
with on average 1% deviations in coverage (Figure 8). The individual classes differ from
the official statistics by 0.1–2.7%. The largest percentage deviances occur for the classes
winter barley (underestimated by 2.7% area share, i.e., 3444 km2 in absolute area) and
spring wheat (overestimated by 2.3% area share, i.e., 2389 km2). While the absolute area
underestimation of winter wheat is 2699 km2, this translates in only 1.2% of difference
in area proportions. Further, the classes maize (0.6%), clover/alfalfa and arable grass
(1.7% each), and all permanent crops (vineyards, 0.6%; fruit trees, 0.4%; and hops, 0.1%)
are underestimated. The classes winter rye (0.8%), other winter cereals (1.3%), spring
barley (0.3%), spring oat (0.4%), legumes (1.6%), potato (0.6%), sugar beet (0.7%) and
rapeseed (0.7%) on the other hand, are overestimated in comparison to the official census
data. It must be noted that the original aim of this crop type classification was not to
estimate the crop area proportions, and that this comparison is solely thought to evaluate
the plausibility of the map. To actually derive robust area estimates from the classification
map, the accuracy could still be improved by integrating the class-wise user accuracy with
map-based area estimates [83,92], which is, however, out of scope of this study.

3.6. Crop Type Classifications for the Individual Landscape Regions

Table 3 gives an overview on the crop type classification map accuracies (class-wise
F1-scores and OA) achieved by the S12 RF models trained individually for the six landscape
regions in Germany (see Figure 2), their class-wise averages, as well as the results of the
Germany-wide classification for easier comparison. The results show that the OA is higher
than the Germany-wide classification for some landscape regions (80.5% for the Alpine
Foreland and 76.6% for the Northwestern Lowlands), but for some they are lower (the other
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regions achieving 72.1–73.8% OA). Accordingly, the OA (74.7% averaged over all regions)
could not be improved through stratification.
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Table 3. Class-wise F1-scores and overall map accuracies for the landscape regions in Germany,
with Northwestern Lowlands—NWL, Northeastern Lowlands—NEL, Western Uplands—WUL,
Eastern Uplands—EUL, Southwestern Uplands—SWUL, Alpine Foreland—AFL, and the accuracies
of the Germany-wide classification (GER). Light colors indicate a minor deviation (≤1%) from the
Germany-wide classification, while strong colors indicate larger deviations.

