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Abstract: The economic and environmental impacts of wildfires have leveraged the development
of new technologies to prevent and reduce the occurrence of these devastating events. Indeed,
identifying and mapping fire-susceptible areas arise as critical tasks, not only to pave the way for
rapid responses to attenuate the fire spreading, but also to support emergency evacuation plans for
the families affected by fire-related tragedies. Aiming at simultaneously mapping and measuring the
risk of fires in the forest areas of Brazil’s Amazon, in this paper we combine multitemporal remote
sensing, derivative spectral indices, and anomaly detection into a fully unsupervised methodology.
We focus our analysis on recent forest fire events that occurred in the Brazilian Amazon by exploring
multitemporal images acquired by both Landsat-8 Operational Land Imager and Modis sensors.
We experimentally confirm that the current methodology is capable of predicting fire outbreaks
immediately at posterior instants, which attests to the operational performance and applicability of
our approach to preventing and mitigating the impact of fires in Brazilian forest regions.

Keywords: remote sensing; multitemporal data; anomaly detection; forest fires; spectral indices

1. Introduction

Worldwide, wildfires comprise a phenomenon of paramount importance due to their
severe economic and environmental consequences [1]. It is well-known that the origin of a
fire may be natural, accidental, or even criminal [2]. However, in recent decades, climate
changes and the intense human activity have substantially contributed to increasing the
occurrence and severity of fire-related incidents on terrestrial biomes and ecosystems [3].
Furthermore, since fires are often used to renew pasture and cultivation areas [4], such
dangerous strategies can trigger fire-caused accidents, leading to widespread fires such as
those that devastated the Brazilian Amazon and Pantanal biomes in 2021 [5].

Fire in tropical forests are potentially hazardous for forest conservation and regenera-
tion, which compromise plant species richness and vegetation biomass and structure [6].

In addition, according to the Intergovernmental Panel on Climate Change (IPCC),
fire-occasioned events are considered the primary source of greenhouse gas emissions, thus
deliberately contributing to global warming [7]. Moreover, as stated by Brando et al. [8]
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and Pan et al. [9], environmental issues such as temperature increasing, precipitation
reduction, and other weather-related changes in vegetation areas are responsible for the
emergence of less dense humid forest environments, which are more susceptible to fires.

Although fire monitoring represents a critically important activity, mapping the risk
of fire events is a very challenging task in practice [10,11] since the success in predicting
future fire outbreaks is limited by the lack of understanding of what triggers and controls
the dynamics of such events [8]. Aiming at circumventing this issue, one can apply remote
sensing (RS) tools, which include a vast repository of multitemporal data and robust
computer vision apparatus. Indeed, new RS-based technologies have been proposed in
recent years, allowing for the acquisition of reliable data over large monitored areas with
high temporal frequency and affordable operating costs [12]. The increase in quantity and
quality of RS data, as provided by a wide variety of sensors, favors the development of new
and more robust data-driven methods for tracking, monitoring, and predicting fires [13,14].

Among the approaches devoted to detecting forest fires, the assessment of fire sus-
ceptibility is a particularly effective strategy, since it allows the forecasting of potential
events as well as mapping areas of risk [15]. For example, the combination of varied RS
data with the potentiality of unsupervised learning (UL) has proven to be consistent, not
only for predicting wildfires [16–18], but also for other extreme weather incidents such
as flood [19,20] and landslide [21] events. Moreover, unsupervised learning classification
enables the automated extraction of knowledge from the Earth’s surface while mapping
spatial domains. The works carried out by Dickson et al. [22], Kamalakannan et al. [23], and
Hong et al. [15] are good representatives of fire susceptibility risk models that integrate the
UL paradigm and large collections of RS images. The unification of UL-based techniques
and multiple RS data sources is also advocated by Pourghasemi et al. [24], where the
authors state the possibility of linking fire-prone areas with an incendiary event, including
forest burning.

