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Mapping eGFR loci to the renal transcriptome
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Chronic kidney disease (CKD), defined by low estimated glomerular filtration rate (eGFR),

contributes to global morbidity and mortality. Here we conduct a transethnic Genome-Wide

Association Study of eGFR in 280,722 participants of the Million Veteran Program (MVP),

with replication in 765,289 participants from the Chronic Kidney Disease Genetics (CKDGen)

Consortium. We identify 82 previously unreported variants, confirm 54 loci, and report

interesting findings including association of the sickle cell allele of betaglobin among non-

Hispanic blacks. Our transcriptome-wide association study of kidney function in healthy

kidney tissue identifies 36 previously unreported and nine known genes, and maps gene

expression to renal cell types. In a Phenome-Wide Association Study in 192,868 MVP

participants using a weighted genetic score we detect associations with CKD stages and

complications and kidney stones. This investigation reinterprets the genetic architecture of

kidney function to identify the gene, tissue, and anatomical context of renal homeostasis and

the clinical consequences of dysregulation.
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C
hronic kidney disease (CKD), defined by an estimated
glomerular filtration rate (eGFR) lower than 60 ml/min/
1.73 m2 for three or more months1, is a global health

concern and is associated with premature death2,3. CKD has a
prevalence of 15% and affects 30 million people in the US4,5. In
addition to the risk of progressing to end-stage-renal disease
(ESRD), CKD is associated with significant cardiovascular mor-
bidity and mortality6,7. Patients with an eGFR of <15 ml/min/
1.73 m2, for example, have a threefold increased mortality than
those with normal renal function8.

Diabetes is the most common comorbidity associated with
ESRD worldwide, occurring in 44–60% of ESRD cases4,5. CKD in
diabetics is multifactorial and also related to hyperglycemia,
hypertension, atherosclerosis, and aging. Currently there are few
therapies that slow CKD progression and life-extending treat-
ments for ESRD are restricted to dialysis and transplantation.

There is a great need to understand the biological mechanisms
that lead to CKD so that treatments that target those biological
factors can be developed. Kidney function, as measured by
eGFR, is a heritable trait9 that has been studied in genetic asso-
ciation studies, and over 50 eGFR loci have been definitively
identified10–13. A small proportion of variance in eGFR is
explained by the subtle effects of previously reported variants, and
the genetic etiology of this trait is highly complex. The inferences
of what genes influence eGFR are often unclear from loci detected
by genome-wide association studies (GWAS) of common var-
iants, which comprise a large proportion of known genetic
determinants. Regulatory effects may account for significant
additional heritability in GWAS, and GWAS results are enriched
for regulatory single-nucleotide polymorphisms (SNPs) com-
pared with the proportion of the genome containing regulatory
elements14–16. In recent large-scale GWAS meta-analyses of
eGFR, it was shown that many significant SNPs map into tissue-
specific regulatory regions, and that gene expression may mediate
many of the associations between genetic variants and eGFR10,12.
Several methods were recently developed to leverage multiple
variants to perform gene-based tests of association between
imputed gene expression levels and phenotypes17–20. These tests
are tissue-specific and provide effect estimates with interpretable
direction and magnitude compared with studies that only eval-
uate associations between SNPs and traits.

Thus, to capitalize on our large electronic health record-based
study of patients receiving care in a standardized setting and to
leverage available analytical possibilities, we conduct a transethnic
GWAS of eGFR in 280,722 participants of the U.S. Veteran’s
Administration Million Veteran Program, with replication in an
additional 765,289 participants from the Chronic Kidney Disease
Genetics (CKDGen) Consortium. In addition, because of the
important role of diabetes in nephropathy, we stratify analysis by
diabetes status. We also evaluate associations between genetically
predicted gene expression (GPGE) in a human healthy kidney
expression quantitative trait locus (eQTL) reference panel21 and

eGFR, followed by comparison of significant GPGE associations
with gene expression profiles in murine kidney cell types22 to
identify the specific cells where gene expression effects likely arise.
Finally, we evaluate clinical translation by performing a
phenome-wide association study (PheWAS)23 of a weighted
genetic risk score (GRS) of eGFR in the electronic health records
across 192,868 MVP participants.

Results
MVP characteristics. A total of 280,722 participants were avail-
able from MVP for analyses of eGFR, ~33% were diabetic
(Table 1). Most participants were non-Hispanic whites (80%),
male (93%), and hypertensive (70%). When evaluating the data
stratified by diabetes status, there were more diabetics than non-
diabetics who were hypertensive within both race groups (non-
Hispanic white diabetics and hypertensive 91%; non-Hispanic
black diabetics and hypertensive 93%). Across both race groups,
eGFR was lower in diabetics than in non-diabetics, and eGFR was
higher in non-Hispanic blacks than in non-Hispanic whites.

Transethnic GWAS. Meta-analyses of GWAS data were per-
formed on all variants (minor allele frequency, MAF, ≥1%), with
data stratified by race, diabetes status, and hypertension status.
Meta-analysis of both race groups across all diabetes and
hypertension strata identified 136 genome-wide significant loci, of
which 122 were available and evaluated for replication in a
transethnic GWAS meta-analysis of eGFR from the CKDGen
Consortium (n= 765,289). Fourteen of these SNPs or proxies
from the all-ancestry analyses were unavailable for replication.

Of the 122 variants, 79 were replicated at the Tier 1 definition
(p ≤ 5 × 10−8) and an additional 28 were Tier 2 replicated (5 × 10−8

< p ≤ Bonferroni correction for 122 SNPs= 0.0004), and 11 were
Tier 3 replicated (0.0004 < p ≤ 0.05) (Supplementary Data 1, Table 2,
Fig. 1). Only four showed no evidence of association in CKDGen.
Meta-analysis of p-values from MVP and CKDGen results
identified all Tier 1 and seven Tier 2 results as genome-wide
significant. Across the three tiers of successful replication, 2.75% of
variance in eGFR was explained. Fifty-seven of these results have
been previously detected in GWAS of eGFR, while six others have
associated with overt kidney disease, microalbuminuria, or other
related phenotypes in prior studies. Among 64 novel variants,
the most significantly associated was rs2823139 near NRIP1
(pdiscovery= 1.82 × 10−18, effect= -0.45mL/min/1.73m2 [standard
error (SE)= 0.051]; preplication= 5.24 × 10−16). Evaluation of con-
ditionally independent signals within the discovery meta-analysis
results using GCTA24 identified 18 SNPs from 15 loci (five novel)
that are significantly independently associated with eGFR (Supple-
mentary Table 1).

