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MAPPING FLAT CRACKS ONTO PENNY-SHAPED CRACKS,
WITH APPLICATION TO

SOMEWHAT CIRCULAR TENSILE CRACKS

By
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Abstract. Consider a three-dimensional homogeneous isotropic elastic solid contain-
ing a flat pressurized crack, fi. The problem of finding the resulting stress distribution
can be reduced to a hypersingular integral equation over Q for the crack-opening displace-
ment. Here, this equation is transformed into a similar equation over a circular region
D, using a conformal mapping between Q and D. This new equation is then regularized
analytically by using an appropriate expansion method (Fourier series in the azimuthal
direction and series of orthogonal polynomials in the radial direction). Analytical results
for regions that are approximately circular are also obtained. The method will generalize
to other scalar problems and to vector problems (such as shear loading of the crack).

1. Introduction. Many two-dimensional problems involving thin plates or cracks
can be formulated as one-dimensional hypersingular integral equations, or systems of
such equations. Examples are potential flow past a rigid plate, acoustic scattering by a
hard strip, and stress fields around cracks. In general, the crack or plate will be curved.
For scalar problems, parametrisation of the curve leads to an equation of the form

£
+ M(x, t) ^ w(t) dt = p(x) for — 1 < x < 1, (1.1)

(x-t)

supplemented by two boundary conditions, which are often w(—1) = w(l) = 0. Here, w
is the unknown function, p is prescribed, and the kernel M has a weaker singularity than
the dominant hypersingularity. For many references and further details, see [22].

An effective way of solving (1.1), numerically, is provided by expanding w using Cheby-
shev polynomials of the second kind, Un :

N
W (£) ~ \/l - t2 22 wnUn(t),

n=0
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664 P. A. MARTIN

where u>o,Wi,... ,wn are coefficients to be found; note that this expansion incorporates
the known behaviour of w near the two ends of the plate [21]. The method is effective
because, with this expansion, the hypersingular integral can be evaluated analytically:

£

1 y/T=FUn(t)^ , , ,
g  dt - -7T[n + 1 )Un(x).

One can then develop a Galerkin-type method or a collocation method for determining
the unknown coefficients. Such methods have been used by many authors; examples are
[8], [14], and [25]. Moreover, the convergence of the collocation scheme has been proved
by Golberg [10], [11] and by Ervin and Stephan [6].

Now, consider an analogous three-dimensional problem, such as potential flow past
a rigid flat plate fl. We can reduce such problems to two-dimensional hypersingular
integral equations over fl. In particular, if fl is a circular disc, expansion methods can
be developed: use a Fourier decomposition in the azimuthal direction together with
an expansion in terms of Gegenbauer polynomials in the radial direction; again, this
method is effective because it incorporates the known behaviour around the edge of fl,
and it allows the two-dimensional hypersingular integral to be evaluated analytically (see
Sec. 3).

What happens if fl is not circular? In order to use an expansion method, we map
onto a disc D. However, we are not at liberty to choose any convenient mapping:

typically, the mapping will modify the hypersingularity in an essential way. We must use
a conformal mapping of fl onto D. This preserves the structure of the hypersingularity,
allowing the use of the Fourier-Gegenbauer expansion method on the transformed integral
equation. This new method is described in Sec. 4.

As well as leading to a viable numerical method, the combination of conformal map-
ping and two-dimensional hypersingular integral equations can be used to obtain analyt-
ical results. Specifically, in Sec. 5, we consider regions fl that are approximately circular.
We obtain a rather simple result in the transform domain which is then shown to be
equivalent to a result of Gao and Rice [9].

In the paper, we phrase our equations in terms of crack problems: thus, fl represents
a flat pressurized crack in a three-dimensional elastic solid. However, this problem is
equivalent to potential flow past a rigid plate. Moreover, the dominant parts of the
equations are also encountered in other problems, such as acoustic scattering by a sound-
hard plate. A discussion of further applications and developments is given in Sec. 6.