Crop Class NWL NEL WUL EUL SWUL AFL Average
Regions GER

winter wheat 11 0.76 0.80 0.78 0.73 0.75 0.83 0.78 0.82

winter barley 12 0.75 0.75 0.77 0.70 0.71 0.86 0.76 0.76

winter rye 13 0.57 0.60 0.26 - 0.43 - 0.47 0.65

o. winter cereals 14 0.42 0.19 0.35 0.28 0.42 0.40 0.34 0.41

spring wheat 21 0.26 0.35 0.30 0.30 0.12 - 0.27 0.32

spring barley 22 0.54 - 0.65 0.72 0.72 0.71 0.67 0.65

spring oat 23 0.12 0.27 0.38 0.40 0.41 0.47 0.34 0.35

maize 30 0.93 0.80 0.89 0.91 0.87 0.91 0.89 0.90

legumes 40 0.54 0.49 0.51 0.70 0.53 0.56 0.56 0.48

potato 50 0.84 0.61 - - 0.52 0.80 0.70 0.66

sugar beet 60 0.94 0.89 0.93 - 0.92 0.93 0.92 0.91

rapeseed 70 0.93 0.97 0.91 0.96 0.92 0.94 0.94 0.93

clover/alfalfa 81 - - - 0.69 0.69 0.62 0.67 0.54

arable grass 82 0.65 0.47 - - - - 0.56 0.50

vineyard 90 - - 0.75 - 0.81 - 0.78 0.62

fruit trees 100 0.30 0.15 0.21 0.16 0.37 0.72 0.32 0.23

hops 110 - - - - - 0.50 0.50 0.33

Overall accuracy 76.6 73.8 73.0 72.1 72.1 80.5 74.7 75.5
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Averaged over all regions, class-wise metrics indicate a two-tier influence of stratifica-
tion on the classification performance. The cereal classes in the regional classifications as
well as on average show mostly lower F1-scores than in the Germany-wide classification,
on average decreasing the class accuracies by 5%. Exceptions from this pattern are winter
and spring barley as well as spring oat, which could be mapped either on average or in
the majority of regions with an equal or slightly higher accuracy. The maize class gives an
inconclusive picture, with very similar F1-scores on average and in the regions, compared
to the national-scale classification.

All other classes, i.e., legumes, potato, sugar beet, rapeseed, the grassland classes,
and the permanent classes, on the other hand, achieve higher accuracies when mapped
per region. Thereby, class-wise F1-scores can vary strongly among the regions, with, e.g.,
fruit trees being map with an accuracy of 72% in the Alpine Foreland, but only 15% in
the Northeastern Lowlands. Similarly, for winter rye, spring oat, or potato the regional
class accuracies vary by more than 30%. Large classes, such as winter wheat, maize, or
rapeseed, on the other hand, are more or less consistently mapped throughout the regions
with accuracies varying only by up to 10%. Naturally, classes that only occur in certain
regions, such as clover/alfalfa, vineyard, or hops, show even lower variations (up to 7%),
as they are only mapped for 1–3 regions.

4. Discussion
4.1. Overall and Class-Specific Classification Accuracies

In this study we present a workflow for a national-scale crop type classification
differentiating 17 crop type classes. A distinct characteristic of this study is the use of LPIS
data from 15 out of 16 German Federal States, making this, to our knowledge, the first
reported experiment with such a comprehensive coverage of ground-truth data for crop
type classification at national level in Germany. Different from other national crop type
mapping studies for Germany [22,26,56], permanent grasslands, which show a very distinct
phenological development and are, thus, relatively easy to map with high accuracies (see
Section 4.2), were not included as class in the map legend, while annual/arable grasslands
as well as permanent crops were part of the classification.

As shown in Section 3.1, the generation of the cropland mask with an OA of 85% led to
a slight underestimation of cropland area, i.e., some fields will be missing in the crop type
map produced in this study. Improving the cropland mask is, however, not the primary
goal of this study and should be adapted to the respective needs and facilities of the crop
type map users. For example, State agencies could resort to the digital landscape model
(DLM) from the German Federal Agency for Cartography and Geodesy (BKG) which is
available for a fee only for external users, as suggested by [56].

An overall map accuracy of 75.5% could be reached, which compares well to other
studies on crop type mapping in Germany using LPIS data, e.g., the OA of 79% [56],
mapping 22 crops on a national scale; the OA of 88% [22], mapping 19 crops on a national
scale; or the OA of 72% [57], mapping 15 crops in Brandenburg. However, all of these
reference studies included permanent grasslands in their class legend, which was not
the case in the study presented here. In two of these studies, this class, which covers
approximately 37% of the agricultural area in Germany, could be mapped with high
accuracies (UA ≥ 84%/PA ≥ 90% in [22], UA ≥ 94%/PA ≥ 82% in [56]), which also
increases the OA, especially when investigating map accuracies. Moreover, the mapped
areas of the crop classes in this study align, overall, well with official agricultural statistics
at the national level, with on average 1% deviation in coverage.

Looking at the individual class accuracies, high map F1-scores were achieved for
the largest classes winter wheat, winter barley, maize, sugar beet, and rapeseed. The
sample-based confusion matrix (Figure 5) shows that greatest confusion occurred among
morphologically and phenologically similar species within the winter and spring cereals
groups, respectively. Further, legumes and potatoes are often confused with spring cereals,
as their management and phenological stages are often in parallel. This mix-up was also
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reported by [26]. Further, the fodder crop classes clover/alfalfa and arable grass, which
achieve F1-scores around 0.5, show high rates of confusion among each other, which can
be explained by the very similar herbaceous plant cover. The classes of fruit trees and
vineyards of the S12 model results have high commission and omission errors with the
forage crops. This was also observed by [26] and might be explained by a high share of
herbaceous cover on many of these sites, but is probably also induced by the highly divers
canopy structure of fruit trees. In addition, these classes are very small classes and often
concentrated in specific areas. A confusion of these classes with other crop types, although
being theoretically well separable as can be seen in high model accuracies, strongly reduces
the map accuracy.