The problem of mapping fire vulnerability areas also appears in the context of anomaly
detection (AD), where a classifier is trained to model and categorize nonconforming pat-
terns that considerably deviate from the well-behaved image instances [25,26]. For instance,
Xie et al. [27] merge geostationary earth observation and polar-orbiting data into a contex-
tual AD model that relies on diurnal temperature adjustment schemes and classic image
processing filtering such as Kalman and Otsu algorithms to detect active fire outbreaks.
More recently, Coca and Datcu [28] discussed the use of AD for postfire assessment, esti-
mating the fire-affected vegetation through multispectral imagery, while Saad [29] applied
neural networks (NN) to forecast fire ignition areas in Western Africa by taking meteoro-
logical features and vegetation indices to solve a supervised learning classification problem.
Such a learning paradigm was also adopted by Mohammed et al. [30], where a supervised
support vector machine (SVM) and other classic machine learning methods are compared
for early forest fire detection using geodata. Similarly, Gholamnia et al. [31] provide a
comparative study between NN, random forest, decision trees, and SVM calibrated with
data collected from a moderate resolution imaging spectrometer thermal anomalies product
to estimate fire zones in Iran.

Despite the development of specific algorithms for the identification and quantification
of wildfires, the RS literature still lacks robust and automatic techniques [32]. In fact, the
need for eligible ground-truth data or a huge amount of annotated images for training
is a challenge for most supervised learning methods, which include both machine [31]
and deep learning [28] approaches. Another critical issue commonly found in most fire
detection methods is related to their difficulty in simultaneously dealing with temporal
data, illumination conditions, and the complexity of several spectral bands to properly
work. Finally, as pointed out by Khosravi et al. [33] and Barmpoutis et al. [31], there is no
definitive data-driven model that is best for certain hazards, since this strongly depends on
the study area and abundance of data for that specific region.

Aiming at addressing most of the issues raised above, in this paper we propose a new
methodology for mapping and quantifying fire-susceptible areas. More specifically, we
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design a fire mapping model as a time-varying anomaly detection problem, which is solved
in terms of the unsupervised learning paradigm and the derivatives of spectral indices,
computed from multitemporal remote sensing data. The proposed methodology is capable
of both extracting and classifying fire-related features from different localities affected in
a past period. In contrast to most fire detection and prediction systems, which usually
depend on current weather information and do not consider features of local fire dynamics,
our approach is independent of weather or other climatic variables, so that it only takes
the local land cover temporal information to generate a fire-susceptibility inference model.
We attest to the accuracy performance of the proposed methodology by investigating and
assessing two real cases of forest fires in Brazil.

In summary, the main contributions of this study are:

• The proposal of a fully automatic methodology for both mapping and quantifying
fire-susceptible areas which relies on unsupervised anomaly detection, spectral indices
differences, and satellite image time series towards better detecting patterns in complex
data by learning from examples automatically.

• The applicability assessment of two anomaly detection techniques as time-varying
models to select the best-performing approach for the tasks of simultaneously classify-
ing and quantifying fire-prone areas in Brazilian Amazon rainforest portions.

• The development of an entire unsupervised training approach that integrates multiple
sources of freely available satellite imagery and does not require any labeled data to
generate a suitable fire detection model.

• A comparative and statistical significance analysis for each implemented method
regarding areas assigned as fire against areas of true fire for two real events of wildfires
in the Brazilian Amazon.

2. Theoretical Aspects and Background
2.1. Anomaly Detection as a Classification Problem

In an elementary point-of-view, a classifier is a function F : X → Y that assigns an
element x from the attribute space X to a specific class in Ω = {ω1, ω2, . . . , ωc} by setting
a class indicator in a subset of natural numbers Y = {1, 2, . . . , c}. Under these conditions,
if x ∈ X and y ∈ Y , y = F(x) indicates that x belongs to the class ωy.

The image classification task comprises the application of F on each pixel of a given
image I . More specifically, the image I is defined on a support S ⊂ N2, where each pixel
s ∈ S is assigned to a vector x. Reciprocally, I(s) = x may be used to denote the assignment
between s and the vector x, giving rise to the formula C(s) = ωy to express that F(x) = y.

Basically, most image classification methods stand for different ways of defining
F : X → Y and applying it on I [34]. Supervised and unsupervised are the most usual
learning paradigms adopted to model F. In the supervised approach, formulating F
demands taking a set of training samples whose class indicator is known in advance. On
the other hand, in the unsupervised case, the classifier does not depend on prelabeled
training data so that the method accounts for automatically identifying patterns, clusters,
and particular relationships over the data.