2. Pressurized flat cracks. Consider a three-dimensional homogeneous isotropic
elastic solid containing an arbitrary flat crack fl. We choose Cartesian coordinates x,y,
and x-s, with origin O, so that fl lies in the plane £3 = 0 (the xy-plane). We assume that
fl is a simply-connected region and that O is a point in fl. Let us suppose that the crack
is pressurized; thus, we suppose that

733(a, y, 0) = Y^—p{x, v) for (x,2/) e (2.1)

where Ttj is the stress tensor, /x is the shear modulus, v is Poisson's ratio, and p(x, y) is
(proportional to) the prescribed pressure opening the crack.
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The discontinuity in the normal component of the displacement vector across the
crack, [u3(:r,y)] = w(x,y), solves an integral equation over fl. This can be written in
several equivalent forms:

+ QL*^ria'plx°'mh (22)

sr £ {Its (s) + (s)}me n;
(2.3)

\k / di} = p(xo,yo), (x0,y0)en;4n" (2.4)

here, i? = {(a; — Xo)2 + (y — t/o)2}1//2- These equations are to be solved subject to

w(x,y) — 0 for (x,y) G dfl,

where d£l is the boundary of £1 (the crack edge); <9$7 is a simple closed curve.
Equation (2.2) can be found in Bueckner's article [3, p. 287], where it is credited to

Panasyuk [23, Eq. (VI.21)], who in turn refers to a Russian paper by M. Ya. Leonov
published in 1940.

Equation (2.3) was derived by Kossecka [16], Bui [4], and Guidera and Lardner [12].
It involves Cauchy principal-value integrals over fl!, and is known as the traction BIE.
For its numerical treatment, see [26] and [29].

Equation (2.4) is a hypersingular integral equation for w; it was first derived by
Ioakimidis [13]. For its numerical treatment, see [18] and [28]; further references are
given in [22]. In the sequel, we will concentrate on (2.4).

3. Penny-shaped cracks. Suppose that f2 is a penny-shaped crack of radius a; thus

fi = Da = {(r,9) : 0 < r < a, —7r < 9 < 7r},

where r and 9 are polar coordinates in the plane of the crack, x = rcos9, y = rsin(9.
Suppose, for simplicity, that the loading is symmetric about 0 = 0. Thus, we can

write

p(x,y) = y^pn(r/q) cos n9.
n=0

Then, the crack-opening displacement has a similar expansion,

OO

w(x,y) = a E wn(r/a) cosn9.
71=0

It is known that (the dimensionless functions) wn and pn are related by the formula

= Vr"/ P-W=Wd3dt (31»
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for n = 0,1, 2,...; see [12]. This formula simplifies if we expand pn as

C^2(VT^)

3=0 1 \/l — T2

where the coefficients 5" are known and C^(x) is a Gegenbauer polynomial of degree m
and index A [5, §10.9]; these polynomials are orthogonal and satisfy

I 1 r2m+\
-^_C£+l/2( !/2(\/r^) dr = h™6jk, (3.2)

where <S;j is the Kronecker delta and h™ is a known constant. It follows from (3.1) that

OO  

Wn(r) = r" w;c?;+\/2(VT^),
3=0

where the coefficients W™ are given by

Wn on (n+j)\j\

J T(n + j + 3/2)r(j + 3/2)'

This result was obtained by Krenk [17]; see also [19]. It can also be expressed in terms
of associated Legendre functions or in terms of Jacobi polynomials; see [20] for further
references.

Similar results can be obtained for loadings that are antisymmetric about 0 = 0. When
combined with those above, we obtain the following particular result (using C*(x) =
2Xx), which will be used in Sec. 5: the loading

p(x,y) = -(r/a)neine (3.3)

gives rise to the crack-opening displacement

= <34)

4. Conformal mapping. Let us now consider mapping $7 onto a disc. This can be
done in many ways. For example, suppose that is star-shaped, so that we can choose
an origin in fl such that

fl = {(t\0) : 0 < r < p(0), — 7T < 9 < 7r};

thus, dfl is given by r = p(6). Then, change variables from r and 9 to s and <p, according
to

r = sp{<p), 0 = <p; (4.1)

this maps onto the unit disc,

D = {(s, tp) : 0 < s < 1, — 7T<(/5<7r}.
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If such a change of variables is made in the integral equation (2.4), we obtain a new
integral equation over D. However, in general, this equation will have a kernel with a
different singularity, instead of the kernel R~3, the new kernel is of the form ct(<E>)5-3,
where S and <J> are polar coordinates at the singular point (see Appendix A for details);
an integral equation with such a kernel differs essentially from the original equation for
a penny-shaped crack.

