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Abstract

Characterizing changes in protein-protein interactions associated with sequence variants (e.g.
disease-associated mutations or splice forms) or following exposure to drugs, growth factors or

hormones is critical to understanding how protein complexes are built, localized and regulated.

Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein

interactions under near-physiological conditions, yet monitoring interaction changes requires the

development of a robust and sensitive quantitative approach, especially for large-scale studies

where cost and time are major considerations. To this end, we have coupled AP to data-

independent mass spectrometric acquisition (SWATH), and implemented an automated data

extraction and statistical analysis pipeline to score modulated interactions. Here, we use AP-

SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor

NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-

SWATH is a robust label-free approach to characterize such changes, and propose a scalable

pipeline for systems biology studies.
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Introduction

Protein-protein interactions (PPIs) are essential to cellular functions, and are attractive

therapeutic intervention targets1, 2. PPIs are also becoming increasingly recognized for their

potential in contributing to disease phenotypes induced by genetic variations, including

splice variants, allelic variants and point mutations3–6. Systematic assessment of the

consequences of sequence variation on protein-protein interactions by yeast two hybrid

(Y2H) revealed clear interaction changes associated with disease-associated mutants7.

However, limiting PPI screening to Y2H analysis generates results that do not easily capture

quantitative differences in interaction potential and work best to highlight interactions that

are lost rather than de novo interactions that may be gained via sequence variation.

Affinity purification coupled with mass spectrometry (AP-MS) can identify interactions in

near-physiological conditions, providing proper functional context to the studied protein

modules8. While many groups have employed AP-MS to identify static interactomes, very

few publications have focused on the identification of differential interactions; in all cases,

these studies have employed quantitative proteomics, with or without isotopes, to

discriminate between condition-specific interactions (reviewed in 9, 10). Notably, in these

studies, MS acquisition was performed in a data-dependent manner (DDA), where peptides

to be sequenced are selected based on the relative abundance of their precursor ion signals.

DDA introduces a degree of stochasticity in this process, which makes it very difficult to

conclude that a peptide or protein is truly absent in a given sample, especially for lower

abundance species11, 12. This is especially problematic for comparative quantification10.

In recent years, a different paradigm for MS-based quantification of proteins has gained

increased acceptance. Quantification using MS/MS (MS2) increases specificity and signal-

to-noise ratios as compared to MS1. This is the basis behind Selected/Multiple Reaction

Monitoring (S/MRM), which has been efficiently coupled to affinity purification, permitting

the detailed analysis of dynamic signaling modules13, 14. The utility of SRM in

quantification of AP samples is highlighted by its simplicity, accuracy and sensitivity15.

SRM quantification does not rely on the measured abundance of the precursor ion in MS1,

decreasing the chances for missing values in the dataset. However, SRM requires a

substantial investment in assay development for each peptide of interest16. Furthermore, the

list of analyzed peptide species is predetermined, precluding a posteriori reanalysis of this

type of data as new information becomes available, and the number of peptides quantified

per LC-MS/MS run is limited.

The advantages of quantification at the level of MS2 may also be harnessed in another type

of acquisition strategy, namely data-independent acquisition (DIA17; reviewed in 12). In

DIA, precursor ions are fragmented independently of their signal in MS1. A type of DIA

that is particularly promising for the analysis of AP samples is termed SWATH (Sequential

Window Acquisition of all THeoretical spectra)18. In SWATH, the entire useful mass range

is scanned in in a cycle time compatible with liquid chromatography using wide mass

isolation windows. All precursors in each window are fragmented, resulting in an MS2 map

of all compounds. A list of peptide fragment masses (e.g. acquired by a parallel DDA

experiment) is used to correlate MS2 peaks within the dataset to specific peptides allowing

quantification as in SRM data. The method benefits from many of the SRM attributes, such

as throughput and accuracy of quantification18, 19, and possesses a dynamic range

compatible with even the most complex interaction proteomics experiments (see

accompanying manuscript by Collins et al.). Here we present a complete experimental and

computational pipeline that couples affinity purification with SWATH quantification.
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Results

A pipeline for quantitative interactome monitoring

SWATH utilizes a fast-scanning QqTOF mass spectrometer20 to systematically fragment all

ions within a given m/z range. Eluting peptide precursor ions are isolated in sequential,

slightly overlapping windows of 25 amu (for 100 ms per window) and fragmented. The

composite MS/MS spectra for all co-eluting/co-isolated precursors are recorded as a

complete fragment ion map of the sample studied (Supplementary Fig. 1). As previously

reported18, quantification of SWATH data can be accomplished by targeted data extraction

using a list of fragment masses (see, e.g.18). To analyze our AP samples, each of the bait

samples was purified in biological replicates using FLAG magnetic beads, and peptides

were prepared by tryptic digestion. Each of the biological replicates was analyzed by

SWATH. We generated reference spectral libraries for targeted extraction by analyzing at

least one biological replicate for each of the groups of samples by Data-Dependent

Acquisition (DDA) (Fig. 1a, Supplementary Tables 1-2; Online Methods). The DDA

samples generated across a complete dataset were collectively searched using the

ProteinPilot™ software, and the MS2 spectra matching peptide sequences were used to

create a reference list of fragment masses for high confidence hits (see Methods for details).

This library was used to interrogate each SWATH run, enabling peptide quantification

across all SWATH samples, even if a given peptide was not identified in the matched DDA

run. The PeakView® SWATH Processing Micro App was used to identify the correct peak

group in a set of fragment chromatograms with peaks at the same retention time

(Supplementary Fig. 1c, 1e). Peak group scoring was similar to that described previously18

and used a combination of chromatographic correlation (related peaks should have the same

shape, width and retention time), mass error and additional predicted fragments ions; a

decoy strategy was used to select most likely peak groups for export and quantitative

analysis (Online Methods; Supplementary Fig. 1d).

Because of the amount of data generated by the SWATH approach and the goal of

minimizing manual processing, we developed a statistical method to calculate Fold Change

values and evaluate the confidence of these calculations. Normalization was performed by

calculating the most likely ratio between pairs of samples (see Methods), which generates a

scaling factor and metrics about the similarity of the samples and the quality of the

measurements. Normalization is applied stepwise, first to the samples that are expected to be

most similar (replicates) and then to the different sample groups (Figure 1b, 1c). The quality

metrics are combined with signal metrics, such as signal to noise ratio, and used as weights

in calculating Fold Change values using a strategy first described for the analysis of SRM

data for AP samples13, and referred to here as “Fold Change calculation”. With this

approach poor quality measurements are down-weighted, removing the need to manually

reject samples or measurements or to perform outlier rejection. Essentially, this statistical

tool evaluates the quality of each measurement using weights based on reproducibility

(results for each dataset used here are in Supplementary Fig. 2-7) and performs Fold Change

calculation of pairwise samples at the level of transitions, peptides, and proteins (see Online

Methods).