The anomaly detection problem can be understood as a particular application of
unsupervised classification which aims at detecting events of rare occurrences or incidents
that may conflict with a set of observations [35]. One-class support vector machine [36]
and isolation forest [37] are effective representatives of anomaly detection techniques.
These techniques can be appropriately fit and applied to extensive datasets with acceptable
computational run time.

Such approaches have been successfully applied to detect bank frauds, verify intruders
into security systems, and support medical examinations [38]. In addition, anomaly detec-
tion techniques have been used as very useful tools to cope with environmental monitoring
issues [26,39,40].

Next, we briefly describe both aforementioned anomaly detection techniques, which
are used to model our fire mapping methodology.
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2.1.1. One-Class Support Vector Machine

Support vector machine (SVM) is a very popular classification method in remote
sensing applications. Its solid mathematical formulation, simple algorithmic architecture,
and high generalization capability are a few of the attractive characteristics of this well-
established method [41,42].

From the original conception of SVM, different variants have been proposed, for exam-
ple, Laplacian [43], transductive [44], context sensitive [41,45] and “one-class” SVMs [36].
Particularly, the one-class SVM (OC-SVM) relies on the problem of quantile estimation for
anomaly detection.

Conceptually, starting from a set of observations I , the OC-SVM provides an unsu-
pervised model that distinguishes the attribute vectors x as part of a set of nonanomalous
elements according to a probability ν of false positive occurrences. Formally, we can write
F : I ⊂ X → {+1,−1}, where the output +1 implies that the data input is in I and −1
otherwise. The definitive classifier, F, is given as follows:

F(x) = sgn

(
m

∑
i=1

αiK(x, xi)− b

)
, (1)

where b = ∑m
j=1 αjK(xi, xj) to some xi ∈ I , and K(·, ·) is a kernel function.

The coefficients αi, i = 1, . . . , and m, are obtained by solving the following optimization
problem:

min
α1,...,αm

∑m
i,j=1 αiαjK(xi, xj)

s.t.
{

αi ∈ [0, 1
νm ]

∑m
i=1 αi = 1

(2)

It is worth noting that the OC-SVM is parameterized by ν ∈ [0, 1] as well as by other
parameters related to the kernel function used. Additional details on kernel functions are
discussed in [46].

2.1.2. Isolation Forest

Isolation forest (IF) is one of the most recent methods applied to detect anomalies.
Unlike other anomaly detection methods, IF relies on the fact that it does not depend
on distance measurements or density-based models to select anomalous features in the
image [47]. More precisely, IF focuses on looking for isolated anomalies rather than profiling
regular patterns (i.e., nonanomalies). The anomaly characterization is performed through a
set of binary decision trees, denominated “isolation trees” (IT), which are components of
ensemble-type classifiers, the so-called “isolation forest”.

Two main properties are the basis of the IF classification [35]: (i) anomalous instances
are minority present in a dataset; (ii) the data gather attribute values very different from
those observed in regular instances. In addition, the IF method can be tuned by varying
three major parameters: the number nit of IT in the ensemble; the subsampling size msub of
elements randomly drawn from the analyzed dataset; and the maximum depth d allowed
for the IT growth.

Formally speaking, let I be a dataset whose elements x are defined on an n-dimensional
space. We denote Ĩ as the set resulting from a subsampling performed on I with msub ele-
ments. From Ĩ , a binary decision tree is constructed where each node T, and its associated
data, can be subdivided into the descendants Tl and Tr. Such division is accomplished
by randomly choosing an attribute q ∈ {1, . . . , n} and a value p, which may assume msub
possible values. The division is then accomplished when the dataset associated with the
node is greater than one; there are different values w.r.t. of the selected attribute, and the
binary tree has not yet reached the maximum depth d.

We now assume that the process leading to the construction of an IT is replicated nit
times under the condition of different Ĩ , with distinct q and p selected for its construction.
Therefore, as mentioned, the set of IT allows the creation of the definitive IF model.
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Once the IF is properly built, a given vector x is classified as anomaly according to
a root-to-leaf path length h(x) taken over each IT in the IF. Based on this concept, the
following function is used to measure the anomaly level of x:

R(x, msub) = 2−
E(h(x))

c(n) , (3)

where c(n) = 2 ln(n− 1) + ζ − 2(n−1)
n ; ζ = 0.577215664, representing an approximation for

the Euler’s constant.
Therefore, whereas R(x, msub) → 1, x is characterized as an anomaly; otherwise, if

R(x, msub) < 0.5, the pattern x is considered regular. Finally, if R(x, msub) ≈ 0.5, the whole
set is classified as regular.