4.2. Comparison of Classification Accuracies and Method Complexity to Reference Studies

Apart from the availability of reliable and comprehensive training and validation data,
the most challenging task in remote sensing-based crop type classification is the distinction
of phenologically similar crops (see e.g., Figure S1). In the last decades, characterizing
plant development of different crop types at field scale was often hampered by insufficient
revisiting times of high spatial resolution sensors, aggravated by missing observations due
to cloud coverage during critical growth stages. However, even though with Sentinel-1
and Sentinel-2 the revisiting time has improved also for high spatial resolution optical and
radar time series compared to previous sensors, similar phenologies of crop types are still
a challenge for classification tasks. For instance [22,27] reported classification errors for
wheat, spelt, and rye due to similar stages of development during the vegetation period for
both crops.

For Germany-wide crop type mapping, different approaches have been suggested in
the literature to further increase the information gain from remote sensing time series by
testing and exploiting different preprocessing and compositing techniques (e.g., [22,26,56]).
Overall, these studies achieved high OAs of 88% [22], 81% [26], and 79% [56], respectively,
but these involved either very elaborated and computationally expensive preprocessing
and interpolation [22,56] or complex input datasets by additionally including non-EO
data [26,56], or mapped much fewer classes [26]. We, hence, wanted to assess the effects of
a simpler and less data and processing intensive approach on the discrimination of crop
types through choosing coarser temporal intervals of input features.

As mentioned above, considering a minimum length of 1 month for the temporal
intervals of Sentinel-2 features reduced the occurrence of gaps in features even in periods
of persistent cloud cover, enabling the use of simple linearly interpolation, and reduced
the overall number of input data. Our hypothesis is that we, thereby, generate a feature
data set that is easy to handle while retaining phenological information crucial for crop
type discrimination. For example, [26] showed that using gap-filled 10-day instead of
monthly features improved their OA only by 2%. It is, nevertheless, obvious that during
one month, agricultural vegetation can undergo significant plant development and, thus,
narrower temporal intervals potentially contain more detailed information on vegetation
dynamics. Our approach to consider information on value distributions within monthly
intervals by using mean, minimum, and maximum, aims to compensate for the longer
interval. Furthermore, as opposed to [56], we included the Sentinel-2 red-edge bands in our
approach, as we assumed that detailed spectral information can help distinguishing rather
subtle differences among morphologically similar crops. In fact, the red edge features
ranked among the most important optical features (see Figure 3).

We compared our results with other published studies using Sentinel data for crop
type mapping in Germany, namely, the studies Preidl et al. [22] (PRE) and Blickensdörfer
et al. [56] (BLI). It must be explicitly noted that such direct comparison is limited by a num-
ber of factors (see Table 4 for an overview on the differences in classification frameworks).
Namely, the classifications partly cover other years (PRE), are mapped at lower spatial
resolution (PRE), and the number and definition of crop classes deviate in many cases.
Most prominently, both reference studies included permanent grasslands in their class
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legend, which was not the case in the study presented here. To get the best comparability,
the class-wise model accuracies of all three studies were investigated (taken from Table S1
of this study; from Figure S6 and Table S8 in BLI; and from Table 3 in PRE). Nevertheless,
the comparison is still limited in this regard by the fact that in the presented study, as
well as in BLI, an equal class sampling scheme was applied, while PRE used varying
numbers of training and validation samples per class and highlight in their discussion the
influence of the class imbalance. Finally, the legend used for class accuracy comparison
had to be harmonized as far as information from the studies allowed for it. This means,
the comparison was restricted to identical or very similar classes of the three studies (see
Figure 9).