To determine whether the automated method yielded reproducible data, the variance for all

quantifiable peptides (with peak group FDR ≤ 1%; Supplementary Fig. 8) was measured on

a dataset consisting of cyclin dependent kinase CDK4 AP samples derived from three

biological replicates and analyzed in parallel by DDA and by SWATH (additionally, three

technical replicates were acquired for each biological replicate for SWATH). SWATH data

extraction led to quantification of 79% peptides within 20% CV (Fig. 2a), resulting in 87%

of proteins with ≤20% CV. These results were compared to MS1 area measurements

extracted using ProteinPilot software from the DDA data of the same replicates and used to
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determine both the level of stochasticity and variance in the measurement between samples.

5089 peptides were identified in any of the 3 DDA runs with an ID confidence ≥ 99%, but

only 2741 were common to all three DDA runs with an ID confidence ≥ 99% in at least one

of the replicates. These values highlight the issues of stochasticity associated with DDA

data. For comparison with the SWATH results, calculation of variance was performed only

on the 1320 high confidence peptides identified in all DDA runs and with ≤ 1% peak group

FDR in the SWATH data. As shown in Fig. 2b, SWATH had a higher proportion (82.1%

versus 74.5%) of peptides detected with CV ≤ 20% and also a smaller variance at the protein

level. More importantly, however, SWATH had the same reproducibility for extraction of

peptides targeted across all samples. From these studies, we conclude that our extraction and

normalization pipeline for SWATH data is reliable (also see Online Methods for additional

benchmarking measures), and we next benchmarked it on AP samples.

To test whether the automated pipeline could reproduce known interactions in complex AP

samples, we tested it for measuring interactions for well characterized baits, namely EIF4A2

and MEPCE, which we compared to a negative control (Green Fluorescent Protein fused to

a 3XFLAG tag). Here and throughout the manuscript, all proteins were stably expressed in

the Flp-In T-REx system, enabling recombinant protein expression to be driven in a

tetracycline-inducible manner from a single locus. N-terminal 3XFLAG tags permits

purification on FLAG M2 magnetic beads, followed by on-bead tryptic digestion as

previously described21. The resulting peptides were analyzed by DDA and SWATH in

triplicates. Following analysis by our automated pipeline, we observed that known

interaction partners of EIF4A2 and MEPCE showed large (≥ 2) fold change over the GFP

control (Fig. 2c; Supplementary Figs 9-11). In fact, the relative Fold Change values detected

for EIF4A2 (a component of the trimeric eIF4F complex) mirrored the known assembly of

the pre-initiation machinery in human cells22. The highest Fold Change values were

detected for the bait, followed by PDCD4 (a known negative regulator of EIF4A2 which

binds to the bait directly23) and the other components of eIF4F and the eIF3 complex (which

are tethered to EIF4A2 via direct association to eIF4G proteins). Next on the enrichment list

were many of the components of the 40S ribosomal subunit, which is recruited to EIF4A2

via the eIF3 complex; very few of the 60S ribosomal subunits were detected confidently

with ≥ 2-fold over the GFP control, consistent with the fact that this subunit only assembles

onto the 48S pre-initiation complex when translation is poised. Similarly, MEPCE, the

methylphosphate capping enzyme for 7SK RNAs, associated most strongly with

components of the 7SK small nuclear ribonucleoprotein complex24, followed by splicing

components and several components of the 60S ribosomal subunit which were in this case

enriched in preference to the 40S ribosomal components. In summary, after scoring based on

the comparison to negative control samples the AP-SWATH pipeline is robust, reproducible

and amenable to interactome mapping.

AP-SWATH rapidly identifies differential interactomes

We were interested here not only in scoring protein interactions over a negative control, but

importantly to systematically monitor interactome changes in pairs of samples (either

sequence variants, or drug-treated samples; Fig. 3a). We elected to study a well-described

series of sequence variants for the cyclin-dependent kinase CDK4 that have been identified

in melanoma patients25, 26. Structurally, mutation at Arg24 precludes association of CDK4

with a family of polypeptide inhibitors, the INK proteins (p15INK, p16INK, p18INK and

p19INK27 see Supplementary Table 1), resulting in derepressed CDK4 activity and

accelerated cellular proliferation7, 28. We first demonstrated that the sequence variants

behaved as expected, by performing AP-western with antibodies directed against known

endogenous partners. All recombinant proteins were expressed at similar levels to each other

and to the endogenous CDK4 (Fig. 3b). As expected, CDK4 wild-type, but not the two
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mutants (R24C and R24H) interacted with p18INK/CDKN2C (Fig. 3b). These samples –

and a negative control – were chosen to explore quantification by the AP-SWATH method.

Principal component analysis of the data from the four tested sample pairs revealed clear

separation of the negative controls from any of the baits (Fig. 4a). 17 proteins were enriched

at least two-fold in one of the three CDK4 baits: these were deemed CDK4 interactors (Fig.

4b; Supplementary Figs 12-14). To assess how these interactors were associating with either

of the two mutants in relation to the WT protein (clearly separated by PCA analysis; Fig.

4a), we implemented a stringent two-step filtering approach. Only CDK4 interactors (as per

Fig. 4b) were considered in an additional test to assess confidence of a change (up or down

in this case; we set an arbitrary threshold at 2-fold; Fig. 4c). When using the pipeline

described above to characterize interactions for the CDK4 proteins, we observed a number

of differentially regulated interactions between the WT and the two mutant proteins (R24C

and R24H). In contrast, the two mutants shared most interactions (Fig. 4d; Supplementary

Fig. 15). As expected, both mutants largely lost interactions with members of the INK

family of CDK inhibitors (5.7 to 9.8 fold reduction; Fig. 4d and Supplementary Figs 15-17;

see Online Methods for the description of the criteria for inclusion). However, we also

noticed a pronounced increase in the association of HSP90 proteins (HSP90AA1 and

HSP90AB1; ≥ 3.0 fold) and the CDC37 co-chaperone (≥ 3.9 fold) with the two mutant

proteins. In addition, the immunophilin FKBP51 (gene FKBP4) and to a lesser extent

