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Mapping Facial Expression to Internal States Based

on Intuitive Parenting
Ayako Watanabe, Masaki Ogino, Minoru Asada,

Abstract— Sympathy is a key issue in interaction and commu-
nication between robots and their users. In developmental psy-
chology, intuitive parenting is considered the maternal scaffolding
upon which children develop sympathy when caregivers mimick
or exaggerate the child’s emotional facial expressions [1]. We
model human intuitive parenting using a robot that associates
a caregiver’s mimicked or exaggerated facial expressions with
the robot’s internal state to learn a sympathetic response. The
internal state space and facial expressions are defined using psy-
chological studies and change dynamically in response to external
stimuli. After learning, the robot responds to the caregiver’s
internal state by observing human facial expressions. The robot
then expresses its own internal state facially if synchronization
evokes a response to the caregiver’s internal state.

I. INTRODUCTION

Sympathy is indispensable for communication. Although

it is unclear how sympathetic feelings are evoked, facial

expressions are an important cue for eliciting sympathy. Of

the communication channels used by human begings, 55%

are related to the face, 38% to the tone of voice, and 7%

to verbal information [2]. It is not clear how the capacity

for sympathy based on facial expression is formed. Infants

instinctively respond to faces, and babies a few days old

distinguish their mother’s face from those of others after being

contact with their parent for 11 or 12 hours [3]. Conversely,

an investigation of newborn facial expressions showed that

the basic facial expressions are innate [4]. To realize natural

communication between robots and their users, the processes

underlying how these essential abilities are combined to elicit

sympathy must be clarified.

Human-like robots able to show distinct facial expressions

have been developed [5] [6], but facial expressions to be used

in specific situations are specified explicitly by the designer

in advance, leaving robots unable to adapt to nonspecified

situations, and unable to modify their internal state in response

to the facial expressions of users. Breazeal et al. proposed a

developmental model that enables a robot to derive the rela-

tionship between motor commands for its facial expressions
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and those of the caregiver’s by imitating facial expressions

during the robot’s motor babbling [7]. Sympathy, however,

does not involve simply mimicking the facial expressions of

others. More important is the ability to evoke the same internal

state as others based on the facial expressions and vocal

characteristics of others. Kobayashi et al. [8] proposed learning

in which the robot categorizes a user’s facial expressions under

given emotional labels. This enables a robot to evoke the same

emotional label felt when the caregiver has touched the robot

before. Again, however, emotional labels are fixed and the

caregiver’s active synchronization is not considered.

How do human children develop sympathy through inter-

actions with their caregivers? In developmental psychology,

the caregiver behavior called “intuitive parenting” [9] serves

as a “maternal scaffolding” upon which children develop

sympathy as they grow. A typical example is when caregivers

mimic or exaggerate a child’s emotional expressions. This

is considered a good opportunity for teaching children how

to feel in realtime [10], and most adults possess this skill.

Children are thus able to understand the meaning of facial

expressions and develop sympathy toward others as the process

is reinforced through emphasis on the facial expressions of

their caregivers. This is because children empirically learn

the connection between their internal state and the facial

expressions of others.

We considered applying intuitive parenting to user-robot

interactions to realize sympathetic behavior by robots within

the context of cognitive developmental robotics [11]. Two

design issues arise in cognitive developmental robotics: one is

the structure of the embedded behaviors in the robot brain such

as learning, and the other is the issue of environmental design,

including human behavior toward robots. Intuitive parenting

is considered typical of the issue of environmental design,

which is used to modify the robot’s internal structure to elicit

sympathetic behavior toward others.

To realize this, we propose a communication model that

enables a robot to associate facial expressions with internal

states through intuitive parenting by users who mimic or ex-

aggerate a robot’s facial expression. The robot strengthens the

connection between its internal state and the facial expression

associated with a particular state. The internal state of a robot

and its facial expressions change dynamically depending on

the external stimuli. After learning, facial expressions and

internal states are classified and made to mutually correspond

by strengthened connections. When a user shows a facial

expression to the robot, the robot evokes a human internal

state based on the human facial expression, which then elicits

a sympathetic expression because the robot’s internal state is
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indirectly affected by the human internal state.