We also conducted analyses limiting to non-Hispanic white
individuals. Similar to the trans-ancestry analyses, the majority of
variants replicated in CKDGen (n= 567,401; Supplementary

Table 1 Characteristics of Million Veteran Program discovery sample

Characteristic Overall Non-Hispanic white

diabetic (n= 70,762)

Non-Hispanic white non-

diabetic (n= 152,624)

Non-Hispanic black

diabetic (n= 20,967)

Non-Hispanic black non-

diabetic (n= 36,369)

Hypertension (n, [% Yes]) 198,137 (71%) 64,493 (91%) 90,875 (59%) 19,459 (93%) 23,310 (64%)

Gender (n, [% Female]) 20,733 (7.4%) 3081 (4.4%) 12,986 (8.5%) 1781 (8.5%) 2885 (16%)

Age (mean [SD], years) 62.8 (13.2) 67.4 (9.8) 62.5 (14.3) 62.1 (9.9) 55.4 (12.5)

BMI (mean [SD], kg/m2) 30.1 (6.0) 32.1 (6.4) 29.0 (5.4) 31.9 (6.5) 29.4 (5.9)

eGFR (mean [SD],

mL/min/1.73 m2)

79.1 (20.7) 72.3 (20.6) 79.0 (18.8) 80.4 (24.6) 89.4 (21.6)

SD standard deviation, BMI body mass index, kg kilograms, m2 meters squared
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Data 2). Six variants failed to replicate (p > 0.05). Of the 105
replicated SNPs, 61 were Tier 1 (p ≤ 5 × 10−8), 29 were Tier 2
(5 × 10−8 < p ≤ 0.00048), and 9 were Tier 3 (0.00048 < p ≤ 0.05).

We identified 14 variants that were significant in non-Hispanic
blacks (Supplementary Table 2) within our MVP discovery
population. Among these four were novel (rs75113983 near
OLFR690, rs200950799, which is intergenic on chromosome 12,
rs144803907 near C15orf43, rs10084572 near AGPAT3). Only one
of these novel variants was also identified in non-Hispanic
white analyses (rs13230509). An interesting finding among
the non-Hispanic blacks is the strong association with rs334
(p= 1.54 × 10−18) in HBB, the variant which encodes the sickle cell
allele of beta globin. The origins of this variant have been recently
described25. The derived A allele on the + strand that encodes for
the sickle version of the beta globin protein is associated with lower

kidney function. This allele has also been previously associated with
increased urinary albumin-to-creatinine ratio26.

We compared the effect sizes for significant discovery GWAS
results across non-Hispanic black and non-Hispanic white
subjects MVP (Supplementary Fig. 1, Supplementary Table 3).
Most of the effects were in the same direction except for three
variants. One was a novel variant (rs142314590 in LDB2) and two
were known variants (rs532086 and rs2235826 near C2 and
PRK1, respectively). The effect sizes across non-Hispanic black
and non-Hispanic white subjects were more correlated among
known (r2= 0.25) loci than novel (r2= 0.13) variants (Supple-
mentary Table 3). The overall allele frequencies across ancestry
groups for significant variants were highly correlated (r2= 0.67).

Diabetes stratified GWAS. There were 91,279 patients with
diabetes. In our GWAS for this group we identified 32 variants
reaching genome-wide significance, which make up a subset of
the loci discovered in combined analysis. Seventeen of these
variants were in known loci and 15 were novel loci (Supple-
mentary Data 3, Supplementary Figs. 2 and 3). The top six
hits were near UMOD (p= 2.43 × 10−82), PRKAG2 (p= 7.89 ×
10−23), MPPED2/DCDC5 (p= 9.85 × 10−22) GATM/SPATA5L1
(p= 2.21 × 10−17), SHROOM3 (p= 1.63 × 10−13), and HBB (p=
7.95 × 10−13). Comparison of the association effect sizes in the
stratified analysis in subjects with (Supplementary Data 3) and
without diabetes (Supplementary Data 4) demonstrated generally
consistent effects reflecting the shared pathways between diabetic
and non-diabetic kidney disease (Supplementary Fig. 4).

LD score regression. Subsequently, we utilized the LD Score
Regression approach27 in each contributing group to ascertain
whether inflation was due to residual population stratification or
polygenicity. Calculation of the intercept in the MVP non-
Hispanic white discovery analysis datasets were 1.02 (SE= 0.01),
1.04 (SE= 0.01), 1.03 (SE= 0.01), and 0.99 (SE= 0.01), for dia-
betics with hypertension, non-diabetics with hypertension, non-
diabetics without hypertension and diabetics without hyperten-
sion, respectively, suggesting that little of the observed inflation in
the lambda is due to population stratification (Supplementary
Table 4). Similarly, intercepts in the MVP non-Hispanic black

Table 2 Summary of significant known and novel loci from

analysis of common variants

Number of loci Average effecta (SD) P-values*

Known loci 54 0.49 (0.28) 0.0025

Novel loci 64 0.38 (0.17)

Tier 1 79 0.45 (0.26)

Tier 2 28 0.41 (0.19)

Tier 3 11 0.36 (0.10)b

Diabetics 35 0.90 (0.61) 0.001

Non-diabetics 98 0.52 (0.28)

Tier 1= First tier significance criteria: GWAS significance at discovery+ replicationpassing