HSP70 (gene HSPA8) were also significantly enriched in the mutants. To further cross-

validate these results, we performed an additional series of CDK4 affinity purification

coupled with iTRAQ labeling (Fig. 4d) and extracted abundance ratios for the 10 proteins

modulated in the R24 mutants as compared to the WT. The iTRAQ measurements revealed

modulation consistent with SWATH for these 10 proteins (Fig. 4d), though the variance

associated with iTRAQ measurements was considerably higher (Supplementary Fig. 18), at

least in part due to stochasticity between independent iTRAQ runs. The regulated

interactions with CDC37 and HSP90 were validated by AP-western analysis, confirming the

trends observed by AP-SWATH (Fig. 4e). Taken together, this indicated a higher propensity

of the mutant proteins to interact with HSP90 and suggested that the enriched interactors

may be recruited to CDK4 via interactions with HSP90 core components. These effects were

however not observed to the same extent with two other CDK4 mutants for which

interaction with the INK proteins is not modulated (N41S and S52N; Supplementary Figs

19-22), suggesting some degree of specificity in the recruitment of HSP90 to CDK4 mutants

at Arg24. In summary, the AP-SWATH method enabled confirmation of known regulated

interactions and quantification of the changes, and permitted the discovery of new

modulated interactions.

AP-SWATH can identify drug-regulated interactions

While increased interaction between CDK4 mutants and HSP90 has never been reported,

mutations in several other kinases (including EGFR and BRAF) increase their interaction

with CDC37 and HSP9029, 30. This was recapitulated here using a LUMIER approach (as

in 31; Fig. 5a; Supplementary Fig. 23). A model of addiction to HSP90 has been proposed

where mutant kinases become dependent on CDC37-HSP90 folding for stability and

activity32, offering a rationale for the use of HSP90 inhibitors that prevent the recruitment of

client proteins as a therapeutic avenue. Using AP-SWATH we thus assessed the

consequences on recruitment of CDC37 and HSP90 to the kinase constructs following

treatment with NVP-AUY922 (a potent HSP90 inhibitor currently undergoing clinical

trial33). We also reasoned that proteins that were displaced at the same time as CDC37 and

HSP90 may be dependent on the interaction with the core HSP90 network for their

interactions.
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As expected, treatment of the cells expressing CDK4 WT with the HSP90 inhibitor resulted

in marked dissociation of CDC37 and HSP90 (Fig. 5b, c; Supplementary Fig. 24-27). Many

of the proteins that showed increased association with the mutant proteins as compared to

WT were also affected in their interactions with the NVP-AUY922 treatment, indicating that

they are likely mediated by the CDC37/HSP90 bridge. Some other partners however,

including the chaperone HSP70 (genes HSPA1A and HSPA8) and some of its cofactors

(HOP (STIP1) and HIP (ST13))34, interacted more strongly with CDK4 WT in the presence

of the inhibitor, suggesting that not only are they not recruited via CDC37/HSP90 but that

they may compete with them for binding (Fig. 5c). Importantly, and in contrast to the report

that other mutant kinases show increased sensitivity for HSP90 inhibitors29, 30, 35, we found

that association of CDC37, HSP90 and FKBP4 to the mutant kinases was less affected than

that to the WT following inhibitor treatment (Fig. 5c). Since the mutants also bound

significantly more to these proteins in the absence of treatment (Fig. 4), this results in a

much larger net binding in the presence of the inhibitor. Similarly, HSP90 almost

completely dissociated from the WT CDK4 upon NVP-AUY922 treatment, whereas mutant

CDK4s still associated with significant amounts of the chaperone (Fig. 5d-e). This effect

was further explored by performing time-course and dose-dependence analysis of the

dissociation of the interactions. In all cases, association of the mutants with HSP90 and

CDC37 was preserved as compared to the WT kinase, with longer treatment or higher

dosages required for the dissociation of the CDK4 R24 mutants (Fig. 5f, g; Supplementary

Fig. 28). Taken together, these results indicate that tumors driven by CDK4 oncogenic

kinases may not benefit from treatment with HSP90 inhibitors, or may require higher

dosages to obtain the desired therapeutic results. Furthermore, our experiments set the stage

for analyzing other drug-regulated interactions, including for other kinase oncogenic

variants.

Discussion

Here we report the development of an efficient pipeline to quantitatively study changes in

interactomes in an unbiased and reproducible manner. Key aspects of the method are an

unbiased data independent acquisition method, SWATH, and the use of weighted statistics

to determine changes and associated confidence values. The latter is critical since it allows

automatic analysis of the large amounts of data that can be generated in these experiments.

We have also shown that AP-SWATH is able to identify true interaction partners by scoring

against negative control samples, and to rapidly identify interaction changes for disease-

associated mutations and or pharmacological treatment. As detailed in Supplementary Figs

29-32, the method is generally applicable, and we have implemented it to analyze the

consequences on the interactome of alternative splicing, this time using three splice variants

for another kinase, GRK631 (Supplementary discussion). In all the cases we analyzed in

more detail, the changes could be validated by AP-western analysis or iTRAQ quantitation.

As for all targeting methods, the key for SWATH quantification is the generation of a

spectral library. This can be provided from publicly-available resources (as in 18), but can

also be built for a particular set of proteins of interest. Here we generated a spectral library

from DDA data collected from the analysis of samples in each experimental set. We also

note that samples could – for example – be pooled for the DDA identification run, and

libraries could be built (as in 18) for extracting the quantitative information. As there are a

number of efforts to further understand the limits of DIA and SWATH and to evaluate ways

to build libraries, it is likely that new ways to analyze the data will become available. In fact,

this is a key strength of DIA: the data provides a permanent record of the whole sample,

enabling future reanalysis. In combination with proper data annotation (e.g. using LIMS

such as ProHits36), and deposition in public repositories (as we have done here with
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MassIVE), this should provide an important source of information for computational and

cancer biologists alike.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Generation of stable cell lines and drug treatment

The vector pDEST-5'Triple-FLAG-pcDNA5-FRT-TO was constructed from the pcDNA5-

FRT-FLAG vector38 and pMX-pie-pDEST-3X-FLAG39 by first preparing a HindIII/XhoI

cassette from pMX-pie-pDEST-3X-FLAG by PCR using the following oligos: 5’

ccttggAAGCTTCCACCATGGACTACAAAGACCATGACGG and 3’

ggacttCTCGAGtcagACCACTTTGTACAAGAAAGCTGAAC. This cassette was then

subcloned into the pcDNA5-FRT-FLAG vector (previously digested with HindIII/XhoI).