The difficulty described above does not arise if we use a conformal mapping between
fl and D. Let z — x + iy and zo = ^o + iyo be complex variables. We map the region
in the z-plane onto the unit disc, |£| < 1, in the C-plane, using the conformal mapping

C = F[z). (4.2)

The function F is required to be analytic in fi. By the Riemann mapping theorem [2,
p. 222], F(z) exists, and is unique if we normalise it by, for example, F(0) = 0 and

|F'(0)| > 0.
For our purposes, the crucial property of a conformal mapping is as follows. Let

Co = F(z0) and note that

|F'(2o)| = lim f^},z^zo \z - Z01

whence .. any small line segment with one end-point at zq is, in the limit, contracted
or expanded in the ratio |F'(z0)|- In other words, the linear change of scale at zo, effected
by the transformation (4.2) is independent 0} the direction" [2, p. 74],

So, to exploit this property, we require that |F'(z)\ ^ 0 for ze!l, This condition is
also sufficient to ensure that we can invert (4.2). Thus, given a length-scale a for Q, we
have

z = af(C) for |C| < 1, (4.3)

as the conformal mapping of D onto f2; this form is most convenient for our application.
The analytic function / is known to exist for any simply-connected domain f2. We assume
that |/'(C)| 7^ 0 for all ( with |£| < 1.

First, we investigate the effect of the mapping (4.3) on the kernel of (2.4). We have

R = \z - zo\ = a\f(0 - /(Co)| ^ a|/'«o)|S

for small S, where S = |C — Col; also, by symmetry, R ~ a|/'(C)|5. So, we can write

asR~3 = i/'(or3/2i/'(Co)r3/2{^"3+A'(c,co)}

exactly, where the symmetric kernel K is defined by

., [/'(OI3/2l/'(Co)l3/2 1
K-M |/(C)-/(C»)P K - Col3' (*)

We anticipate that K = 0(S~2) as S —> 0. However, it turns out that K — 0(S~l) as
5^0 (see Appendix B), so that K only has a weak singularity.
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Next, we consider the Jacobian of the transformation: it is a2|/'(£)|2. Hence, if we
put

C = £ + iv = selifi and Co = Co + = s0el,fio,

we find that
d£l — dxdy = a2\f'(C)|2 dr/ — a2\f'(C)|2s ds dip.

Finally, setting

™(x{Q,y(Q) = a\f'(0\~1/2m,v) and p(x((0), y((o)) = \f'(Co)\"B/2P^o,Vo),

we find that (2.4) becomes

W(£,r])K(<;,to)dZdr] = P(Zo,Vo) (4.5)

for (Co^o) € D, where all quantities are dimensionless. This equation is to be solved
subject to W — 0 on s = 1.

We can write (4.5) in operator notation as

{H + K)W = P. (4.6)

The operator K, defined by the second term on the left-hand side of (4.5), is a weakly-
singular integral operator. The hypersingular operator H. defined by the first term on
the left-hand side of (4.5), is precisely the operator on the left-hand side of (2.4) for a
penny-shaped crack. Consequently, as described in Sec. 3, we have an explicit expression
for H . Hence, we can write (4.6) equivalently as

(I + H'1 K)W = H'1 P,

which is a regularized version of the hypersingular integral equation (4.5). Computation-
ally, the following schemes suggest themselves. Expand W as

N

w (£> v) = y1 Wra (s) cos rup
n—0

with

Wn(a) = sn £
3=0

Then, either use the orthogonality relation (3.2) together with the orthogonality of the
trigonometric functions, leading to a Petrov-Galerkin method, or simply collocate. It
is likely that a numerical analysis of these schemes can be given by extending the work
of Golberg [10], [11] and of Ervin and Stephan [6] on analogous one-dimensional hyper-
singular integral equations. Rather than investigate these numerical questions here, we
focus on analytical results for domains 12 that are approximately circular.
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5. Somewhat circular cracks. Consider the conformal mapping