Bonferroni threshold+ consistent directions of associations between discovery and

replication sets

Tier 2= Second tier significance criteria: GWAS significance at discovery+ replication p

between 5 × 10−8 and 0.00040004+ consistent directions of associations between discovery

and replication sets

Tier 3= Third tier significance criteria: GWAS significance at discovery+ replication p between

0.0004 and 0.05+ consistent directions of associations between discovery and

replication sets

*P-value from two-sample t-test comparing mean effect estimates
aAverage effect= average and standard deviation of the absolute value of beta-estimates from

MVP, in mL/min/1.73m2

bExcluding two extreme outliers
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discovery analysis datasets were 1.01 (SE= 0.003), 1.02 (SE=
0.004), 1.00 (SE= 0.003), and 1.00 (SE= 0.003), for diabetics
with hypertension, non-diabetics with hypertension, non-
diabetics without hypertension, and diabetics without hyperten-
sion, respectively.

eGFR heritability estimation. Evaluation of SNP-based herit-
ability was assessed using LD score regression across groups and
indicated that eGFR was most heritable among non-diabetics and
non-hypertensive individuals in both non-Hispanic whites (h2=
0.15, SE= 0.02) and non-Hispanic blacks (h2= 0.13, SE= 0.04)
(Supplementary Table 4). In general, heritability was higher in
non-Hispanic whites than in non-Hispanic blacks.

Human kidney genetically predicted gene expression (GPGE).
Common variants from transethnic meta-analyses were used to
evaluate the association between eGFR and GPGE in human
healthy kidney tissue using S-PrediXcan17 with the healthy kid-
ney eQTL reference described by Ko et al.21 (Fig. 2, Supple-
mentary Data 5). We identified 45 significant results for
transethnic analyses, among these 36 were novel genes which had
not been identified by GWAS, either in the original reports or by
the GWAS catalog mapping. The strongest result was with a
known CKD locus, SPATA5L1 (effect=−2.38; p= 1.01 × 10
−110). The strongest novel result was at TPRKB, a protein coding
gene for the TP53RK-binding protein (effect=−10.78; p=
3.40 × 10−22). Twenty-five of the 45 genes with significant results
were associated with a decrease in kidney function with
increasing renal gene expression. Among all significant results, 19
also had SNPs likely to be causal for both gene expression and
eGFR differences, as identified through the COLOC approach.

We also conducted secondary GPGE analyses stratifying
subjects by diabetes status (Supplementary Data 5). SPATA5L1
was the strongest result in analyses of diabetic and non-diabetic
participants, with stronger effects estimated in the non-diabetics.

In analyses of diabetic participants, we identified seven significant
associations. Two of the genes (HLA-H, UBD) identified in
analyses of diabetic participants were not observed in overall
analyses (combining diabetics and non-diabetics) or in analyses
limiting to non-diabetic subjects. Both genes were associated with
a decrease in kidney function with increasing expression and
neither gene has been previously associated with eGFR. HLA-H
has been associated with non-albumin protein levels and UBD
with blood proteins28,29. All significant results in analyses of non-
diabetics were also identified in overall analyses combining
diabetics and non-diabetics.

Evaluation of GPGE results in murine kidney cells. We also
evaluated homologs of genes identified in GPGE analyses using
an atlas of kidney cell type-specific RNA expression from single
cell sequencing of murine kidney cells22 (Fig. 3, Supplementary
Table 5). Cells were clustered into 13 types that represent struc-
tural features and other cell types of the kidney. We identified six
genes (NARS2, ARNT, TPRKB, RNF152, BST2, and RGS14) across
five cell types (podocyte, proximal tubule, collecting duct prin-
cipal cell, fibroblast, and neutrophil) that had a 1.96 or greater
fold increase in gene expression, though none of these were sig-
nificant after accounting for multiple tests. Cross-referencing
protein expression levels in the Human Protein Atlas confirmed
findings from murine kidney, including higher expression of
TPRKB protein in tubules compared with glomeruli (Supple-
mentary Table 6).

eGFR risk score PheWAS. To assess the potential pleiotropic
effects of associated eGFR variants we tested the association
between an eGFR weighted GRS (w-GRS) and diseases
throughout the phenome using 63 SNPs with independent
weights identified previously in the CKDGen Consortium10,30

(Supplementary Table 7) and clinical phenotype data from
192,868 self-reported/administratively identified non-Hispanic
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white MVP individuals (Supplementary Table 8). We regressed
PheWAS outcomes onto the w-GRS, adjusting for sex and the top
ten principal components of ancestry. We identified nine con-
ditions that were significantly associated with the eGFR w-GRS.
The majority were diseases related to genitourinary systems (n=
6), the strongest result was with chronic renal failure (p= 3.55 ×
10−57, OR per SD of w-GRS= 0.88). Interesting results included
calculus of kidney, calculus of ureter, and urinary calculus, which
were all significant and positively associated with the weighted
GRS (i.e., increased eGFR [improved kidney function] associated
with increased risk of kidney stones). In addition, we observed
significant associations with stage III of CKD and renal failure.

Discussion
We present the results from a multi-omic transethnic GWAS of
eGFR with discovery and replication in over a million partici-
pants. We identified several novel loci using multiple statistical
and bioinformatics approaches and validated previously reported
loci, with replicated SNPs explaining 2.75% of eGFR variance.
Significant strengths of this study include our large discovery and
replication populations, transethnic analyses of diverse popula-
tions, incorporation of GPGE from a healthy human kidney
reference, identification of cell-specific eGFR-associated gene
expression from murine kidney, and evaluation of the clinical
phenome through PheWAS of an eGFR w-GRS. We also assessed
heterogeneity of effect estimates at GWAS loci between diabetic
and non-diabetic populations. In addition to identifying novel
and known loci, our discovery analyses using the MVP popula-
tion showed heritability estimates consistent with published stu-
dies of eGFR, supporting the quality of our EHR phenotyping30.
These data provide insight into the genetic architecture and
clinical factors of eGFR.