II. LEARNING THROUGH INTUITIVE PARENTING

A. Intuitive parenting

“Intuitive parenting” is a typical attitude adopted by a care-

giver toward a child. The caregiver may, for example, mimic

or exaggerate facial expressions of the child to sympathize

with the child’s internal state when the child is experiencing

a particular emotion. Through such experiences, the child

is expected to learn the association between the condition

experienced and the caregiver’s facial expression at that time.

Internal stateInternal stateInternal stateInternal state

Facial expression

[ Russell  1980 ]

Visual image
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expression)
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Fig. 1. Learning model for developing sympathy in children through intuitive
parenting

Fig. 1 shows a learning model for a child developing

a sense of sympathy through the intuitive parenting of its

caregiver. When a child undergoes an emotional experience

and expresses its feelings by changing its facial expression,

a caregiver sympathizes with the child and shows the child a

concomitantly exaggerated facial expression. The child then

discovers the relationship between the emotion experienced

and the caregiver’s facial expression and comes to mutually

associate the emotion and the facial expression. The emotion

space in this figure is constructed based on the model proposed

by Russell [12].

Stimulus sharing, one of the sources of sympathy, is catego-

rized as either incidental or intentional in intuitive parenting.

A typical example of incidental case is a sudden sensation

when exposed to a modality such as a loud noise or a flash

of light. The child and caregiver are surprised simultaneously,

and as the caregiver talks to the child, the surprise is evident in

their facial expressions. A typical example of the intentional

case is when the caregiver shows the child an entertaining and

smiles to stimulate the child’s interest at the same time.

B. Identifying problems

We propose several assumptions about the robot and care-

giver that are required for implementing the model.

a) Robot: When the internal state of a robot changes in

response to an external stimulus, the robot’s facial expression

changes correspondingly. The robot is also able to observe the

caregiver’s facial expressions and has the ability to associate

its internal state with the facial expression of the caregiver.

Internal state

Facial expression 

of others Representation 

of internal state

Dynamics

Robot baby
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Intuitive 
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communication
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expression
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information

Fig. 2. Associating visual facial expressions of others with internal states

b) Caregiver: The robot’s human caregiver infers

changes in the robot’s internal state based on shared experi-

ences and the robot’s facial expression. The caregiver responds

to the robot with intuitive parenting. The caregiver observes

the robot’s facial expression or condition, then responds with

a corresponding facial expression.

C. System overview

Our proposed virtual robot (Fig. 2) acquires sensory in-

formation from the caregiver, including touch sensors (key-

boards), sounds, and camera images. Changes in sensor infor-

mation change the robot’s internal state, which consists of two

independent variables, the arousal-sleep axis and the pleasure-

displeasure axis [12]. These internal variables change based

on simple relaxation dynamics equations. This internal state

is represented in two-dimensional space associated with the

representational space of others’ facial expressions through

intuitive parenting communication as follows:

1) When the caregiver touches sensors or makes a noise,

the robot’s internal state changes.

2) The robot shows a facial expression based on its internal

state. The association between the internal state and

this facial expression is based on Yamada’s model [13]

(Fig. 5).

3) The caregiver imitates the robot’s facial expression. The

robot detects the change in the caregiver’s facial expres-

sion and its internal state in representational space, and

associates these changes with each other.

D. Internal state

The robot’s internal state is constructed based on the human

affect model. Of the many numerous human affect models

proposed, we use the circumplex model of the affect proposed

by Russell [12] because correspondence between the internal

state and facial expressions is relatively simple as explained

later, and we add the dynamics property to Russell’s affect

model.