Entry clones of wild-type and cancer-derived allelic series for the cyclin dependent kinase

CDK4 (c70t, g71a, a122g and g155a; all expressed in nucleotide base pair changes, resulting

in the expression of mutants R24C, R24H, N41S and S52N, respectively) were previously

described7. Three splice variants of the GPCR-coupled receptor kinase GRK6 (variants A, B

and C that differ only in their C-terminal extension; Supplementary Fig. 29a) were as

previously reported31. Each entry clone was shuffled into the destination vector

pDEST-5'Triple-FLAG-pcDNA5-FRT-TO through homologous recombination using LR

clonase II (Gateway system; Invitrogen). The resulting vectors were co-transfected with the

pOG44 recombinase in Flp-In T-REx HEK 293 (Invitrogen, grown in DMEM supplemented

with 5% FBS, 5% calf serum, 100 U/mL penicillin/streptomycin) using Lipofectamine

(Invitrogen) as per supplier instructions. pcDNA5-FLAG-MEPCE and pcDNA-FLAG-

EIF4A2 were as previously described38. Cells stably expressing the constructs were selected

in 200ug/mL hygromycin for approximately 2 weeks at which point cells colonies were

pooled and expanded in 150mm plates. Upon reaching approximately 70% confluence,

tetracycline was added to a final concentration of 200 ng/mL to cell media for 24 hours,

inducing the expression of the recombinant tagged protein. For experiments involving

HSP90 inhibition, the HSP90 inhibitor NVP-AUY92233 (20mM stock in DMSO) was added

for the indicated times and inhibitor concentrations to cells previously induced with

tetracycline for 24 hours.

Affinity purification for mass spectrometry and validation by immunoblotting

Affinity purification was performed as previously described21 with minor modifications.

Briefly, cells expressing FLAG-tagged proteins were washed with 10mL of PBS before

being scraped in PBS using a rubber spatula. Cells from two 150mm plates were pelleted by

centrifugation, the supernatant removed, frozen on dry ice and kept frozen at −80°C until

ready to be used. Cells were lysed by resuspension in 1:4 (pellet weight/volume) ratio of

lysis buffer (50mM HEPES-KOH (pH 8.0), 100mM KCl, 2mM EDTA, 0.1% NP40, 10%

glycerol, 1mM PMSF, 1mM DTT and protease inhibitor cocktail (Sigma-Aldrich; P8340;

1:500)) followed by two freeze/thaw cycles. The resulting cell extract was then clarified by

centrifugation at 20 800 rfc for 20 min (4°C) before transferring the supernatant to a fresh

tube. Affinity purifications were performed by incubating the cleared lysate with 30uL of

pre-washed magnetic M2 anti-FLAG beads (Sigma-Aldrich) for 2 hours at 4°C on a nutator.

Two washes with 1mL of lysis buffer were then performed followed by an additional wash

with 1mL of 20mM Tris-HCl pH8 2mM CaCl2. For mass spectrometry analysis, 7.5uL of

20mM Tris-HCl pH8 containing 750ng of trypsin (Sigma-Aldrich) was added to the washed

beads and incubated at 37°C for approximately 15 hours. The next morning, the tubes were
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quickly centrifuged, the beads magnetized and the partially digested sample transferred to a

fresh tube before addition of an extra 2.5uL of 20mM Tris-HCl pH8 containing 250ng of

trypsin. The samples were incubated for 3 hours at 37°C before addition of 1uL of 50%

formic acid. The samples were stored at -80°C until analysis. For Western blot analysis, the

beads were resuspended in 2X Laemmli sample buffer, boiled for 5 minutes and the samples

transferred to fresh tubes. Proteins were separated by SDS-PAGE, and transferred onto

nitrocellulose membranes. For CDK4, the membranes were blocked in TBS containing 5

mg/mL non-fat milk and 1% Tween 20 for 1 hour at room temperature. Blots were treated

with primary and secondary antibodies as described in Supplementary Table 3: detection

was performed by chemiluminescence detection with the LumiGLO reagent (Cell Signaling

Technology; #7003; 1:20) on film. For GRK6, the membranes were blocked in 5% non-fat

milk for 30 minutes at room temperature, then treated with primary antibodies overnight,

followed by incubation for 1.5 hours with IRDye® 800CW anti-mouse and IRDye® 680

anti-rabbit secondary antibodies (shown in Supplementary Table 3). The GRK6 membranes

were then visualized by direct fluorescence scanning with a Li-Cor Odyssey Imager. HSP90

bands were quantified with Li-Cor Odyssey software.

LUMIER analysis

LUMIER analysis1 was performed essentially as described in31. Briefly, wild type kinases

and indicated mutants C-terminally tagged with 3X FLAG and V5 tags were transiently

transfected in a 96 well format into 293T cells stably expressing Renilla luciferase-tagged

HSP90beta (HSP90AB). After passive lysis (in 50 mM HEPES-KOH pH 7.9, 150 mM NaCl,

20 mM Na2MoO4, 2 mM EDTA, 5% glycerol, 0.5% Triton X-100, supplemented with

protease and phosphatase inhibitors), the lysate was transferred into 384 well plates

precoated with anti-FLAG M2 (Sigma-Aldrich) and incubated for 3 hours, followed by

extensive washing and reaction with Gaussia FLEX luciferase kit (New England Biolabs).

Subsequently, the levels of the FLAG-tagged bait were detected by ELISA using HRP-

conjugated anti-FLAG antibody. Data analysis was performed as described in 31.

Description of the datasets used here

This manuscript contains several datasets, organized in groups as detailed in Supplementary

Table 2. For Fig. 1 and 2a and b, the CDK4 WT runs from a set containing 9 SWATH

replicates (3 biological×3 technical) and 3 DDA replicates (3 biological) was employed

(group 5 in the Supplementary Table). For Fig. 2c, the dataset consisted of three biological

replicates of each of the following: MEPCE, EIF4A2 and a GFP negative control (group 6).

Fig. 4a and b employed 2 biological replicates each of DMSO-treated CDK4 WT, R24C,

R24H and an empty vector negative control (partial selection from group 3). Fig. 4d (left)

employed three biological replicates for the CDK4 WT, R24C and R24H mutants from

group 1 while the right panel was from the iTRAQ dataset in group 7. Fig. 5 used the entire

HSP90 inhibitor dataset (group 3). Datasets groups 2 and 4 were used for Supplementary

Figures.

iTRAQ labeling

For validation of SWATH-MS results, an extra set of triplicate purifications of CDK4

samples were processed as described above except that Hepes buffer was substituted for Tris

buffer during trypsin digestion, and samples were not acidified following tryptic digestion.