The limitations of estimating GFR from creatinine and/or
cystatin C include low sensitivity in detecting early CKD and poor
prediction of the course of CKD. These limitations have been

described previously in detail31–33. However, despite these lim-
itations, eGFR is the outcome most often used in genetic asso-
ciation studies of kidney function because of its clinical utility and
the translational potential of inferences, as well as the availability
of large numbers relative to alternative measures.

We identified several novel common variants associated with
eGFR, some of which may tag genes implicated in Mendelian
forms of kidney disease. For instance, we detected a common
(and reportedly benign) missense variant in PKD1 (polycystin 1)
associated with eGFR. Mutations in PKD1 can cause autosomal
dominant polycystic kidney disease (OMIM #173900). Variants
in NOS3 (nitric oxide synthase 3), where we also detected an
association with eGFR, may act as a modifier among those with
polycystic kidney disease34 through the nitric oxide pathway. We
also identified associations near the NRIP1 gene (nuclear receptor
interacting protein 1), with supporting GPGE evidence. NRIP1
mutations have recently been implicated in congenital anomalies
of the kidney and urinary tract (OMIM# 610805), which are a
leading cause of CKD among those under 3035. It has been
suggested that mutations in this gene cause CKD through dis-
ruption of retinoic acid signaling.

Novel SNP associations were found at or nearby genes pre-
viously reported in GWAS of other renal and urological pheno-
types. Specifically, loci were identified with urate/urea/uric acid
levels (KLHDC7A,36 MTX1,37 RREB1,38 and MIR153828,38), urine
albumin-to-creatinine ratio (C9orf339), IgA Nephropathy
(MTMR340), and frequency of urinary tract infection (ZNF16541).
We also observed an association at a pharmacogenetic locus
strongly related to tacrolimus dose in renal transplant patients42,
as well as development of new-onset diabetes after transplant42.
However, transplant patients were excluded from this analysis.

Loci implicated in platelet and red blood cell phenotypes were
also represented among novel eGFR-associated SNPs, including
TET2, HIST1H1C, UBE2H, TRIB1-LOC105375746, FAM53B,
TPM1, NRIP1, A4GALT, DOCK7, PLCB1, and SERTAD228,43. It
has been previously shown that mean platelet volume, platelet
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counts, and platelet distribution width are associated with
eGFR44,45. Higher values of mean platelet volume are observed
among CKD patients46, while platelet count and distribution
width decrease along with eGFR. CKD patients also demonstrate
an attenuated response to antiplatelet therapy relative to those
without renal insufficiency47.

Ischemic stroke is a common secondary occurrence in CKD
patients, which may be due to shared risk factors48. Reduced
kidney function among stroke patients is a risk factor for mor-
tality49,50. We identified four novel eGFR-associated loci which
have been previously associated with ischemic stroke in other
studies, specifically USP38, ZFHX3, PMF1-BGLAP, and
TTBK151–53. A previous analysis of the APOL1 high risk variants
showed increased risk of ischemic stroke54. Combined with our
results, this suggests that the genetic architecture of kidney
function may predispose to other small vessel disease outcomes.

We examined the APOL1 locus extensively for association with
eGFR in black MVP participants in anticipation that there would
be a relationship there with eGFR and did not observe an asso-
ciation with an additive genotype coding. It has been suggested in
multiple studies where participants had predominantly normal
kidney function that APOL1 is a kidney disease gene and has not
been significantly associated with eGFR55–57. This suggests that
the lack of association between APOL1 genetic variants and eGFR
is likely not due to low power, as has been true in previous studies
of African-descent populations.

We evaluated our transethnic sentinel SNPs for consistency of
effect size across racial groups and found that in general effects
were of similar direction, with only three variants being of
opposite effect in non-Hispanic blacks (Supplementary Fig. 1).
These included two known variants: rs532086 at C2, rs2235826 at
PCK2 and a novel variant, rs12646572 at LDB2. Effect sizes of
these three SNPs in non-Hispanic blacks were small (<0.01)
and likely represented null effects. Comparison of variants
identified in non-Hispanic blacks with non-Hispanic whites
demonstrated consistency of direction across known variants
with effect sizes generally similar or larger in non-Hispanic
blacks. When eGFR effects across the entire genome were com-
pared between white and black MVP participants using the
Popcorn software package58, the genetic effects were highly cor-
related and not significantly different from no difference (rge=
0.94, p= 0.45). Novel variants detected in non-Hispanic blacks
were not observed in non-Hispanic whites. Our analysis of eGFR
in non-Hispanic whites was largely consistent with previous
European-ancestry cohorts, replicating many strongly associated
loci among our top hits, such as UMOD, GATM/SPATA5L1,
SHROOM3, CPS1, PRKAG2, and SLC31A110,11,59.

An interesting finding among the non-Hispanic blacks is the
strong association with rs334 (p= 1.54 × 10−18, SNPTEST info
score= 0.75) in HBB, which encodes the sickle cell allele of beta
globin. This variant has been previously associated with increased
urinary albumin-to-creatinine ratio26. The sickling allele was
present at a frequency of 5.7% among MVP non-Hispanic blacks,
despite sickle cell trait carriers being restricted from serving in
certain roles in the United States armed forces60. This observed
frequency is higher than that in the African Americans from the
southwestern United States in 1000 Genomes (MAF= 1.6%), but
substantially lower than in continental African populations (MAF
10.1–13.9%). Screening for sickle cell in the United States Military
has undergone several changes since the initial policy was
introduced in 1969, in which the Navy began screening all
recruits60,61. Currently universal sickle cell screening is performed
prior to military ascension in the U.S. Navy, Air Force, and
Marine Corps, while in the U.S. Army screening is performed
only in specific scenarios related to deployment and certain
occupational hazards62,63. Similarly, in other countries’ militaries,

sickle cell allele carriers may be barred from diving, submarine,
and aircrew service64. A recent study found that sickle cell trait
was not associated with increased risk of mortality among black
soldiers in the U.S. Army, but that it was associated with
increased risk of exertional rhabdomyolysis (breakdown of
skeletal-muscle tissue)65. However, the effect of sickle cell trait
was less than that of recent statin use. Our results suggest that this
allele also negatively affects kidney function, which may indicate
that carriers should be monitored clinically for decreases in eGFR.