Russell’s model assumes that the “arousal-sleep” axis and

“pleasure-displeasure” axis are the most basic dimensions and

that numerous different affect categories are assigned to each

(Fig. 3).
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Fig. 3. Circumplex model of affect [Russell 1980]

The robot’s internal state is modeled using this two-

dimensional affect model. Because few opportunities arise to

learn the sleepy facial expressions of others through intuitive

parenting, the sleep axis is omitted here. The robot’s inter-

nal space (Fig. 4) is sequential and represented using two-

dimensional space.
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Fig. 4. Internal space of robot

The robot’s internal state S, consisting of two independent

variables is expressed as follows:

S = (p, a)

{

(−1 < p < 1)
(0 < a < 1)

, (1)

where p indicates the level of pleasure and a the level of

arousal located in space represented in Fig. 4. The robot

expresses its internal state in its facial expression, and learns

the connection between the internal state and the human facial

expression.

The robot’s internal state changes as a relaxation dynamics

equation:

τ Ṡ = −S + Σri + S0, (2)

Σri = re + ro, (3)

where S0 is the internal state for the original point, τ the

decay time constant, re the effect of the external stimulus,

and ro the effect induced by the caregiver’s expression. When

a caregiver provides the robot with a stimulus, re becomes

a nonzero vector. The value of this vector changes based on

stimulus categories and the duration over which the stimulus

is given. x is a stimulus category and φx is the duration. rx

is the constant vector decided by stimulus x.

re = rxe−Aφx (4)

While the caregiver’s facial expression and internal state

are being learned and mapped, ro is 0. After learning, ro

takes values that depend on the learned association between

the caregiver’s facial expression and the robot’s internal state.

E. Facial expression

Yamada et al. [13] proposed that a relationship exists

between the relative displacement of facial expressions and

basic affect categories, and that the relationship is expressed

using two variables, “Curving and releasing” and “Inclination”

(Fig. 5).

InclinationInclination

Curving and releasingCurving and releasing

Fig. 5. Two structural variables for facial expression: “curving and releasing”
and “inclination” [Yamada 1993]

Curving and releasing involves displacement of feature

points related to the amount of eyebrow curving and eye

and mouth opening. Inclination involves the displacement of

the feature point concerned with the angles of the eyes and

eyebrows, and the extent of the V or inverted V-formation of

the mouth. Feature point displacement is related to the level of

arousal, and the extent of V formation of the mouth is related

to the level of displeasure.

The robot changes its facial expression based on its internal

state, S. Despite a good correspondence with the requirements

set out in Yamada’s study, robotic facial expressions were

unnatural, so we defined proportionality factor b and modified

it slightly in each quadrant. The parameters changing the

robot’s facial expression are shown below.

The robot displaced its eyebrows, eyelids, eyes, and mouth

within a finite range.

b =

{

0 (0 < p)
1 (0 > p)

(5)



4

















hmouthdown

hmouthside

hbrowin

hbrowout

heyeliddown

heyelidrotate

















=

















1
1

0.5b
−0.5b
−0.4b
−b

















p +

















1
0
1
1

−0.4
0

















a

= U p + V a
(6)

Fig. 6 shows the robot’s facial expression when S =(p, a)

changes in relation to its internal state.

Eq.6 indicates that U is the facial expression vector related

to curving and releasing and V thethe vector related to

inclination. Fig. 7 shows the configuration of parameters for

the robot’s face and facial expressions for increasing curving

and releasing or inclination.

Arousal

Pleasure1-1

1

Arousal

Pleasure

Normal

Displeasure

Fig. 6. Facial expressions and internal state
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Fig. 7. Parameters for facial expressions

Using computer graphics, the robot’s face was created to

resemble a baby’s face, because our learning model is based

on child development interacting with caregivers in intuitive

parenting. Infant faces have are characterized by a broad

forehead and a large distance between the eyes [14].

F. Facial expression recognition

The face-colored area in the camera image is identified

and normalized. Image luminance values are input to a self-

organizing map (SOM) [15] to represent facial expressions

of the caregiver. The SOM is taught in advance using input

consisting of 500 images divided into five categories, each

having images: normal, surprise, pleasure, displeasure, and

laughter (Fig. 8). SOM images are classified based on basic

Fig. 8. Self-organizing map of caregiver’s facial expressions

facial expressions. In Fig. 8, surprise faces are located at center

right in the SOM, laugh faces at bottom right, displeasure faces

at lower center, normal faces from upper left to the center, and

pleasure faces at upper right.