Rather, the peptides were dried in a speedvac without heat and subsequently resuspended in

5 µL of iTRAQ dissolution buffer (as per the manufacturer, AB-SCIEX, protocol). 20 µL of

the appropriate iTRAQ reagent (from a stock solution of 50 µL in isopropanol) was added to

each sample. Samples were labeled as follow: 3XFLAG-GFP control (115), 3XFLAG

CDK4 WT (116), 3XFLAG-CDK4 R24C (118) and 3XFLAG-CDK4 R24H (119). After
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completion of the labeling reaction (2 hours at room temperature), equal volumes of samples

from individual biological replicates were mixed and evaporated to dryness in a speedvac.

The dry peptides were resolubilized in 5% formic acid solution in water and one eighth of

the labeled peptides was used per MS analysis. This corresponded to loading twice as much

peptides (in relation to the starting material) on the column as in the SWATH experiments.

Mass spectrometry data acquisition

Samples were analyzed on an AB SCIEX 5600 TripleTOF in two phases: data dependent

acquisition (DDA) was followed by SWATH acquisition on the same sample, using the

same gradient conditions and the same amounts of sample (in most cases; detailed in

Supplementary Table 2, DDA acquisition was performed on a single biological replicate,

except for datasets 5 and 6 for which three DDA runs per bait were generated). For DDA, a

quarter of the volume of the digested sample was analyzed on a 5600 TripleTOF, using a

Nanoflex cHiPLC system at 200 nL/min (Eksigent ChromXP C18 3 µm×75 µm×15 cm

column chip) or a home-packed emitter column (Dr. Maish Reprosil C18 3 µm×75 µm×10

cm) as indicated in Supplementary Table 2. Buffer A was 0.1% formic acid in water; buffer

B was 0.1% formic acid in ACN. The HPLC delivered an acetonitrile gradient over 120 min

(2-35% buffer B over 85 min, 40-60% buffer B over 5 min, 60-90% buffer B over 5 min,

hold buffer B at 90% 8 min, and return to 2% B at 105min). The DDA parameters for

acquisition on the TripleTOF 5600 were 1 MS scan (250ms; mass range 400-1250) followed

by a) up to 50 MS/MS scans (50ms each) b) up to 20 MS/MS scans (100ms each) or c) up to

10 MS/MS scans (100ms each) as indicated in Supplementary Table 2. Candidate ions

between 2-5 charge state and above a minimum threshold of 200 counts per second were

isolated using a window of 0.7 amu. Previous candidate ions were dynamically excluded for

20 sec with a 50 mDa window. The SWATH setup was essentially as in Gillet et al.18, using

the same chromatographic conditions as the DDA run described above, a 50 ms MS1 scan,

followed by 32×25 amu isolation windows covering the mass range of 400 to 1250 amu

(cycle time of 3.25 sec); an overlap of 1 Da between SWATH was preselected. The collision

energy for each window was set independently as defined by CE = 0.06 * m/z + 4, where m/

z is the center of the each window, with a spread of 15eV performed linearly across the

accumulation time. For the GRK6 experiments, the retention times were realigned based on

landmark peptides to correct for the different chromatographic systems employed in this

experimental set. The iTRAQ samples were acquired by DDA as described above (with the

iTRAQ CE option applied), using a packed tip emitter system with direct injection, and up

to 20 MS/MS scans were performed in each cycle.

Data Dependent Acquisition processing for targeted extraction

Data generated by DDA was searched against the human complement of the Uniprot release

8.8 database containing 40476 sequences using ProteinPilot™ AB SCIEX Beta 4.1.46,

revision 460. Searches were performed using ProteinPilot’s standard “rapid search”

parameter space that includes common modifications as part of the search. The search is

undertaken using the Paragon search engine (v 4.0.0.0). The specific nature of this search

engine and its mode of operation are described elsewhere40. Raw data for each experimental

set were searched in a single batch (the description of the files is in Supplementary Table 2)

to create a results file that was subsequently used for library generation.

Library generation

For each set of experiments (defined as per Supplementary Table 2), a specific library of

precursor masses and fragment ions was created and used for subsequent SWATH

processing. ProteinPilot result files were processed to extract matched peptide IDs and the

matched ions from the original input spectra. The matched spectra were filtered to produce a

list of parent masses and fragment masses and intensities to be used for SWATH processing
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Filtering removed peptide redundancy and identified the optimal spectrum for each peptide

according to the following scheme: 1) Spectra were grouped based on unique peptide

identification; 2) The grouped spectra were ranked based on identification confidence in

ProteinPilot; 3) The highest confidence identification closest to the LC parent ion peak apex

was selected (The chromatographic peak apex is estimated by ProteinPilot and is exported as

the intensity of the peak); 4) The highest ranked spectra were then reinterpreted and y and b-

ions identified; 5) A library entry was made from the y and b-ions for each top ranked

unique peptide spectrum. No attempt was made to generate a consensus spectrum from all

identifications of each peptide. The data within this library contained modified forms as well

as peptides which were shared between different protein isoforms.

SWATH data file processing

Prior to data processing, peptides were selected automatically from the library using the

following decision tree: 1) The extracted results from the ProteinPilot results file contains all

identified unique peptides for a specific targeted protein. These unique peptides were ranked

by the intensity of the MS1 precursor ion from the DDA analysis as estimated by the

ProteinPilot software; 2) Peptides which contained modifications and or were shared

between different protein entries / isoforms were excluded from selection; 3) Peptides which

were represented by multiple charge states in the list were collapsed to charge state which

had the most intense precursor ion in the DDA data. Up to 15 peptides were chosen per

protein and SWATH quantitation was attempted for all proteins in library files that were

identified below 1% FDR from Protein Pilot searches.

Target fragment ions, up to a number specified by the user and typically 4 or 5, were

automatically selected as follows: 1) Fragment ions for a selected peptide were ranked based

on ion intensity; 2) Ions higher in m/z than the y4 fragment ion for each selected peptide

were ranked highest; 3) Ions within the SWATH isolation window were excluded from

selection; 4) If insufficient target ions were found, ions lower than y4 but outside of the

SWATH window were chosen; 5) If there were still insufficient ions then fragment ions

from within the SWATH window region were chosen. Avoiding ions within the SWATH

window as much as possible decreases potential interferences from unfragmented precursor

ions.

The specifics of the scoring for the different peak groups will be described elsewhere (R.A.

and S.T, unpublished). In essence: 1) The fragment ions for each peptide were used to

generate extracted ion chromatograms (XIC) from the SWATH experiment which contained

the parent m/z; 2) Peaks identified in the different XICs were aligned by the peak apex

retention time and peaks which aligned across the different XICs were marked as potential

candidate peak groups; 3) For each candidate peak group on list, the overlap of the different

XIC peaks was evaluated, since related fragment ions should have the same peak width, and

those which did not have well correlated peak widths were removed from the candidate list.