2.2. Spectral Indexes and Burn Detection

The use of spectral indices is a well-established, robust strategy to obtain discrimi-
native features and useful information for a desirable set of targets [48]. These include as
targets the wildfire areas captured by a remotely sensed scene, so that the indices allow
the assessment of burn severity of these areas while still making use of low computational
resources [49,50]. Some spectral indices traditionally used in remote sensing applications
are: the normalized difference vegetation index (NDVI) [51], the normalized difference
water index (NDWI) [52], and the normalized burn ratio (NBR) [53].

In general, spectral indices such as NDVI and NBR combine information from visible
to shortwave-infrared spectral bands (which are sensitive to variations in color, soil compo-
sition, moisture, vegetation chlorophyll, etc.) in order to capture different characteristics of
soil and vegetation areas affected by fire [54]. Moreover, it is worth mentioning that due
to its low-reflectance behavior, the NBR index may be unable to distinguish water bodies
and burned areas. In order to circumvent this issue, the NDWI becomes a useful index to
quantify areas not associated with fires.

In more mathematical terms, let I(s) = x be an attribute vector positioned at pixel
s ∈ S , where x is formed by the reflectance intensities at green, red, near-infrared, and
shortwave-infrared wavelengths bands, xGreen, xRed, xNIR, and xSWIR, respectively. INDVI,
INDWI, and INBR establish the representation of image I in terms of NDVI, NDWI, and
NBR spectral indices:

INDVI =
xNIR − xRed
xNIR + xRed

, INDWI =
xGreen − xNIR

xGreen + xNIR
, INBR =

xNIR − xSWIR

xNIR + xSWIR
.

Notice that the above-described indices can be used as time-series images, as the
difference (derivative) between two images taken at different instants may allow identifying
and mapping specific events. As stated by Sobrino et al. [55], most fire mapping methods
that make use of remote sensing data utilize postfire or prefire images. For example,
the “delta-NBR” model (∆NBR), introduced by Key and Benson [53], was designed to
numerically assess the fire severity on vegetation areas by discriminating fire events as a
function of the values obtained by:

∆NBR = NBR(pre) −NBR(pos) , (4)

where NBR(pre) and NBR(pos) account for the NBR index computed at two distinct instants,
before and after the fire event. In our approach, burning signs are determined by values
above 0.1 [53]. Moreover, a high value of derivative ∆NBR implies an elevated level of
severity for burning.

3. Fire Susceptibility Mapping
3.1. Computational Methodology

Now, we describe the main steps of the proposed methodology for mapping fire-prone
areas by combining multitemporal remote sensing resources and unsupervised anomaly
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detection methods. Figure 1 shows an overview of the main stages of our approach, i.e.,
(i) analysis configuration and data acquisition, (ii) design of the fire-susceptibility mapping
model, and (iii) generation of output results for analysis and validation purposes.

Fire Susceptibility Mapping

Image 
collection 

(data base) 

...

Sensor and settings
Region of Interest
Periods: pre-fire; modeling; analysis

Analysis configuration

GEE-API

Spatial representation of "fire susceptibility"
Assessment (adherence with future events)

Results and Analysis

Figure 1. Overview of the proposed methodology.

3.1.1. Multitemporal Arrangement of Remote Sensing Data

We start by describing the sequence of images taken in our study as multitemporal
data, i.e., a set of remotely sensed images that were captured during three different periods.

• Prefire period: Comprises an image series taken before the fire occurred. The goal
here is to capture the central tendency at each position in the study area and then use
this information to generate the NBR index as a benchmark before the presence of fire
(i.e., NBR(pre)) according to the ∆NBR model.

• Modeling period: Covers a time interval whose data instances are exploited to identify
fire events and, subsequently, build a time-varying anomaly detection model which
learns the behavior of the fires immediately before they spread.

• Analysis period: Consists of the test period, where our trained anomaly detection
model is applied to classify the fire-susceptible areas.

3.1.2. Spectral Mapping, ∆NBR, and Modeling Dataset

Once the set of input images is collected, they are used to automatically build a training
database, so that the unsupervised fire identification models are adjusted and generated
(see Figure 2).