Associations were also identified near loci previously impli-
cated in diabetes and insulin/glucose homeostasis (CDKAL1,
SLC9B2, RREB1, RAI1, and PPARG)28,66–68. CDKAL1, RREB1,
and PPARG were not significant in either arm of the diabetes
stratified analysis, while RAI1 and SLC9B2 were significant in the
non-diabetes group. We identified 36 SNPs that reached genome-
wide significance in our diabetes strata, 12 were novel and not
significant in non-diabetics, but were observed in the overall
transethnic analysis combining diabetic groups. We also did an
exploratory comparison of the association effect size in the sub-
jects with and without diabetes. The effects were generally con-
sistent across groups (Supplementary Fig. 3). Uromodulin
(UMOD) has been recently detected in a GWAS of diabetic eGFR
that limited to diabetic subjects69. We observed similar associa-
tions for UMOD in separate analyses within diabetic and non-
diabetic participants (sentinel SNP [A effect allele] effect size for
UMOD diabetic 0.11 and non-diabetic 0.07), suggesting the
association is not specific to diabetics. UMOD is known to affect
kidney function and mutations in that gene cause several syn-
dromic kidney disorders. Few variants have reached genome wide
significance for studies of eGFR in patients with diabetes,
potentially due to power and heterogeneity of renal disease
phenotypes in diabetics70,71.

We leveraged the human healthy kidney eQTL reference first
described by Ko et al.21 to investigate the relationship between
GPGE and eGFR using S-PrediXcan. We detected associations
with 45 genes, 18 of which are not annotated for any trait in the
GWAS catalog, either by the original report or by the catalog
mapping. When we restricted the GWAS catalog to genes
identified by studies of eGFR, CKD, kidney disease, urinary
albumin to creatinine ratio, or urinary metabolites, 36 of the 45
genes we detected were novel. The most statistically significant
association with GPGE was for the spermatogenesis associated
protein 5-like 1 gene (SPATA5L1). This locus has been pre-
viously reported to be associated with eGFR10,72. However, there
are several genes in the region and Köttgen et al72 suggested
the nearby gene glycine amidinotransferase (GATM), based on a
pathway-level connection of that gene to creatinine biosynthesis.
The sentinel non-coding SNP rs2467853 in this region is within
the SPATA5L1 gene and is more strongly associated with SPA-
TA5L1 expression in human kidney than GATM (rs2467853
SPATA5L1 beta= 0.77, p= 8.2 × 10−8; GATM beta= 2 × 10−4,
p= 0.99)73. In our evaluation of RNAseq and genotypes in cis
with GATM from healthy human kidney, no models could be
constructed that sufficiently predict GATM expression to use in
GPGE analysis. We detected an association between GPGE and
eGFR for SPATA5L1 and not for GATM, as well as a COLOC
signal with a high posterior probability (P4= 0.98) of several
SNPs in the region being causal for both SPATA5L1 expression
levels and the eGFR association signal, and no COLOC or GPGE
evidence supporting GATM. The mechanism underlying the
relationship between SPATA5L1 gene product abundance and
kidney function is unclear.

The most statistically significant novel gene detected in
S-PrediXcan analysis was the TP53RK-binding protein (TPRKB),
which is significantly highly expressed in murine proximal
tubules. Consanguineous families with homozygous missense
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mutations in TPRKB have been diagnosed with Galloway-Mowat
syndrome-5 (OMIM #617731), in which affected people exhibit
early-onset nephrotic syndrome, as well as dysmorphologies and
delayed psychomotor development74. The NARS2 gene is also
novel and significantly highly expressed in murine podocytes.
Mutations of this gene have been observed in a phenotype similar
to Alpers syndrome that included renal dysfunction (OMIM
#612803)75.

It is also notable that UMOD from the chr16p12.3 region was
not associated in the GPGE association analysis. No SNPs in the
UMOD region were sufficiently associated with UMOD expres-
sion in the human kidney reference data to create predictive
models for S-PrediXcan analysis. This suggests that the rela-
tionship between UMOD genotypes and kidney function is
mediated by a mechanism other than gene expression, or that the
proportion of cells from which UMOD is expressed is small and
difficult to detect in bulk RNA sequencing of whole kidney. The
sentinel SNP nearby UMOD from our study (rs77924615) is a
nominally significant eQTL within NephQTL76 (a database of
nephrotic syndrome human kidneys) in the kidney tubules (p=
0.0014) and has a non-significant effect in the glomerulus (p=
0.079). The conditionally independently associated SNP
rs111285796 in UMOD is also nominally associated in NephQTL
with UMOD expression in tubules (p= 3.6 × 10−4) and less
associated with other genes at this locus (PDILT p= 0.047), and
less significant for glomerulus (UMOD p= 0.021). Within a
healthy kidney eQTL atlas77 (Online Methods) rs111285796 is
not associated with UMOD in tubules (p= 0.214) but is nom-
inally associated in glomerulus (p= 0.004). This demonstrates
that there are important differences between the nephrotic and
healthy kidney reference data with regard to cis-eQTL effects at
this locus and suggests that SNPs in this locus influence gene
expression in a context-dependent manner.

We constructed a w-GRS of eGFR and performed a PheWAS
using EHRs from 192,868 non-Hispanic white MVP participants.
To our knowledge this is the first PheWAS of an eGFR w-GRS.
We observed several associations between our w-GRS and kidney
disease-related phenotypes. The most significant PheWAS asso-
ciation (p= 3.55 × 10−57) was with chronic renal failure, followed
by related renal failure phenotypes, and CKD stage III (p=
6.13 × 10−24), all diseases defined by eGFR. Our w-GRS was
associated with hypertensive kidney disease but not essential
hypertension. In addition, we observed an association with kidney
stones that was positively associated with our w-GRS; a rela-
tionship that has not been previously reported with eGFR. Our
results are consistent with a prior study that reported an asso-
ciation between increased eGFR and hypercalciuria78. It is known
that some individual genes that influence eGFR are also impor-
tant for kidney stone formation. For example, decreased pro-
duction of UMOD is associated with kidney stone formation as
uromodulin impairs the aggregation of calcium oxalate crystals79,
hypertension, arterial stiffness, and CKD.