Table 4. Overview on crop type classification settings of the investigated studies Preidl et al. [22]
(PRE), Blickensdörfer et al. [56] (BLI), and this study.

PRE BLI This Study

year(s) 2016 2017–2019 2018
spatial resolution [m] 20 10 10

reference data LPIS data from 7 Federal
States + local patches

LPIS data from 4–5
Federal States

LPIS data from 15 Federal
States

sampling scheme proportional equal equal
number of crop classes 19 23 17

permanent grassland included yes yes no

number of input features 54–126
(in 64–16,383 model runs) 483 336

input source types optical optical + radar + topography +
climate + meteorology optical + radar

regionalization yes no no
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Figure 9. Comparison of class-wise model accuracies (F1-scores) achieved in the presented approach
with the accuracy metrics from Preidl et al. [22] (PRE) and Blickensdörfer et al. [56] (BLI). The
comparison is not perfect due to temporal and spatial mismatch, as well as partly different class
definitions, different sampling schemes, and number of samples (see Table 4). It must be noted that
the class “other winter cereals” comprises winter triticale and winter spelt in BLI and in this study,
but only winter spelt in PRE, and that the class “spring wheat” also comprises spring triticale and
spring rye in the case of BLI.
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Figure 9 displays the class-wise model accuracies for the three selected Germany-wide
crop type classifications. Overall, similar patterns are discernible. The most prominent
classes (winter wheat, maize, rapeseed, and sugar beet) achieve high (≥0.8) F1-scores in
almost all studies. The very high F1-scores reached by PRE in the two largest coverage
classes winter wheat and maize could probably be attributed to the class-wise sample
imbalance introduced through the proportional sampling procedure which favors the
correct classification of large classes. BLI deviate from that pattern for the maize class,
as they attempt to map two individual maize classes, which could each be mapped with
accuracies of approximately 65%. Further, the permanent crop classes included in this
comparison, i.e., the vineyards and hops classes, could be classified with high model
accuracies in all three studies. Winter barley, spring barley, legumes, and potatoes are also
mapped in all three studies with similar F1-scores (±5%), but the accuracy is mostly only
between 60–80% and BLI achieve the highest scores for these classes. For the smaller crop
classes, i.e., winter rye, other winter cereals, spring wheat, and spring oat, PRE achieves the
lowest class accuracies, with decreases in accuracy compared to the other two studies by
10–25%. Based on this result, it seems that involving shorter or adapted temporal intervals
does not generally benefit the differentiation of subtle differences between cereal classes.

From this class-wise accuracy metrics investigation, it can be concluded that the
presented approach, based on a reduced temporal resolution of one month and employing
relatively simple and efficient pre-processing steps, is a good trade-off between processing
complexity and classification quality. For 10 classes, the presented approach achieved
second best results (1–11% below the respective study with highest accuracies), in the case
of sugar beet, even the best classification result could be reached. Lowest accuracies were
obtained only for 4 out of 14 classes, with accuracies reduced by 3–5% in comparison to
the next best classification. Especially, the most widely distributed crops, as well as the
permanent crop classes, could be mapped with good F1-scores that compare well to the
reference studies.

4.3. Combination of Optical and Radar Features

To assess the influence and importance of the Sentinel-1 as well as Sentinel-2 data on
the map accuracy, three experiments have been conducted using the two sensors combined
and each individually. Highest OA (75.5%) is reached using the S12 model, while the S1
and S2 models remain below 70% accuracy (66.6% and 69.7%, respectively). The same
pattern, i.e., achieving higher OA using only optical data than using only radar, was found
by [56]. The authors of [57], on the other hand, reached higher accuracies using SAR data
alone than using solely optical data. Nevertheless, both studies found that the optical-SAR
combination outperformed single sensor crop type predictions. This conclusion was also
drawn by classifications conducted outside of Germany [48–55].