/(C) = < + £0(0, (5-1)

where e is a small dimensionless parameter and g is analytic; we assume that

5(0) = 0. (5.2)

When (5.1) is combined with (4.3), we see that the unit disc in the £-plane is mapped
into a domain fi in the 2-plane that is approximately a circle of radius a; moreover, ( — 0
is mapped to z = 0. As an example, the choice

3(0 = <"+1

leads to a crack 17 with boundary dfl given by

r = p(9) = a(l + ecos n9),

with an error of 0(e2); such geometries were considered by Gao and Rice [9] in their
study of crack stability.

Returning to the general case, substitute (5.1) into (4.4) to give

K(C,Co) = eA-0(C,<o) + 0(e2)

as e —> 0, where the symmetric kernel K0 is defined by

*o«, Co) = Jj Re { \(g'(C) + g'(Co)) - g(C^I^Co)} •

This is a regular perturbation; one can easily check that Kq = 0(S~1) as S —> 0. So, if
we approximate W and P by

W{£,ri) = W0(£,rj) + eWi(Z,t)) and P(£,7?) = P0(£,r)) +eP1(£,ri),

we find that Wo solves
HWq = P0 (5.3)

and then W\ solves
HW1 =PX- K0W0, (5.4)

where H is defined below (4.6) and

(KoWo)(to,T)o) = ^ J Kott,&)Wo(Z,v)dZdri.

Both (5.3) and (5.4) are integral equations over the unit disc; they can be solved using
the methods of Sec. 3. Then, using |/'(C)| — 1 + £R-e{fi,'(C)} f°r small e, we obtain

wixiO, y{0) = aW0 + ae(Wi - \W0 Re{c/'(C)}) (5-5)
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as our approximation to the crack-opening displacement w, correct to first order in e.
Note that, in principle, the method can be extended to yield higher-order approximations.

In order to proceed, we must be able to calculate KqWq. Let us assume that g is
analytic in a domain that includes D, so that we can surround D by a simple closed
contour C. Then, using the residue theorem, we obtain

*»<«„> = 2§> /c
K-&V9M (56)

lc(u- C)2(w-Co)2 ,

which is an integral representation for iio(£, Co)i involving the values of g on C. Hence,

(WCc) = I R* { ̂  I <*} ■
where

L(u;,Co) = tf (5-7)

is independent of the mapping g.
5.1. Uniform pressure. Suppose that the loading is uniform, so that p = —a, a

constant (recall the definition (2.1)). Hence,

P0 = -a and Pi = -§(jRe{s'(Co)}.

From Sec. 3, we easily obtain

Wo = H-lP0 = 4(cr/7r)v/l - s2.

Next, we evaluate L, defined by (5.7). We have

(£ Co)   \ (/-m+2 oz-rn+l/- i~ ^ (C C Co + C Co)
V 771=0

for \C,/u>\ < 1 (which is satisfied since |C| < 1 and |w| > 1). But H{Cn\/l — s2} can be
evaluated using (3.3) and (3.4); hence,

OO

L(w,Co) = -4((7/tt) (m + l)Z0m+2r(3/2)Zm (5.8)
m=0

where Zq = (o/uj and

T(m + 7/2) r(m + 5/2) T(m + 3/2) _ T(m + 3/2)
m (to+ 2)! (m+1)! + to! 4(to + 2)!

The sum (5.8) can be evaluated; we have

L(w, Co) = i(a/7r)Z02{r(3/2)}2F(2,3/2;3;Z0)
= i<7{(l-Z0)-1/2 + (l-Z0)1/2-2},
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where F(a, 6; c; z) is the Gauss hypergeometric function and we have used [1, Eq. 15.1.14],
Next, consider the right-hand side of (5.4). We have expressed KqM-'q as a contour

integral around C; so it is convenient to do the same for Pi:

= *°{h L9j£Q{Z<>)dJi <5-9)
where

Q(Z0) = (1 - Z0)~\{1 - Zo)~1/2 + (1 - Z0)1/2}.