Fire identification and  
training dataset building

Fire Susceptibility
Map

Time

Pre-fire

...

Modeling

...

Anomaly model training

Analysis

Modis Burn
Product

...

Figure 2. Step diagram of the proposed methodology for mapping fire susceptibility.

First, considering the image times series composed by “prefire period” data, the
respective median image is computed, followed by the computation of the corresponding



Remote Sens. 2022, 14, 2429 7 of 17

NBR index. As a result, the reference NBR(pre) is then generated. After that, concerning
each instant of the “analysis period”, the NDVI, NDWI, and NBR indices are computed,
where the latter is taken as NBR(pos), which is used to calculate the derivative spectral
index ∆NBR.

In our approach, if there is more than one image within the same time-lapse interval,
we prioritize the most recent one. Moreover, areas affected by cloud/shadow occurrences
are removed and recursively filled with the corresponding areas (i.e., not affected by
cloud/shadow) taken from the immediately preceding instants.

The computation of ∆NBR is performed by taking the median of NBR, as calculated
in the “prefire” period. In this process, the observed NBR values in the training period
are taken as “postfire” (i.e., NBR(pos)). From the ∆NBR computed at each instant, if it
exceeds a prefixed threshold τ ≥ 0.1 (Preliminary tests show that τ ≥ 0.1 provides a
suitable mapping of fire-affected locations.), then it is labeled as an event associated with
fire occurrence. Aiming at minimizing false positives, the identified fire-affected areas are
passed through the Modis burned area product [56]. This product, provides monthly maps
with 500 m spatial resolution covering the burned areas and their respective confidence
estimations. Areas that achieve ∆NBR > τ and confidence above 50%, representing a burn
area in the respective period, are “double-checked” as a fire-affected location. The NDVI,
NDWI, and NBR spectral indices are recorded at each fire-affected position but with respect
to the immediately preceding instant.

In summary, we build a fire-prone database in a fully unsupervised fashion so that
potential fire-related events are discriminated in terms of their spectral signatures and
derivatives. Finally, the obtained database is used to train an anomaly detection model
such as OC-SVM or IF.

3.1.3. Time-Varying Unsupervised Anomaly Detection

The anomaly detection models described in Sections 2.1.1 and 2.1.2 are then applied
on each image of the analysis period immediately after the computation of the spectral
indices NDVI, NDWI, and NBR. Consequently, a collection of maps is obtained so that
these mappings express the anomaly occurrences at each instant.

Notice that, in our fire mapping proposal, the identification of nonanomalous locations
is interpreted as areas that demonstrate fire susceptibility. As a result, a high percentage of
nonanomaly occurrences w.r.t. the number of instants in the “analysis period” at each
position of the region of interest gives us the definitive fire-susceptibility map.

When the percentage values tend to 100% in a certain position, it means that such
a location is similar to other fire-affected areas in all instants of the analysis period. It is
important to emphasize that, once a certain AD model is built from fire-affected areas,
a regular behavior (i.e., nonanomaly) is assigned to elements with areas similar to the
observed fire-affected regions. Reversely, if the percentage values tend to zero, the assigned
location rarely behaves like a fire-affected target, thus inferring a small susceptibility to fire.

A useful characteristic of our approach is that once the definitive model is trained, it
is capable of learning the local environmental conditions, which include fire occurrences.
Since this is a learned behavior, the changes occasioned by the fire incidence in a certain
region make the image patterns—expressed in terms of spectral indices—less susceptible
to being labeled as fire at later instants.

3.2. Data Sets, Computational Resources, and Parameter Tuning

In this section, we focus on covering a few computational aspects of our methodology
as well as the data and tools used during our research.

To implement our computing prototypes, we use the Python 3.8 programming lan-
guage [57]. Concerning data organization and processing, we use the Numpy [58] and
Pandas [59] libraries. Finally, to train and build the OC-SMV and IF anomaly detection
models, we run the Scikit-Learn [60] library.
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In order to access the multitemporal remote sensing images, we adopt the Google
Earth Engine application programming interface (API) [61], which is compatible with the
Python language. This API favors access to high-performance computing resources for
processing geospatial datasets, allowing the automation of the image search process for
a given period and region of interest. The images used to define the prefire, training,
and analysis periods are taken from the Operational Land Imager (OLI) sensor, onboard
the Landsat-8 satellite, with 30 m of spatial resolution, 16 days of temporal resolution,
and surface reflectance information from ultra-blue to shortwave-infrared wavelengths.
Concerning the ancillary Modis burned area data, used to identify the fire events and build
the training dataset, it comprises a 500 m resolution product containing the monthly burned
area per pixel according to a confidence value [56].