In Sections 3.2 and 3.3 we investigated this generally recognized finding in more detail
and individually for each crop type class. The identified patterns of feature importance
relate well to the principles of remote sensing-based vegetation mapping. In relative terms,
the Sentinel-2 features importance outweighs Sentinel-1 feature importance by a factor
of approximately three (73% Sentinel-2 vs. 27% Sentinel-1). This higher importance of
optical features is plausible, as optical bands are known to be sensitive to photosynthetic
activity (i.e., the red, red edge, and NIR bands as well as thereof derived vegetation
indices), and, hence, different species phenologies and growth forms are generally well
reflected in multispectral data. Furthermore, temporal features from the critical phases of
vegetation growth, namely, the spring months April and May, as well as the ripening and
harvesting period in July and August, showed high importance scores. Comparing the
feature importance to other studies is limited, as, usually, the same individual features are
not used, and investigating feature importance over groups of features might be influenced
by the absolute number of features. The authors of [56], for example, also compared groups
of features; however, in their study the difference between the numbers of optical and
radar features is even larger than in our study. Nevertheless, also in the setting of [56], a
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higher importance of optical features was observed compared to the feature importance
of radar features, and looking at individual bands/indices. In addition, in their study, the
NDVI shows highest importance scores in comparison to the individual bands in the visible
light (red, green, blue), which compares well to the results of this study. Furthermore, the
relevance of temporal intervals of features generally match our findings.

Through assessing the differences in the sample count-based confusion matrices of
the different experiment results (Figure 6), it could be shown that the combination of
Sentinel-1 and -2 mainly helped in reducing the omission and commission errors within the
groups of different winter and spring cereal crops, respectively. Moreover, the distinction
of spring cereals from other phenologically similar crops, such as legumes, was improved
by the inclusion of radar data. This might be caused by the information on varying canopy
structure that is added through the radar signal. While legumes and spring cereals show
similar NDVI curves throughout the growing period, the backscatter patterns deviate, with
legumes undergoing a much higher increase in backscatter signal during June (not shown).
Another example is the hops class, for which the confusion with almost all other classes
could be reduced through the addition of Sentinel-1, but mostly with the maize class and
with the spectrally very similar grassland classes, as hop fields themselves have high shares
of herbaceous cover between the rows. Moreover, in this case, the radar signal influenced
by the distinct vertical structure of hop gardens transports higher backscatter values than
the herbaceous fodder crops. The optical signal, on the other hand, strongly improved the
distinction of spring oat from all winter crops, as well as the distinction of all spring crops
from classes with herbaceous cover (clover/alfalfa, arable grass, fruit trees). Unexpectedly,
rapeseed was better detected using Sentinel-1 features only compared to using only optical
data (Figures 4 and 6), even though a high sensitivity of optical measurements to the
distinctive yellow flowering signal would be expected. We, therefore, expect promising
results through including a yellowness index feature in future map versions.

4.4. Regional Stratification

Stratifying Germany in landscape regions aimed at generating climatologically, ge-
omorphologically, and structurally more homogeneous classification units, in order to
reduce the variance in growth conditions and management, and, therewith, to better pin-
point regional differences in class-specific vegetation development. However, the OA
values for the different landscape regions varied, with highest OA of 80.5% achieved in
the Alpine Foreland and lowest OA of 72.1% reported for the Eastern and Southwestern
Uplands. Moreover, OA averaged over all regions was with 74.7% slightly lower than
for the Germany-wide classification. These results do not suggest a general improvement
of crop type classification in Germany through stratification using the landscape regions.
Furthermore, partly large variances within one class for different regions could be observed,
which reduces the reliability of such an approach when used unconditionally. For exam-
ple, in the of class fruit trees, the average OA could be improved by almost 10% through
stratification, but at the same time, the F1-scores of two regions dropped to 0.15 and 0.16,
respectively.