In conclusion, we identified multiple novel loci associated with
eGFR levels after conducting a transethnic GWAS and several
post-GWAS bioinformatic analyses. We identified several novel
loci and genes with additional confirmation and refinement
through GPGE analyses, including cell-specific expression. We
observed consistent effects across racial groups for associated
GWAS loci. Furthermore, we evaluated the clinical phenome
associated with our eGFR w-GRS and identified associations
among diseases related to kidney and endocrine disease pheno-
types. Overall, our study leveraged a racially diverse clinical
population to identify novel eGFR loci common across racial
groups and remapped previously reported loci using GPGE,
leading to a greater understanding of the genetic architecture of
kidney function.

Methods
Ethics statement. The central Veterans Affairs (VA) institutional review board
(IRB) and site-specific IRBs approved the Million Veteran Program study.

The Million Veteran Program. The Million Veteran Program (MVP) is a large
cohort of fully consented participants who were recruited from the patient
populations of 63 VA medical facilities. MVP recruitment was initiated in 2011 and
conducted in-person, after responding to an invitation letter. Full MVP partici-
pation includes completion of baseline and lifestyle surveys, providing access to
medical records, a blood sample, and giving permission to recontact. Informed
consent is provided after counseling by research staff and access to informational
materials. All study materials and protocols are approved by the VA Central
Institutional Review Board. Genotyping was performed on the Affymetrix Axiom
Biobank Array chip, with custom content included to provide better coverage of
African and Hispanic haplotypes. All samples are de-identified for research pur-
poses, and investigators are not permitted or able to link study data to a partici-
pant’s identity.

Blood samples were obtained from MVP participants by phlebotomists and
shipped to a central biorepository in Boston, Massachusetts for biobanking. DNA
was extracted and provided to two external sites for genotyping. Standardized
quality control and genotype calling algorithms using the Affymetrix Power Tools
Suite (v1.18) were applied to the data in batches by the MVP genomics working
group. Quality control pipelines included the exclusion of duplicate samples, those
with discordant reported and genotyped sex, and samples with more heterozygosity
than expected. One of each pair of related individuals as measured by the KING
software80(halfway between 2nd and 3rd degree relatives or closer) were excluded
from genetic analysis.

Prior to imputation, variants that were poorly called or that deviated from their
expected allele frequency based on reference data from the 1000 Genomes Project81

were excluded. After pre-phasing using EAGLE v282, genotypes from the 1000
Genomes Project phase 3, version 5 reference panel were imputed into Million
Veteran Program (MVP) participants via Minimac3 software83. Principal
component analysis was performed using the FlashPCA84, to generate the top ten
genetic principal components explaining the greatest variability.

Information on race and ethnicity (Hispanic: Yes or No) were extracted from
standardized survey forms (self-report), or from the corporate data warehouse
(CDW), or observational medical outcomes partnership (OMOP) data, when
information from self-report was unavailable, and data were combined to form
administratively assigned variables. Race and ethnicity categories used in this study
included non-Hispanic whites and non-Hispanic blacks.

Baseline estimated glomerular filtration rate (eGFR) was determined using the
creatinine closest to enrollment. For the vast majority of the patients creatinine was
measured using the IDMS reference method. GFR was calculated using chronic
kidney disease epidemiology collaboration (CKD-EPI) serum creatinine
equation85. The eGFR CKD-EPI equation is (1):

GFR= 141 ×min(Scr ×κ−1,1)α ×max(Scr × κ−1, 1)−1.209 × 0.993Age × 1.018 [if
female] × 1.159 [if Black]

where Scr is serum creatinine (mg/dL), κ is 0.7 for females and 0.9 for males,
α is −0.329 for females and −0.411 for males, min indicates the minimum of Scr
× κ−1 or 1, and max indicates the maximum of Scr × κ−1 or 1. We excluded
individuals that were on dialysis, had a kidney transplant, amputees, individuals on
HIV medications which may increase creatinine clearance, BMI < 18, and Scr
values less than 0.4 mg/dl as they may have represented lab errors. Diabetic patients
were defined as those subjects on any anti-diabetic medications or those who had at
least two outpatient ICD-9 codes for diabetes (ICD9 250.*) on separate dates within
365 days prior to enrollment. Subjects lacking codes and not on anti-diabetes
medications were categorized as non-diabetics. Hypertension was defined as the
presence of a hypertension code, being on antihypertensive drug or having two
SBP’s > 140 mmHg and/or two DBP’s > 90. BMI was estimated using the closest
weight to the GFR measure, and the height mode as weight (kg) × (height (m))−2.

MVP GWAS analysis. For the MVP GWAS we performed linear regression
association tests with additive models for untransformed eGFR. We adjusted linear
regression models analyzing SNP associations for age at eGFR measure, age2, sex,
BMI, and the top ten genetic principal components (PCs) in analyses. All primary
analyses for the MVP were conducted by stratum of administratively assigned race,
as well as by the presence or absence of diabetes and hypertension. All regression-
based analyses were conducted in SNPTEST-v2.5.4-beta86. Inference was limited to
genotyped and imputed variants with SNPTEST Info scores of 0.4 or higher, with
Hardy-Weinberg equilibrium p-value > 5 × 10−8 for common variant analysis
(MAF > 0.1). Meta-analyses across race and strata were performed using fixed-
effects, inverse variance-weighted meta-analysis implemented in METAL87.