The images selected to define the prefire, training, and analysis periods are limited
to 50% of cloud/shadow occurrences with respect to the area comprised by the region of
interest (as defined in the “analysis configuration”). This percentage level was established
after a battery of preliminary tests. The cloud/shadow detection is determined by using
the so-called image band “pixel_qa”. More details about this procedure are found in [62].
Regarding the parameter “time-lapse” (`), once our implementation focuses on Landsat-
8 images, we adopt ` = 15 towards considering only one image per instant in the full
time series.

As mentioned in Section 2.1, the OC-SVM and IF methods require parameters tuning.
Faced with the high freedom degrees associated with the process of selecting appropri-
ate parameters for both AD methods, we apply the well-established grid search [63]
procedure to calibrate the definitive models. Basically, this procedure consists of ex-
haustively testing, over a defined search space, the best set of parameters that ensure
higher performance. For the OC-SVM method, the search space that determines the
tested settings is given by ν ∈ {10−1, 10−2, . . . , 10−7} and an RBF kernel represented by
γ ∈ {10−1, 10−2, . . . , 10−7}. Regarding the IF parameters, we take nit ∈ {50, 100, 200},
msub ∈ {

√
dim(X ), 100%, 75%, 50%}, and d ∈ {1, 2, . . . , 30}. In addition, this procedure is

replicated into the decision rules of the data for each possible configuration, according to a
10-fold cross-validation process.

Finally, we freely provide the codes and data used to run our experiments at https:
//github.com/rogerionegri/fsm, accessed on 12 May 2022.

4. Study Areas and Assessment Periods

We apply the proposed methodology on two study areas and distinct epochs. Figure 3
depicts the spatial location of such regions. The first study area (Area 1) comprises an area
of the Brazilian Amazon, i.e., a portion of São Félix do Xingu city, State of Pará, Brazil. The
second area (Area 2) includes a portion of Cáceres city, State of Mato-Grosso, Brazil, which
is another area of legal Amazon. Both areas were the scene of recent burn events with
critical consequences.

Multitemporal image series registered by the OLI sensor are used as input data to the
current methodology. For the sake of data exhibition, Figure 4 shows the median image
computed from 1 January 2017 to 31 December 2019 regarding each study area.

The experiments comprise three distinct epochs: 2018, 2019, and 2020. Table 1 summa-
rizes the epochs (I, II, and III) and the respective prefire, modeling, and analysis periods
expressed as a function of the reference year Y. In addition, the “assessment period” shown
in Table 1 stands for the burned areas registered by the Modis burned area product over
the period from 1 September to 31 December Y, which are adopted to assess the fire sus-
ceptibility mappings. Figures 5 and 6 present such reference dataset for Areas 1 and 2 at
distinct epochs.

https://github.com/rogerionegri/fsm
https://github.com/rogerionegri/fsm
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Figure 3. Location of the study areas.
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Figure 4. The median images obtained from the period: 1 January 2017 to 31 December 2019 for
Areas 1 (left) and 2 (right). Representations in natural color composition and computed from images
acquired by the Landsat-8 OLI sensor.

Table 1. Epochs and respective periods, expressed in terms of the reference year Y.

Pre-Fire Modeling Analysis Assessment

1 January (Y-3) to 1 June (Y-1) to 1 July Y to 1 September Y to
31 December (Y-1) 31 March Y 31 August Y 31 December Y

Epochs I II III
Reference year (Y) 2018 2019 2020
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Figure 5. Fire-affected areas according to Modis burn area product for Area 1. The assessment periods
regarding epochs I, II, and III are represented by the maps (a–c), respectively.
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Figure 6. Fire-affected areas according to Modis burn area product for Area 2. The assessment periods
regarding epochs I, II, and III are represented by the maps (a–c), respectively.