When the robot began learning through interactions with

a user, images of human facial expressions were input to

the robot online. Video images are input from a camera in

real time. The input image is extracted by color, the size is

normalized, and the winner node on the SOM is determined.

The winner node is calculated by searching for the vector

that has the luminance value nearest to each of the SOM’s

constant vectors. The robot then matches that constant vector

to the SOM’s winner node.

G. Association learning

1) Representational space for internal state: Although the

internal state is expressed using continuous variables, the

internal state must be treated as a finite node number for

Hebbian learning, so representational space for the internal

state is prepared to facilitate Hebbian learning by the robot.

Fig. 9 shows an overview of Hebbian learning between the

face SOM and internal space. Internal space is the represen-

tational space of the internal state. Connection weights are

updated by evaluating the SOM node fij(V ) activity from an

input image and node activity in representational space gkl(S)
from the robot’s internal state at that time.

This experiment assumes that the number of SOM nodes is

the same as that of representational space in the internal state.

2) Hebbian learning: Internal state S, is expressed in

representational space as the activation level of discrete nodes

gkl(S), determined as follows:

gkl(S) = e−ρ|S−S
r

kl|
2

, (7)

where S
r
kl is the internal state attached to the (k, l)-th node

in the representational space, represented as follows:

S
r
kl =

(

Sr
k

Sr
l

)

=

(

k/NP

l/NA

)

(8)
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  SOM   ( i , j )  f ( V )

Wijkl= A f( V )g( S )Wijkl = A f( V )g( S )

p

a

S = ( p , a )      g  ( S )

Face SOM Internal space

ij  kl

Fig. 9. Hebbian learning between the face SOM and internal space

{

k : −NP · · · NP

l : 0 · · · · · · NA

}

The caregiver’s facial expression is represented as the ac-

tivation level of the node in the SOM fij(V ). When facial

expression V is input, the activation level is determined as

follows:

δij = 1

N

∑N
k=0

|V k − V
k
ij |,

fij = e−ν δ 2

ij .
(9)

where ν is a constant that describes an increase in SOM

activity.

First, we calculated the difference in the luminance value

between each constant vector and the input vector per pixel,

i.e., the average of the difference between luminance informa-

tion for the SOM and for input image δij . We then evaluated

the node in the SOM that has the minimum mean difference

as the winner node (iwin, jwin) for an input image.

Connection weights between these maps, wkl
ij , are updated

by Hebbian learning as follows:

wkl
ij (t + 1) = wkl

ij (t) + ∆ wkl
ij

∆ wkl
ij = α fij (V ) gkl(S),

(10)

where α is the learning rate. α is attenuated as time goes by.

λ is a constant and µ is the attenuation rate over time.

α = λe−µt (0 < λ < 1) (11)

After learning, ro has several values that depend on the

learned association between the caregiver’s facial expression

and the robot’s internal state:

(kp, lp) = arg max
k,l

wkl
ij

ro = β S
r
kplp

(12)

The winner node of the SOM (i, j) is calculated when a

caregiver shows a facial expression to the robot. The node

of the robot’s internal state (kp, lp) that has the highest weight

wkl
ij associated with the winner node in the SOM (i, j) is then

searched for. Representational vector S
r
kplp

attached to the

winner node of the internal state (kp, lp) effects the robot’s

internal state. The vector multiplied by β is defined as variable

vector ro and is influenced by human facial expressions, which

changes the robot’s internal state.

III. EXPERIMENTS

A. Experimental conditions

In experiments, four categories of stimuli and five kinds of

facial expressions are presented to the robot. The sequence

in which different stimuli were presented was not fixed, but

we did not apply the displeasure stimulus soon after the

pleasure stimulus because this is considered unlikely in actual

human interaction. Fig. 10 shows an example of exposure to

a stimulus over time and the effect this has on the robot’s

internal state and the corresponding facial expression.
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B. Experimental conditions

a) Robot: The robot we created using computer-graphics

(OpenGL) consisted of a torso and moved its facial features

within a finite range. It observed human facial expressions via

a camera and sound with a microphone.