Overlap was assessed by using the half-height width of the most intense fragment peak to

define a time window and verifying that the apex value of the other fragments was within

the window; 4) All the remaining peak groups were scored based on the closeness to the

expected retention time for the eluting component determined from the DDA data acquired

using the same chromatographic system; 5) The MS/MS spectra for the peak apex of each of

the remaining peak group candidates were extracted; 6) The extracted spectra were scored

based on the isotopic state of the individual ions extracted in the MS/MS spectra. Those

peak groups which contained measurements extracted from 13C isotopes were scored lower.

7) The MS/MS spectra were also scored based on the mass accuracy (both absolute and

median accuracy) of the extracted peaks. 6) The individual peak group scores were a linear

combination of all sub-scores and the peak group with the best score was taken forward.
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Determination of a robust peak extraction cutoff

To select the peak group confidence threshold for automated extraction, a method based on

mProphet41 was used to determine the false detection of peak groups. In essence, each

peptide had both a forward and a reverse (decoy) sequence extracted and the decoy sequence

scores were used to generate a median score value for the retention time region of each

forward sequence. This median score was used to normalize the score values and generate a

recomputed score that was ranked. As this ranked score list contains both forward and

reverse sequences, standard methods for determining false positive results can be used.

Here, we used data from the CDK4 WT dataset (group 5) to evaluate the impact of varying

FDR threshold selection on the CV values and the final Fold Change calculations. As shown

in Supplementary Figure 8a, the % peptides with CV values ≤ 20% were strongly impacted

by reducing the FDR stringency for peak extraction, consistent with the fact that FDR

thresholding properly acts to reduce noise. Surprisingly, however, initial FDR selection had

only a minimal impact on the final results of the Fold Change calculations (see below for

Methods), suggesting that robustness is built into the normalization process that weights

down the “bad” fragments/peptides (Supplementary Figure 8c). Despite this robustness (the

final list of the proteins passing the Fold Change confidence thresholds in this study was

virtually unaffected by extracting at 1% FDR or 10% FDR), for some proteins there was a

clear negative effect on the confidence scores associated with the 10% FDR extraction

(Supplementary Figure 8d). Therefore, we elected to use a consistent 1% extraction FDR

threshold for all the analyses performed in the main text.

Extraction of MS1 and comparative CV analyses

MS1 intensities for identified peptides were extracted directly from the ProteinPilot results

by exporting the ProteinPilot group files as a peptide summary table that includes the

expected precursor intensity. DDA peptides were filtered as follows: 1) the peptides should

be in common to all 3 DDA runs (otherwise, the missing value(s) drastically increases the

variance); 2) the peptides should have been identified with ID confidence ≥ 99% in at least

one of the three runs; 3) all peptides, including modified peptides, are considered; 4) each

charge state is considered as a separate instance for quantification; 5) instances of the same

peptide (with same charge) are considered the same peptides if they are within +/- 5 min

retention time window. This set of criteria led to 2741 common peptides, including different

charge state and modifications.

To best compare the MS1-DDA variance to that of SWATH, we used a subset of these

peptides that were deemed most reproducible (unmodified and present in only one protein)

and also detected in the SWATH analysis of the most similar samples, i.e. the DDA run and

the first SWATH analysis for each replicate. The SWATH data was restricted to those

peptides which had a FDR ≤ 1% in at least 2 samples (note that we are only attempting to

quantify the top 400 proteins in this analysis) and this list was merged with the DDA

peptides to identify common peptides and remove modified peptides. The resulting list

contains 1320 common peptides which were used to evaluate the CV values for the SWATH

and the DDA-MS1 measurements.

iTRAQ data analysis

iTRAQ data was analyzed using ProteinPilot 4.2, and the default ProGroup algorithm

iTRAQ processing parameters were used. After a rapid search against Uniprot protein

iTRAQ ratios were exported and standard deviations calculated across the replicate data

sets. To generate the Supplementary Fig. 18, quantitative information for proteins used in

the SWATH measurements were extracted, alongside their standard deviation.

Lambert et al. Page 11

Nat Methods. Author manuscript; available in PMC 2014 June 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Determination of signal quality metrics

A signal quality value was determined for all raw data extracted. For the purpose of this

study the area of the peak was used as surrogate value for the signal-to-noise. The values for

each transition were normalized to a scale of 0 to 1.0 where a value of 1.0 corresponded to

an intensity of greater than 10e5. A sigmoidal distribution was used and the inflection point

of the curve was set to a value of 10e4. The signal quality metric is used during the fold

change determination of the peptides and proteins.

Normalization of peak area data

In a previous study13 which used SRM to monitor the changes in the GRB2 interactome

induced by stimulation or drug treatment, we normalized all data to the expression of the

GRB2 bait itself. This was possible as a single cell line was used for all studies and GRB2

levels were invariant across all conditions. Here, by contrast, we profiled the interactions

established by bait proteins expressed in independent cell lines. Though a major strength of

the expression system that we used is that the different alleles are expressed at a similar
level, there are small variations in expression levels that preclude normalization to the bait

level (when we did this analysis, proteins that non-specifically interacted with the affinity

matrix tended to be identified as varying). We and others have previously realized that many

of the proteins detected in AP-MS are interacting non-specifically with the affinity matrix,

but that these interactions were reproducibly detected, both qualitatively and

quantitatively37. With this knowledge, we therefore selected to use a normalization method

that is independent of the bait expression. As defined in13, the identification of features for

the normalization of data is critical. In this study we used features which had intensity

greater than 3000 (peak area) for normalization by a method similar to42 but modified since

mass spectrometry intensity data is linearly dependent on the amount of material present.

The same normalization scheme was used for each experiment set. The procedure starts by

examining the measurement ratios in biological replicates as follows: 1) The ratio between

the measurements for each feature in each pair of replicates is determined; 2) The ratios are

represented as a histogram and the delta of the most likely ratio to the zero point is taken for

each sample comparison (Fig. 1b). These values represent the sample differences and are

used for normalization of the data as described below; 3) The width of the ratio histogram is

determined and is used as an indication of pairwise sample similarity. Here a narrow

histogram will represent a good similarity between the different samples; 4) Measurement

reproducibility is also determined from the histogram as the distance of the feature ratio to

the peak apex of the histogram. Fig. 1c, top panel, shows the ratio histograms for all samples

compared to one WT sample prior to normalization.