5. Experiments and Results

We now evaluate the current methodology for two study areas covering real fire
incidents that occurred in the Brazilian Amazon rainforest from 2018 to 2020, as presented
in Section 4. The obtained fire-susceptibility maps are then assessed by taking the burn
events identified by the Modis burned area product as a benchmark (Figures 5 and 6). For
the sake of representation and comparison, the fire-susceptibility values are grouped into
four classes: low [0, 0.25[, mid-low [0.25, 0.5[ , mid-high [0.5, 0.75[, and high [0.75, 1].

The experiments are conducted taking both OC-SVM and IF methods as anomaly
detection models, so that the respective outputs are compared in order to determine the
best fire mapping model for the investigated areas of the Amazon rainforest.

Figures 7 and 8 comprise the obtained fire maps for Areas 1 and 2 at epochs I, II,
and III, where the IF anomaly detection model was taken as part of our full classification
methodology. Similarly, Figures 9 and 10 present the results when employing OC-SVM to
detect fire-prone regions. One can notice that the IF method provides more regularized
mappings, i.e., results carrying fewer “isolated” pixels, when compared against OC-SVM.
Targets with no burning event history are allocated in the low-susceptibility class (i.e.,
[0, 0.25[).

Notice that these targets appear as water bodies or low biomass portions, which means
that such learned behavior reveals the consistency of the current approach.
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Figure 7. Fire susceptibility maps for Area 1 with IF method as anomaly detection model. Subfigures
(a–c) refer to mappings based on the “analysis period” of epochs I, II, and III, respectively.
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Figure 8. Fire susceptibility maps for Area 2 with IF method as anomaly detection model. Subfigures
(a–c) refer to mappings based on the “analysis period” of epochs I, II, and III, respectively.
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Figure 9. Fire susceptibility maps for Area 1 with OC-SVM method as anomaly detection model.
Subfigures (a–c) refer to mappings based on the “analysis period” of epochs I, II, and III, respectively.
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Figure 10. Fire susceptibility maps for Area 2 with OC-SVM method as anomaly detection model.
Subfigures (a–c) refer to mappings based on the “analysis period” of epochs I, II, and III, respectively.

The accuracy of the obtained fire-susceptibility maps can also be visually verified
and assessed from the postfire events registered by the Modis burned area product
(Figures 5 and 6). As previously mentioned, only the burned areas are considered in our
adherence analysis, so that the expected outputs should stand for high-susceptibility values.
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The plots displayed in Figures 11 and 12 present the observed frequencies for each
susceptibility class when using the IF and OC-SVM methods, respectively. Both plotted
results are quite similar to each other. As expected, the fire-affected areas (according to the
adopted benchmark dataset—Figures 5 and 6) are usually assigned to high-susceptibility
levels (i.e., the class [0.75, 1.0]).

Aiming at statically assessing the significance level of the results (i.e., mid-high and
high—[0.5, 1.0]) in comparison with the low-susceptibilities frequencies (i.e., low and
mid-low [0, 0.5[, a single-tailed (unilateral) hypothesis test for population proportion [64]
was computed. Under a significance of 1%, the statistical tests reveal that the higher
susceptibilities occur in proportions above 75%.
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Figure 11. Observed susceptibility values w.r.t. the fire-affected areas in the reference dataset for each
study area and epoch with IF method as anomaly detection model.
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Figure 12. Observed susceptibility values w.r.t. the fire-affected areas in the reference dataset for each
study area and epoch with OC-SVM method as anomaly detection model.

With the purpose of quantitatively comparing the susceptibility maps achieved by IF
and OC-SVM at each study area and epochs, we compute 2× 2 contingency error matrices.
These reference matrices assume that the pixels of fire-affected areas, according to the
Modis burn product (burn areas—Figures 5 and 6), should be assigned to mid-high or high
classes on the susceptibility maps, hence leading to a True Positive (TP) label. Reversely,
pixels assigned to low and mid-low classes on the susceptibility maps are expected to fall
within the nonburnt portions of Modis burn product images, resulting in a True Negative
(TN) classification. False positives (FP) and negatives (FN) occur when expected allocations
of TP or TN do not occur, respectively. For the sake of simplicity, FP and FN values are
summed to indicate a global error rate, herein denoted by “False”.