Genomic inflation factors were calculated, and λGC for the discovery from MVP
were 1.11, 1.16, 1.15, and 1.01 for the diabetic hypertensive participants, non-
diabetic hypertensive participants, non-diabetic non-hypertensive participants, and
diabetic non-hypertensive participants in whites, respectively, 1.03, 1.03, 1.02, and
0.99 for the diabetic hypertensive participants, non-diabetic hypertensive
participants, non-diabetic non-hypertensive participants, and diabetic non-
hypertensive participants in blacks, respectively, and 1.36 in the overall discovery
analysis (Supplementary Fig. 3).
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Genome-wide significant loci were defined by one or more SNPs attaining
genome-wide significance (p < 5 × 10−8) which were at least 1MB away from other
signals, or if within that distance, were not in linkage disequilibrium (r2 < 0.1).
Sentinel variants and up to two proxies (r2 > 0.8 and prioritized by correlation and
then by distance from lead SNP) were selected for replication.

We approximated the proportion of variance explained in the transethnic meta-
analysis by all independent sentinel SNPs (novel and known) and novel SNPs,
separately. Variance explained by each SNP was first estimated by the following
equation (2):

r2 ¼ χ2n�1
:

The sum of the variances of the independent sentinel SNPs for common variants
provided estimates for the proportion of variance explained for all SNPs, and novel
SNPs for eGFR. The transformation of the relationship between t-statistic and r2 to
χ2 statistic to r2 is described in Supplementary Note 1.

CKDGen transethnic and European ancestry GWAS meta-analyses. The
Chronic Kidney Disease Genetics (CKDGen) Consortium is a collaborative effort
that includes mainly population-based studies from different ethnicities to perform
GWAS of renal function traits aimed at uncovering the genetic basis of CKD. We
interrogated data from the most recent CKDGen meta-analysis that included 121
GWAS, totaling 765,289 individuals of European (n= 567,401), East Asian (n=
165,726), South Asian (n= 13,359), African American (n= 13,842), and Hispanic
(n= 4961) ancestries88 . Following a centralized analysis plan, participating studies
estimated the eGFR based on serum creatinine using the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI)85 or the Schwartz’s89 equations, depend-
ing on whether adults or ≤18 year old children were concerned. eGFR values were
winsorized at 15 and 200 ml/min/1.73 m2. Studies had a median mean eGFR of 89
ml/min/1.73 m2 (interquartile range: 81–94) and a median mean age of 54 years.
Overall, 50% participants were females. Each study performed genotype imputation
based on the Haplotype Reference Consortium (HRC) v1.1 or the 1000 Genomes
Project phase 3 v5 ALL or phase 1 v3 ALL panels. Sex- and age-adjusted linear
regression models were fitted to the logarithm of eGFR. GWAS were performed by
regressing the residuals of the linear models on SNP dosage levels, assuming
additive genetic effects. Family-based studies accounted for relatedness including
kinship estimation or genetic principal components into the linear models. After
selecting SNPs with imputation quality score >0.6 and minor allele count >10,
genomic control correction was applied in case of an inflation factor λ > 1. GWAS
were pooled using fixed effects inverse-variance weighted meta-analysis. After
meta-analysis, SNPs that were not present in at least 50% of the studies were
discarded, leaving 8,221,591 variants from ≥61 GWAS across all ancestries and
8,834,748 variants from ≥42 GWAS in the European ancestry subset. No further
genomic control correction was applied. Genome-wide significance level was set at
5 × 10−8.

Summary statistics for selected variants from the CKDGen consortium were
used for replication. 105 variants were assessed for the non-Hispanic white-only
meta-analysis in a maximum of 567,453 individuals from up to 84 studies. As many
as 120 studies provided summary statistics for 122 variants for a maximum of
765,346 participants for the all-ancestry analysis. We performed a sample-size
weighted z-score linear combination meta-analysis of MVP and CKDgen results
(Supplementary Data 1).

DEPICT methods. Enrichment analyses in DEPICT90 were conducted using sig-
nificant GWAS sentinel SNPs from three separate analyses as input: (1) transethnic
analyses of all MVP subjects, (2) transethnic analyses of MVP subjects with DM,
and (3) transethnic analyses of MVP subjects without DM. DEPICT incorporates
predefined phenotypic gene sets from multiple databases with expression micro-
array data (Affymetrix HGU133a2.0) from more than37k subjects to provide gene
sets with high expression for Medical Subject Heading (MeSH) tissue and cell type
annotations. DEPICT output includes enrichment p-values for both tissue level and
gene-set features, as well as an indicator for whether each enrichment test had an
FDR q-value of <0.05.

LD score regression and Popcorn. Subsequently, we utilized the LD Score
Regression approach27 in each contributing group to ascertain whether inflation
was due to residual population stratification or polygenicity. Among whites we
used 1000 Genomes precomputed LD Scores and for non-Hispanic blacks we
calculated LD Scores in 2217 African American participants from BioVU using
Illumina Mega Array (Illumina, Inc) genotype data imputed to 1000 Genomes
phase 3 haplotypes. Calculation of the intercept in the MVP non-Hispanic white
discovery analysis datasets were 1.02 SE= 0.01), 1.04 (SE= 0.01), 1.03 (SE= 0.01),
and 0.99 (SE= 0.01), for the diabetic hypertensive participants, non-diabetics
hypertensive participants, non-diabetics non-hypertensive participants, and dia-
betic non-hypertensive participants, respectively, suggesting that little of the
observed inflation in the lambda is due to population stratification. Similarly,
intercepts in the MVP Blacks discovery analysis datasets were 1.01 (SE= 0.003),
1.02 (SE= 0.004), 1.00 (SE= 0.003), and 1.00 (SE= 0.003), for the diabetic
hypertensive participants, non-diabetic hypertensive participants, non-diabetic
non-hypertensive participants, and diabetic non-hypertensive participants,

respectively. Heritability was also assessed within each strata of the MVP data using
LD Score regression. We also used the related Popcorn58 software to evaluate the
transethnic genetic effect correlation across the entire genome.