However, when looking at the class-wise map accuracies, it is also striking that only
the accuracy metrics of the cereal classes decreased, while all other classes, i.e., legumes,
potato, sugar beet, rapeseed, clover/alfalfa, arable grass, vineyard, fruit trees, and hops,
on average, achieve higher accuracies when mapped per region. Hence, the class-wise
accuracies for all but the cereal classes could be overall improved on average by 7%.
Especially the small and permanent classes vineyard (increase of 16%) and hops (increase
of 17%) demonstrate that a regionally adapted approach is able to improve the mapping
of such specific classes. It must, however, be assumed that the accuracies of these classes
profit not only from a better model fit to region-specific growth forms, but also from the
constraint, that they are not attempted to be mapped over areas in which they do not or
rarely occur, hence automatically reducing commission errors. On the other hand, small
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cultivation areas, e.g., the vineyards in Saxony-Anhalt, are inevitably lost due to the chosen
stratification settings.

So far, only a few studies have employed stratification for large area crop type map-
ping. While, for example, the authors of [60] demonstrate that the eco-climatic stratification
applied in France yields better overall results by about 4%, other studies (e.g., [7]) employ
stratification without comparing their classification results against non-stratified results.
Similarly, the authors of [22] have used the same specific regionalization scheme for Ger-
many as used in this study, but did neither discuss the benefit of stratification for OA, nor
for class-specific accuracies. An evaluation of the implemented approach with regard to
comparable studies remains hence limited.

Overall, the stratification experiment illustrates that the user of such an approach
would need to evaluate the specific intended purpose of the generated crop type map, and
therewith user’s priorities, e.g., if a high OA, high class- specific accuracies, or minimum
overall or class accuracies needs to be reached in each or in individual regions. Nevertheless,
the potential of the method is shown, which could potentially further be improved through
adapted strata or regional classification models, or through legend settings.

5. Conclusions

A crop type classification workflow for Germany based on Sentinel-1, Sentinel-2, and
LPIS data has been presented for the year 2018. In this approach, we made use of LPIS
data from 15 out of 16 German Federal States, making the training robust and the results
representative for the entire country. The RF algorithm making use of Sentinel-1 and
Sentinel-2 together performed best and was able to classify crops such as winter wheat,
maize, winter rapeseed, sugar beet with high accuracies (F1-score ≥ 0.8), while achieving
an OA of 75.5%. Omission and commission errors occurred mostly among winter cereals,
summer cereals, and grassland classes. In comparison to official agricultural census data,
the crop class areas could be approximated well with on average only 1% of deviation in
class-specific acreages.

Differences between the class-specific F1-scores and OA across different landscape
regions in Germany revealed that stratification improved the classification for all but the
cereal classes, but that average OA could not profit from that approach. In comparison to
previous, more complex classification approaches, the class-wise model accuracies achieved
with this approach are generally in the same range, but, for most classes, remain 1–11%
below the best results of other studies. This indicates, on the one hand, the suitability of the
suggested streamlined procedure for a national-scale crop type mapping when efficiency,
robustness, and reproducibility of the classification are a priority, while maintaining high
map accuracies. On the other hand, these results show that more complex procedures might
be needed if the map producer strives for highest possible OA or class-specific accuracies,
which come at the cost of increased processing complexity and time.

The generated crop type map can be used for different applications, ranging from the
analysis of yield estimates, land use intensity, or agrobiodiversity, to adaptation strategies
for agriculture to climate change induced challenges, and, hence, is certainly of high interest
for a range of users. For future studies, the potential of additional indices for improving
class-specific accuracies would be of interest. With regard to the envisaged class legend,
it should be further evaluated at which level of detail similar crop types (e.g., different
cultivars of maize of legumes) can still be reliably distinguished. Last, but not least, tests
regarding the transferability of the classification to other years are of very high relevance
for future research. This is of special interest for situations in which official LPIS data
are not (yet) published by the Federal States of interest, but crop type area estimates are
needed in a timely manner. A robust classification procedure, transferable in time, would
be the solution to this problem, for which the presented approach could provide the basic
prerequisite.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14132981/s1, Figure S1: Crop calendars of 2018 for major crops
in Germany based on DWD (Deutscher Wetterdienst) phenology observation data (DWD-CDC (2001);
own outlier analysis and visualization); Figure S2: Comparison of the crop type classifications for
Germany 2018 based on a) the S1 model, b) the S2 model and c) the S12 model for a subset in the
Magdeburger Börde region in Saxony-Anhalt (upper row), and the “Eichsfeld” agricultural region in
Thuringia (bottom row); Table S1: Model and map accuracy metrics (precision, recall, and F1-score)
for crop type classifications for the Germany-wide RF models using different input feature sets,
namely all Sentinel-1 and -2 features (S12), only the Sentinel-1 features (S1) and only the Sentinel-2
features (S2).
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T.; Slesiński, P.; et al. Multi-temporal phenological indices derived from time series Sentinel-1 images to country-wide crop
classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102683. [CrossRef]