Figure 13 depicts the TP, TN, and False proportions for each method and epoch. Since
the number of pixels assigned to low/mid-low may change on each susceptibility map,
the mentioned proportions may also change. In general, one can check that the IF method
delivered slightly more False errors than OC-SVM. Nonetheless, the TP and TN proportions
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are quite similar for both methods regarding the results for Areas 1 and 2 in 2018 and 2019.
As a result, high susceptibility regions are correctly assigned to fire-affected areas, and
low-susceptibility regions are not places where fire events occur. Concerning 2020, both
IF and OCSVM variants reached small False detection ratios in the period with higher
occurrences of fire events (Figures 5c and 6c). Moreover, the IF model achieved higher TP
ratios than OCSVM in both study areas.
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Figure 13. TP, TN and False proportions for each method and epoch.

Additionally, we compute the F1-Score [65,66] and kappa coefficient and its vari-
ance [67] for the obtained contingency error matrices. Table 2 lists the quality metrics for
both variants of our approach in all evaluation scenarios. From the tabulated kappa values
for Area 1, one can verify that the OC-SVM achieves slightly better scores than IF. In terms
of F1-Score, the trained models behave very similarly. Concerning Area 2, except for 2019,
the IF model produced better performance. In a generalist view, it is valid to mention
that the proposed methodology equipped with IF or OCSVM AD models is capable of
delivering similar results.

Finally, in order to verify the statistical significance between IF and OC-SVM variants,
unilateral hypothesis tests were performed to compare the kappa and variances scores.
The corresponding p-values and decisions are presented in Table 3. Under a 5% level, the
statistical analysis indicates that there are nonsignificant differences between the analyzed
methods, except for Area 1/2019 and Area 2/2020, where OC-SVM and IF deliver the most
accurate results, respectively.

Table 2. Accuracy values summary. Variance of kappa scores are multiplied by 104.

Method Y
Area 1 Area 2

F1-Score Kappa var. Kappa F1-Score Kappa var. Kappa

IF
2018 1.00 1.00 0 1.00 0.94 356.6
2019 0.97 0.57 1.1 0.99 0.98 18.94
2020 0.95 0.91 1.5 0.95 0.90 1.1

OC-SVM
2018 1.00 1.00 0 1.00 0.90 226.9
2019 0.99 0.61 1.2 1.00 0.99 35.8
2020 0.96 0.94 3.8 0.88 0.86 2.2
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Table 3. Comparison of kappa values assigned to IF and OC-SVM models according to a 5% signifi-
cance level.

2018 2019 2020

Area 1 p-value 0.5 0.003 0.077
decision non-significant OC-SVM non-significant

Area 2 p-value 0.442 0.437 0.013
decision nonsignificant nonsignificant IF

6. Conclusions

In this paper, we proposed a new automatic methodology for mapping fire susceptibil-
ity in Amazon forest areas using multitemporal remote sensing images, derivative spectral
indices, and unsupervised anomaly detection methods. We demonstrate the effectiveness
and accuracy of the introduced approach by quantitatively as well as qualitatively ana-
lyzing two case studies covering areas heavily affected by fire in the legal Amazon forest
in Brazil.

From the obtained results, we showed that the current methodology was capable
of assigning a high fire-susceptibility level to the real fire-damaged areas by comparing
the resulting maps with reference data representing the real fire occurrences in periods
posterior to those adopted to infer the susceptibility maps. Concerning the effectiveness
and consistency of IF and OC-SVM, taken as time-varying unsupervised anomaly detection
techniques, we found that despite IF delivering more behaved susceptibility maps, both
methods produced similar results in terms of accurateness and capability of mapping
fire-prone areas.

Future perspectives for this research include: (i) adapting other anomaly detection
models; (ii) taking other spectral indices as part of the anomaly detection modeling; (iii) ap-
plying the proposed methodology for other study areas; (iv) extending the implementation
to other multispectral sensors such as Sentinel-2 MSI and Terra/Aqua Modis; (v) evaluating
the proposed methodology through adaptations to other environmental issues, such as
deforestation, floods, oil spills, melting glaciers, etc. Finally, we also intend to adapt our
framework to support manually labeled data, i.e., building a semisupervised strategy. A
feasible attempt could integrate labeled samples together with the conception of “cluster
labeling” or even using methods such as the transduction support vector machine [68].
By doing so, we could build a training database composed of labeled data with high con-
fidence, so that this database could be used to train anomaly detection models or even
classifiers to discriminate areas susceptible to fire events in the “analysis period”.
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