The first stage of normalization adjusts the values for a set of replicates (here, for example,

biological replicates for the CDK4 WT samples are adjusted separately from the CDK4

R24C or R24H) since these values should be most similar. For each set, the best sample, as

measured by overall reproducibility, is determined and the values for all other samples are

adjusted using the appropriate apex ratio. The result of this intermediate normalization step

is represented by the middle panel in Fig. 1c, which shows the resulting ratio histograms and

indicates that replicates are now very similar. This data – referred to as the “biological

sample normalized data” - is then used to normalize between different experiments.

The second stage is normalization between the different experiment conditions, e.g. wild

type and a selected mutant, using the output from stage 1. These data were processed as

described above to determine the normalization factor for each experimental condition that

were applied to the “biological sample normalized data” generating the final “experimental
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normalized data”. The final result is represented in Fig. 1c, bottom, which shows that the

apex ratio between all samples is now unity.

Selection of the normalization method

The method used for normalization of the data (Most Likely Ratio Normalization, MLR)

was compared to other recognized methods of data normalization, including Total Area

Sums (TAS), and normalization to bait protein. TAS is performed by summing the responses

for each sample and then determining a ratio of each sample to the largest sum. This ratio is

used as a normalization factor for each sample. When normalizing to a bait protein, the

responses for the bait proteins are summed, and then the median ratio between the peptides

determined and this value is used to normalize all other measurements in each sample.

Supplementary Figure 33a shows the differences on the resulting PCA analysis between

sample grouping using TAS, normalization to the bait protein, and MLR for an experimental

dataset from triplicate analyses of three bait proteins where one replicate for two of the baits

had a much lower overall intensity. While the normalization to the bait clearly fails in this

case, there was an improvement in obtaining separation from using MLR over TAS. This

was most obvious when visualizing the ratio histograms after normalization (Supplementary

Figure 33b). As the primary aim of normalization is to minimize experimental variance,

balancing the ratio histograms is ensures that the variance has been minimized. The variance

of the samples is defined as the range of the peak apexes of the ratio histograms. Here, the

issues associated with the normalization to the bait protein (significant sample variance even

after normalization) are clearly depicted. While the TAS approach minimized this variance

between samples, the two outliers (intensity-wise) were still unaligned. By contrast, MLR

was successful at minimizing the variance, even for these samples with a poor intensity

response.

Note that in terms of the Fold Change determination, while normalization of the data to the

bait protein makes sense if the bait protein itself is expected to be a constant value (this was

in fact the method we used for the analysis of the SRM data in a previous publication13),

even small variations in the abundance of the bait protein across the samples strongly

affected the results (essentially, boosting all contaminant proteins in the samples in which

the bait was expressed to a lesser extent). Here, as seen in the western blots in Fig. 3b and 4e

(and accompanying quantitative mass spectrometry analysis), though the WT and mutants

CDK proteins were expressed at similar levels, these levels were not identical (the WT was

expressed to a higher level than the mutants). This prevented us from using the bait

normalization which we had previously employed; MLR was not impacted by these

differences.

Determination of fold change of values

All of the raw data collected was used to provide an input to the fold change determinations.

In essence the fold change of the protein was determined using the method reported in13.

Data after normalization – experimental normalized data - is used for the fold change

determination. This data is treated in the following manner: 1) For each set of biological

replicates a table of weighted average areas is determined using the transition reproducibility

values determined during normalization – “weighted area response”; 2) Weighted analysis

of variance is used to determine the likelihood of difference between the experimental test

conditions. The output is in essence a p-value as if a t-test was performed between the

different experiments but the use of weighted values better accounts for poor quality values

in the data being processed; 3) The “signal quality values” and “analysis of variance values”

(from step 2) are used to determine the peptide fold change values using a weighted average

fold change calculation; 4) A peptide signal quality table is determined from the transition

signal quality table by calculating the median signal quality for each set of transitions; 5)
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The peptide variance is determined by calculating the summed weighted average for the

transitions analysis of variance using the signal quality table as the weighting factor for the

individual transitions; 6) A protein fold change value is determined as described in Bisson et

al.13, with a slight modification that the protein value is again a weighted average using both

the peptide signal quality (step 4) and also the peptide variance (step 5) values as weights.

As described before, the output of this fold change determination is a fold change up and

down for each protein and a confidence value as determined from the peptide variance and

the peptide signal quality values.

All calculations were performed in MATLAB 2012 by executing custom coded algorithms

and data exported either in figure format or as text.

Determination of data quality metrics

Data quality is determined for the transitions, peptides and proteins and used to reject lower

quality values from subsequent processing and display: 1) The transition quality matrix is

determined by taking the maximum median value of the data in the transition reproducibility

matrix as determined in the normalization of the data; 2) The peptide quality matrix is

determined by taking median value for the transition quality values; 3) The protein quality is

determined from the median of the individual peptide quality values.

Filter parameters for data visualization and figure generation

Data represented in all figures was generated using a series of custom algorithms executed

within the MATLAB environment. The output from these scripts were figures and tables

representing the fold change and corresponding confidence values.

Although data was filtered primarily using a confidence threshold of ≥ 0.75, we also

required a minimum log10 (fold change) value of 0.2. This latter value is based on

distributions of pairwise fold change values for all measurements with confidence values

less than ≤ 0.75 (i.e. most likely not changing) in the initial CDK4 mutant experiment which

showed that ca. 95% of the log10 (fold change) values were less than 0.2. Further, to ensure

that each protein is represented by high quality measurements, we required at least 2

peptides per protein and used signal quality and reproducibility thresholds of 0.15

(determined from the appropriate histograms).

For the data presented in the main text figures, an additional filtering scheme, based on the

Fold Change calculations, was applied to ensure that only specific interactors for a bait are

considered as “potentially modulated interactors”. Essentially, we applied two criteria: 1) the

prey protein must have passed the confidence and Fold Change thresholds as defined above

and be up-regulated in comparison to a set of negative control samples processed in parallel

(we consider any proteins passing the thresholds across the entire set of baits to be tested a

“specific interactor” for the bait); 2) pairwise comparisons between sequence variants and/or

drug treatments are then performed, only considering the “specific interactors”, and the

same thresholds (this time, up or down) are applied. Data resulting only from the second

step (meaning without first ensuring that the proteins analyzed are non-contaminants) can be

found in Supplementary Figs 20-22 and 30-32; 34-39). However, since we did not use the

two-step filtering process for the Supplemental data presented for additional mutants of

CDK4 and splice variants of GRK6, these values should be interpreted with caution.