41. Reuß, F.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Wagner, W. Comparison of Long Short-Term Memory Networks and Random
Forest for Sentinel-1 Time Series Based Large Scale Crop Classification. Remote Sens. 2021, 13, 5000. [CrossRef]

42. Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote
Sens. Environ. 2017, 198, 369–383. [CrossRef]

43. Hütt, C.; Waldhoff, G.; Bareth, G. Fusion of Sentinel-1 with Official Topographic and Cadastral Geodata for Crop-Type Enriched
LULC Mapping Using FOSS and Open Data. ISPRS Int. J. Geoinf 2020, 9, 120. [CrossRef]

44. Kenduiywo, B.K.; Bargiel, D.; Soergel, U. Crop-type mapping from a sequence of Sentinel 1 images. Int. J. Remote Sens. 2018, 39,
6383–6404. [CrossRef]

45. Sun, L.; Chen, J.; Guo, S.; Deng, X.; Han, Y. Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping
over Oasis Agricultural Areas. Remote Sens. 2020, 12, 158. [CrossRef]

46. Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Crop Type and Land Cover Mapping
in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 2021, 13, 700.
[CrossRef]

47. Moumni, A.; Lahrouni, A. Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution
Satellite Imagery in a Semiarid Area. Scientifica 2021, 2021, 8810279. [CrossRef] [PubMed]

48. Chakhar, A.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A. Improving the Accuracy of Multiple Algorithms for Crop
Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data. Remote Sens. 2021, 13, 243. [CrossRef]

49. Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification By Joint Use of High Temporal
Resolution SAR And Optical Image Time Series. Remote Sens. 2016, 8, 362. [CrossRef]

50. Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-Based Crop Classification in Ukraine
Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [CrossRef]

51. Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop
Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [CrossRef]

52. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote
Sensing Data. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 778–782. [CrossRef]

53. Kussul, N.; Mykola, L.; Shelestov, A.; Skakun, S. Crop inventory at regional scale in Ukraine: Developing in season and end of
season crop maps with multi-temporal optical and SAR satellite imagery. Eur. J. Remote. Sens. 2018, 51, 627–636. [CrossRef]

54. Giordano, S.; Bailly, S.; Landrieu, L.; Chehata, N. Improved Crop Classification with Rotation Knowledge using Sentinel-1
and -2 Time Series. Photogramm. Eng. Remote Sens. 2020, 86, 431–441. [CrossRef]

55. Ofori-Ampofo, S.; Pelletier, C.; Lang, S. Crop Type Mapping from Optical and Radar Time Series Using Attention-Based Deep
Learning. Remote Sens. 2021, 13, 4668. [CrossRef]

56. Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences
with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831.
[CrossRef]

57. Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing
the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sens. 2020, 12, 2779. [CrossRef]

58. Orynbaikyzy, A.; Gessner, U.; Conrad, C. Spatial Transferability of Random Forest Models for Crop Type Classification Using
Sentinel-1 and Sentinel-2. Remote Sens. 2022, 14, 1493. [CrossRef]

59. Salehi, B.; Daneshfar, B.; Davidson, A.M. Accurate crop-type classification using multi-temporal optical and multi-polarization
SAR data in an object-based image analysis framework. Int. J. Remote Sens. 2017, 38, 4130–4155. [CrossRef]

60. Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the
Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [CrossRef]

61. Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information.
Comput. Electron. Agric. 2012, 89, 30–40. [CrossRef]

http://doi.org/10.3390/rs13050846
http://doi.org/10.3390/rs11080990
http://doi.org/10.3390/s19245574
http://doi.org/10.1016/j.isprsjprs.2021.03.004
http://doi.org/10.3390/rs11131518
http://doi.org/10.1016/j.jag.2022.102683
http://doi.org/10.3390/rs13245000
http://doi.org/10.1016/j.rse.2017.06.022
http://doi.org/10.3390/ijgi9020120
http://doi.org/10.1080/01431161.2018.1460503
http://doi.org/10.3390/rs12010158
http://doi.org/10.3390/rs13040700
http://doi.org/10.1155/2021/8810279
http://www.ncbi.nlm.nih.gov/pubmed/33968461
http://doi.org/10.3390/rs13020243
http://doi.org/10.3390/rs8050362
http://doi.org/10.1109/JSTARS.2016.2560141
http://doi.org/10.3390/rs10101642
http://doi.org/10.1109/LGRS.2017.2681128
http://doi.org/10.1080/22797254.2018.1454265
http://doi.org/10.14358/PERS.86.7.431
http://doi.org/10.3390/rs13224668
http://doi.org/10.1016/j.rse.2021.112831
http://doi.org/10.3390/rs12172779
http://doi.org/10.3390/rs14061493
http://doi.org/10.1080/01431161.2017.1317933
http://doi.org/10.3390/rs9010095
http://doi.org/10.1016/j.compag.2012.07.015


Remote Sens. 2022, 14, 2981 28 of 29

62. Kerner, H.; Sahajpal, R.; Skakun, S.; Becker-Reshef, I.; Barker, B.; Hosseini, M.; Puricelli, E.; Gray, P. Resilient in-season crop type
classification in multispectral satellite observations using growth stage normalization. arXiv 2020. [CrossRef]

63. Skakun, S.; Vermote, E.; Franch, B.; Roger, J.-C.; Kussul, N.; Ju, J.; Masek, J. Winter Wheat Yield Assessment from Landsat 8 and
Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models. Remote Sens.
2019, 11, 1768. [CrossRef]

64. DESTATIS. Landwirtschaftliche Betriebe, Ausgewählte Merkmale im Zeitvergleich. Available online: https://www.destatis.
de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Landwirtschaftliche-Betriebe/Tabellen/
ausgewaehlte-merkmale-zv.html (accessed on 21 April 2022).

65. BMEL. Daten und Fakten-Land-, Forst- und Ernährungswirtschaft mit Fischerei und Wein- und Gartenbau. Available online: https:
//www.bmel.de/SharedDocs/Downloads/DE/Broschueren/Daten-und-Fakten-Landwirtschaft.pdf (accessed on 21 April 2022).

66. German Environment Agency. Environment and Agriculture 2018. 2018. Available online: https://www.umweltbundesamt.
de/sites/default/files/medien/421/publikationen/180608_uba_fl_umwelt_und_landwirtschaft_engl_bf_neu.pdf (accessed
on 21 April 2022).

67. ESA. Sentinel-2 User Handbook; ESA: Paris, France, 2015; p. 64. Available online: https://sentinel.esa.int/documents/247904/685
211/Sentinel-2_User_Handbook (accessed on 21 April 2022).

68. de Los Reyes, R.; Langheinrich, M.; Schwind, P.; Richter, R.; Pflug, B.; Bachmann, M.; Muller, R.; Carmona, E.; Zekoll, V.; Reinartz,
P. PACO: Python-Based Atmospheric COrrection. Sensors 2020, 20, 1428. [CrossRef] [PubMed]

69. Veci, L.; Prats-Iraola, P.; Scheiber, R.; Collard, F.; Fomferra, N.; Engdahl, M. The sentinel-1 toolbox. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Québec, QC, Canada, 14–18 July 2012; pp. 1–3.
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