Conditional analysis. For conditional analysis of common variants we used two
parallel approaches implemented in the genome-wide complex traits analysis
(GCTA) software:24 (i) genome-wide joint conditional analysis; and (ii) locus-
specific conditional analysis.

(i)Genome-wide joint conditional analysis
Conditional analysis was conducted within GCTA software, using the –cojo

method, which performs iterative conditional and joint analysis simultaneously
with stepwise model selection24. The summary statistics from the GWAS discovery
whites was used as the input summary data, and the imputed, hard-called BioVU
EA genetic data (n= 19,726) was used as the reference genotype-level data, in
PLINK format. Combination of these two input data files restricted the GCTA
analysis to the imputed SNPs in common to the GWAS discovery meta-analysis
(which was itself restricted to MAF > 1%). Within the BioVU genetic data, LD was
calculated between all pairwise SNPs. A p-value cutoff of 5 × 10−8 was used as the
selection threshold within GCTA, and the collinearity threshold was set at the
default value of 0.9, so that SNPs are not selected if the multiple regression with the
current SNPs in the model has R2 ≥ 0.9. After combining results across all 22
chromosomes, each trait-specific analysis resulted in a distinct set of jointly
independent significant signals. Hence all final SNPs are pairwise-LD-independent.

(ii)Locus-specific conditional analysis
Analysis of each significant or previously reported locus was performed across

all regional (1 Mb locus region centered ± 500 kb around the sentinel SNP)
imputed SNPs with MAF ≥ 1%, conditioning on the sentinel SNP, using the --cojo-
cond command in GCTA. As in the genome-wide approach, GWAS discovery
meta-analysis results were used as the input summary data, with the BioVU EA
imputed genetic data used as the reference PLINK dataset for LD computation.
This approach provides conditional analysis results for each SNP within the
implicated regions after conditioning on the sentinel SNP(s). These results yield a
list of potential secondary SNPs which are evaluated according to the criteria below
to identify those which are both significant and independent:

(a)p < 5 × 10−8 from original (unconditioned) GWAS discovery analysis, (i.e.,
SNP is significantly associated with eGFR itself)

(b)pc < 5 × 10−8 from the conditional analysis (i.e., the SNP is significantly
associated with eGFR after conditioning on the sentinel/published SNPs)

(c)independent of any of the sentinel SNPs (r2 < 0.1)
Significant independent SNPs meeting the above criteria, from any locuswere

combined into a single list. This list is more comprehensive than that from
approach (i), as it contains all possible secondary SNPs, rather than a single lead
SNP at each independent signal. These secondary SNPs may be in LD with each
other within a given locus.

The outputs from the two different approaches were then combined to identify
those SNPs which are genome-wide significant in the discovery dataset and jointly
independent on a genome-wide level. For robustness, a secondary signal was only
claimed if the SNP is validated from both approaches.

S-PrediXcan analysis. Genetically predicted gene expression was evaluated for the
discovery GWAS with S-PrediXcan9, a gene-level approach which estimates the
genetically determined component of gene expression in each tissue and tests it for
association with SNP-level summary statistics. We utilized a human kidney gene
expression atlas published by Ko et al.21 to conduct our genetically predicted gene
expression analyses with our eGFR outcome.

Human kidney compartment cis-eQTL analysis. Human kidney tissues (n=
151) were microdissected in RNAlater to obtain glomerular and tubular renal
compartments. An unbiased review of the tissue section was performed by a renal
pathologist by scoring of multiple parameters. One microgram of total RNA from
each compartment was used for isolation of poly(A) purified mRNA using the
Illumina TruSeq RNA Preparation Kit. Samples were sequenced in single-end 100
bp reads, and annotated RNA counts were calculated by Illumina’s CASAVA 1.8.2
to generate fastq. Alignment of trimmed reads to the Gencode human genome
(GRCh37) was performed using STAR-2.4.1d91,92. RNA-seq data are available at
Gene Expression Omnibus (GSE115098).

Compartmental eQTL data sets were generated from 121 tubule samples and
119 glomerulus samples, respectively77. The cis expression window was defined as
1 Mb on either side of the gene transcriptional start site. eQTL analyses were
performed using linear regression in FastQTL software93 under an additive model
and adjusted for six genetic PCs.

Murine kidney single cell sequencing analysis. Homologs of human genes
detected in S-PrediXcan analyses of healthy human kidney eQTL reference and
GWAS summary statistics were further investigated for kidney cell type-specific
RNA expression using single cell sequencing in murine kidney cells. Cells were
clustered by expression profiles into groups representing kidney structural features
and additional cell types found in the kidney22. Confirmation of murine kidney
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findings was performed through cross-reference of protein expression levels avail-
able in the Human Protein Atlas94.

Genetic risk score construction. We constructed a weighted genetic risk score
(w-GRS) for eGFR by calculating a linear combination of weights derived from
previous publications from CKDGen10,30 for index SNPs at each of the 63 statis-
tically significant replicated loci (Supplementary Table 7). GRSs were constructed
for self-reported/administratively assigned non-Hispanic white individuals in the
MVP only.

Phenome wide association study analysis. We performed a phenome wide
association study (PheWAS) of GRS in MVP non-Hispanic whites (Nmax=

192,868), leveraging the full catalog of ICD-9 diagnosis codes. We used logistic
regression to separately model each of 1813 PheWAS traits as a function of GRS,
adjusted for sex and ten PCs. We report the results from these analyses as odds
ratios where the estimate is the average change in odds of the PheWAS trait per
weighted eGFR-increasing allele. Multiple testing thresholds for significance were
set to p ≤ 2.75 × 10−5(0.05/1813).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Full summary statistics relating to the Million Veteran Program (MVP) studies are

available at dbGAP accession phs001672.v2.p1. Statistically significant reports for S-

PrediXcan results for human kidney tissues and PheWAS analyses for eGFR are made

available in the supplementary data and tables. Human Kidney RNA-seq data are

available at Gene Expression Omnibus (GSE115098).
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