The layout of the figures was also generated in MATLAB and annotated in Illustrator: In the

case of the complete dataset representation for each experiment set, the rank is based on the

global view where proteins are ranked by decreasing confidence of fold change across any

two pairs.
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The figures presented in the main text utilize the same filtering criteria and cutoffs and

represent the Fold Change data as a heat-map generated (increasing ratios) using

MultiExperiment Viewer version 4.8.1 (MeV; http://www.tm4.org/mev/).

Access to data

All mass spectrometry data as well as each of the steps of the analysis can be found at

prohits-web. lunenfeld.ca. Raw mass spectrometry files were also deposited in the MassIVE

repository, housed in the Center for Computational Mass Spectrometry at UCSD (http://

massive.ucsd.edu/ProteoSAFe/datasets.jsp); see Supplementary Table 4 for IDs and links to

each of the datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
AP-SWATH pipeline. (a) MS analysis pipeline: each sample is processed separately for

DDA and SWATH, and the spectral library built from all DDA runs within an experimental

set is used to retrieve quantitative information from each of the SWATH runs. A series of

tools are used to automatically match the DDA and SWATH spectra, extract quantitative

information, normalize the transitions, peptides and proteins, and determine the Fold Change

differences between samples, and the confidence on the Fold Change. (b) Schematic of the

parameters used for normalization. Intensity ratio histograms are generated between pairs of

samples, and a number of metrics are derived. (c) Effects of the normalization steps on the

area ratio histograms demonstrated for a dataset consisting of 9 samples derived from CDK4

WT, 9 from CDK4 R24C and nine from CDK4 R24H. The top panel shows the ratio

histograms before normalization; the middle panel, after normalization based on

experimental types (here biological replicates); and the bottom panel shows the final results

after normalization of the experimental bias.
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Figure 2.
AP-SWATH for scoring protein interactions. (a) Reproducibility metrics for the SWATH

extraction at 1% FDR in relation to the binned % CV values; the upper boundary is

indicated. (b) Reproducibility metrics for the common peptides identified in all DDA

experiments and extracted from SWATH data with 1% FDR. The numbers of peptides and

proteins identified/quantified within the %CV indicated are listed, and the overall

percentages of peptides/protein within the 20% CV interval are indicated. (c) Fold Change

calculation results for the FLAG-EIF4A2 bait in relation to a negative control, FLAG-GFP

(left), and for FLAG-MEPCE in relation to FLAG-GFP (right). The proteins that changed ≥

2-fold with a confidence ≥ 0.75 are displayed: increased proteins (yellow scale) are specific

to the bait in relation to the control while the decreased proteins (blue scale) are more

abundant in the negative control samples, and likely contaminants (these tend to be enriched

in the Contaminant Repository for Affinity Purification, CRAPome.org37). Several

components of well-characterized protein complexes that were enriched with EIF4A2 and

MEPCE are indicated by the colored dots to the right of the heatmaps (See Supplementary

Figs 9-11 for an expanded view). In this and all other heatmaps, values exceeding the Fold

Change (log10) indicated in the color-coding bars are depicted as the maximal intensity

values.
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Figure 3.
Selected biological samples. (a) Schematic representation of the effects of mutations, splice

variants and chemical perturbations on the modulation of specific protein-protein

interactions. In the reference interactome, interaction of the central protein with three

binding partners is represented. If this protein is absent from the cells, all three interactions

are lost (blue interactome; node removal). Interactions can also be selectively lost (green

interactome; edge lost) or gained (red interactome, edge gain). In these cases, the loss/gain

can be absolute (represented here by the presence or absence of an edge), or partial (depicted

by changes in edge width; the magnitude of these changes can be measured by quantitative

proteomics). (b) AP-western validation of a test case for monitoring interactome changes.

FLAG-tagged CDK4 WT and mutant proteins are expressed at similar amounts (to each

other and to the endogenous CDK4 protein) in Flp-In T-REx 293 cells and purified on an

anti-FLAG resin. Association of the endogenous p18INK (CDKN2C) protein was detected

by immunoblotting.
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Figure 4.
Identification of differential interactomes for CDK4 cancer-associated mutants. (a) Principal

component analysis showing the clear separation of two control (FLAG alone) samples and

two CDK4 WT samples in comparison to the two CDK4 R24 samples that show little

separation. (b) Heatmap representation of the proteins passing the confidence threshold in

one of the CDK4 baits relative to the negative controls. The grey cells indicate that the

thresholds for confidence, Fold Change or signal-to-noise were not met in this particular

pairwise comparison (See Supplementary Fig 12 for a global view of all the data without

these missing values and Supplementary Figs 13-14 for expanded views). (c) Schematic of
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the scoring process for differential interactome mapping: in the first step, the potential

interactions for a set of baits are collectively scored against a negative control and proteins

confidently up-regulated with ≥ 1 baits are considered further. In the second step, systematic

pairwise comparisons between all baits, or comparison to a bait used as a reference point,

are performed. (d) Left: Heatmap depicting the high confidence proteins differentially

detected in the R24C and R24H mutants in relation to the WT sample. Only proteins

changing with a confidence ≥ 0.75 and that passed filtering criteria defined in Methods are

depicted. See Supplementary Fig. 15-17 for all pairwise comparisons. Right: Heatmap

showing the iTRAQ ratios of the high confidence SWATH proteins (see Supplementary Fig.

18 for iTRAQ ratio standard deviation). (e) Validation of selected regulated interactions by

AP-western.
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Figure 5.
Use of AP-SWATH to probe drug-modulated interactions. (a) Increased association of

kinase mutants with HSP90 as determined by LUMIER. (b) Heatmap depicting the high

confidence differentially recovered proteins as a consequence of NVP-AUY922 treatment

(all comparisons are pairwise, for the same bait treated with NVP in comparison to the mock

treated sample). See Supplementary Fig. 24 for the heatmap of the first filtering step

(normalization to the negative control) and Fig. 25 for an expanded view). (c) Fold Change

and Median Absolute Variance (error bars) for all proteins from panel. b. See

Supplementary Fig. 26-27 for an expanded view of protein and peptide level changes. (d)
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Fold change of selected proteins in the mutants as compared to the WT following NVP-

AUY922 treatment. (e) Validation of selected regulated interactions by AP-western: 500nM

NVP-AUY922 was used for 1 hour. (f, g) AP-western analysis of time course of CDK4 WT

(f) and R24C mutant (g) dissociation from CDC37-HSP90 in the presence of 100nM NVP-

AUY922. In e, f and g, * indicates the position of the FLAG-tagged bait protein; • indicates

endogenous CDK4.
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