Input from a keyboard is used to simulate stimuli for the

robot’s touch sensors and is assumed the robot to distinguish

between three different touch sensor inputs. Each touch sensor

input effects the internal state differently, so pressing differ-

ent keys inputs pressed different vector values into equation

(3), yielding responses corresponding to pleasure, arousal, or

displeasure.

b) Environment: A caregiver provides stimuli to the

virtual robot using a computer. The caregiver also presents the

robot with different facial expressions, which are then captured

by a USB camera and used as input images for the robot

(Fig. 11).

Fig. 12 shows an example of an input image captured by

the camera. The green square indicates the face detected based

on color luminescence.

Given that the experiment was conducted in an ordinary

office environment, input information consisted of both the

caregiver and other unknown environmental elements. A sound

stimulus, for example, could be input in timing unintended

by the person. Fig. 13 shows the transition in the internal

state during learning. Yellow arrows indicate the application

of external stimuli by the caregiver or circumstance.
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Deyboard

Microphone

Camera
Display

Fig. 11. Experimental circumstances

Fig. 12. A sample input image of the caregiver

C. Result of learning

1) Categories of internal state: In results obtained for

changes in internal state space, Fig. 14 shows facial expres-

sions corresponding to representational space of the internal

state. The robot’s internal state is expressed lying along the

(p,a) planes. Nodes of the internal state are colored differently,

with (1, 0), (1, 1), (−1, 1), and (−1, 0) corresponding to blue,

green, yellow and white. The caregiver’s faces are all associ-

ated with distinct behavioral categories in the internal state,

distributed similarly to Russell’s two-dimensional emotional

model.
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Fig. 14. Facial expressions associated with internal state

2) Categories of facial expressions: Fig. 15 shows internal

states associated with the face SOM. The internal state associ-

ated with each node of the SOM is changed by the background

color that corresponds to those shown in Fig. 14. Since color

Normal
Pleasure

Arousal

LaughDispleasure

Fig. 15. Associated internal states on face SOM

density is indicative of the strength of the connection, uncol-

ored nodes indicate that the SOM node is not associated with

any internal states, or that the weight assigned for Hebbian

learning is dispersed.

D. Interaction after learning

After learning, the robot assesses the internal human state

using the facial expression, and changes its facial expression

based on the internal state evoked within the human being.

Fig. 16 shows changes in internal state variables and facial

expressions during communication with the caregiver after

learning over time. The robot changes its internal state based

on the caregiver’s facial expression and reacts to it as expected.

For the first 12 seconds, the experimenter presented the

robot with facial features characteristic of laughter. This was

reflected as a transition in the robot’s internal state to pleasure

and arousal, and ultimately, as rough on its face. For the next

13 seconds, the experimenter expressed displeasure. This was

reflected by a gradual decrease in pleasure (p), and ultimately
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as a look of displeasure on the robot’s face. The experimenter

then expressed pleasure for 10 seconds, reflected as no change

in arousal (a) and an increase in pleasure (p), resulting in an

expression of slight surprise on the robot’s face. These results

demonstrate that the robot was able to learn how to modify

its internal state in response to human facial expressions and

to synchronize human facial expressions.

IV. DISCUSSION

1) Distinction for facial expression: We developed a robot

that was able to classify human facial expressions and learning

using the proposed model. The robot could not, however,

distinguish between ambiguous or weak facial expressions

because facial expressions are recognized by differences in the

luminance of low-resolution images. The robot was thus only

able to distinguish between five different facial expressions,

with instances in which only the eyes are distinctive classified

inaccurately. The number of facial-expression categories is

thus small when internal states are expressed in sequential

space. These prevent the robot from learning the facial expres-

sions corresponding to midpoints in the internal state, such as

when the eyes are the most important feature, as in anger.

These facial expressions were not strongly associated with the

internal state (Fig. 14). The algorithm used for distinguishing

between different facial expressions must thus be improved

to improve the robot’s response to subtle changes in facial

expression.

Apart from technical issues in facial expression recognition,

it is interesting why caregivers show exaggerated expressions

(artificial expressions) in early communication. In intuitive

parenting, caregivers show exaggerated rather than facial nat-

ural expressions. This exaggerated attitude toward an infant is

general for caregivers, such as motherese or caregiver’s ges-

tures. Infants appear to acquire natural communication skills

by generalizing these exaggerated expressions, and caregivers

appear to unconsciously aid their infants in learning. These

roles of exaggerated expressions in learning are currently

under exploration in developmental psychology.

2) Dynamics of internal state: Internal state dynamics

are important in our research. The communication between

robots and users is unnatural when compared to that observed

between human beings because the dynamics associated with

a robot’s internal state differ from those related to human

internal states when exposed to an external stimulus. We

studied internal state dynamics based on the interest degree

model of an infant, in which the robot’s internal state increases

when an agent perceives an external stimulus and gradually

decreases thereafter. In biological organisms, the underlying

system for affection involves numerous regions of the brain

and a variety of chemical substances whose the interactions

are not understood well enough to enable them to be applied

to robotics. The internal state we have proposed is considered

representative of real complex systems because it is, to some

extent, based on the observations of human behavior. Coop-

eration between researchers in robotics and those involved in

the cognitive or brain sciences may result in the development

of models that more accurately reflect the cognitive aspects

required to improve the response of robots to human behavior.

To this end, we are currently developing a more realistic affect

model.

3) Correspondence to neuroscience: What part of the brain

is responsible for sympathy? Using fMRI, Singer et al. [16]

show brain activity associated with understanding by the

subject, of another person’s pain. In this experiment, brain

activity was observed when a subject was administered a

painful stimulus through a electrode on the back of the hand

and when the subject was administered the stimulus associated

with a simultaneous view of the subject’s loved one (Fig. 17).

Cerebellum

ACC

Fig. 17. Activity of brain in response to a pain stimulus [Tania Singer et al.
2004]

Areas in green are activated when subjects were adminis-

tered a painful stimulus, and areas in red are activated when

subjects observed painful stimuli being administered to others.

The anterior cingulate cortex (ACC) and the cerebellum are

activated in both cases, in addition to somato sensory cortex,

but the sensation of pain associated with observing the pain of

someone else differs from that of experiencing pain oneself in

the same region. These results suggest that the area associated

with feeling the pain of others and oneself are the ACC
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and/or the cerebellum, and that human beings, although able to

identify with pain felt by others, experience the two differently.

In our proposed model, a robot learned the connection

between an experienced internal state and the resultant facial

expression of a caregiver in communication similar to that

of intuitive parenting. This may correspond to learning the

connection between the ACC, through which human beings

feel pain, and the temporo parietal cortex (TPJ), which is

thought to be responsible for recognizing facial expressions.

After learning, the brain region for pain is activated just by

observing others’ facial expression. In our proposed model,

the robot cannot differentiate between its own pain and that

of others. This contradicts the findings of Tania Singer et al.

[16] who found that parts of the brain in the same area are

activated when subjects experience their own pain to self and

that of others. While it has not been shown how the notions

of “me” and “you” develop, it may be that the following

developmental process involves the ACC: (1) The pain area

is stimulated first using self-sensor input. (2) Another sensor

input of a different modality (e.g. visual information from a

caregiver) is partly projected on to the same area. (3) Intuitive

parenting strengthens the connection between the subject’s

feeling based on the pain sensation of self and the feeling

toward that of others based on visual information. (4) Sensor

input from different modalities suppress each other, finally

forming a sympathetic region. In this naive hypothesis, our

proposed model may correspond to the third process above.

V. CONCLUSIONS

We have discussed intuitive parenting in early communi-

cation between infants and their caregivers in the context

of modeling the learning process of a robot attempting to

associate its internal state with the facial expression of a user.

In such learning, the robot’s internal state is influenced by

a variety of stimuli in response to which the robot adopts

specific facial expressions, that are mimicked or exaggerated

by the user. This exchange of visual information enables the

robot to associate its own internal state with the user’s facial

expression. The robot then evoke a particular internal state in

the user based on a human facial expression and expresses its

internal state in response to the effects of the user. Our next

goal is a more advanced communication model based on the

“sympathetic” concept we have proposed .
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