So, if we expand in powers of Zq, we can then apply H~l, using (3.3) and (3.4) again.
We have

2 ^ (m + 3)T(m + 3/2)
'Jo

Hence

rMv \ L \'n ^ °>L vn °/ ryr
Q{Zo) - 3 ^ ^!lW2) °

m=0 v ' '

for \ZQ\ < 1, using
r(m + a) Z™(l-Z0)-a=Y,

m=0

Hence,

F(a) ml

o  

H~lQ = - — \/l - s2 (m + 3)
."S7T ^^371" ^ \wm=0 x

which is a combination of a geometric series and its derivative:

,2
(5.10)

Next, we obtain W\ from (5.4) by combining (5.9) and (5.10):

W! = H~1{P1 - KqWq)
g(ui) / u>2 2u>= 1

= ^x/T^Re|2^+5'(C)},

-f~   ) dio
(uj- C)2 W-<

after using the residue theorem to evaluate the contour integral; note that the singularity
at uj = 0 is removable, due to (5.2).

Finally, we substitute Wo and W\ into (5.5) to give

w(x(C),y{0) = V7! - s2 |l + eRe |. (5.11)

This is our approximation for the crack-opening displacement; it is correct to first order
in e.



672 P. A. MARTIN

5.2. Comparison with Gao and Rice. Let us express (5.11) in terms of the original
variables. Prom (4.3) and (5.1), with z = re10 and ( = sel,p, we have

r = ase%^~^ + aee~l9 g(C)-

The imaginary part of this equation gives 6 = ip + O(s), whence the real part gives

r = as(l + eG(s, ip)),

where
G{s,<p) = Re{C_1.9(C)}-

In particular, dtt corresponds to s = 1:

p(0) = a(l + eG(tp)),
where

G(<p) — G(l,ip) = Re{e~i<pg(ei'fi)}.

Hence, discarding terms of 0(e2),

p2 -r2 — a2( 1 - s2){l + 2e(l - s2)_1[G(</?) - s2G(s, y>)]}

and so
ay/1 - s2 = y/p2 - r2{ 1 - e(l — s2)_1[G(</j) - s2G(s, </?)]}■

Then, eliminating %/l — s2 from (5.11), we obtain

w{x,y) = 4{a/ir)y/p2 - r2{ 1 - e(l - s2)_1[G(</?) - G(s,v?)]}. (5.12)
Now, since G(s,ip) is the real part of an analytic function, it is harmonic. Moreover,
since it is harmonic in the unit disc, 0 < s < 1, it can be represented in terms of its
boundary values on s = 1 (namely, G(ip)) using Poisson's formula [2, p. 166]:

1 - s2 f271 G(<p')dtp'G(s,<p) =
pZ7V

Jo r-27? J n 1 + s2 — 2s cos(<p — tp')
Also, since any constant is harmonic,

G(w)=izz r °{ipw
27r J0 1 + s2 — 2s cos {up — <p')

Consequently, (5.12) becomes

w(x,y) = — y/P2 ~ r2 {l +Z   dip'
7T \ 27T J0 I + S2 — 2s COS{ip — ip')

In the integrand, we can use as{G(ip') — G(<p)} = p(9') — p{8)- Also, <p — 9, (p' = 6',
as = r, and a ~ p, to leading order; so, finally, we obtain

w(x y\ = —^\p<Q\\2 _ r2 {l + — [  P(0)\P(9 ) ~ P(0)\ J0I
it \ 27r J0 [p{0)}2 + r2 — 2rp(9) cos(6 — 0')

This formula expresses the new crack-opening displacement in terms of the geometry of
the crack's edge. It agrees with a formula obtained previously by Gao and Rice [9, Eq.
(18')], using an entirely different method based on three-dimensional weight functions.

We remark that there is an extensive Russian literature on almost circular cracks.
Panasyuk's work is described in [23, Chapter IX] and in [9, Appendix B]; for a review,
see [24], There is also an interesting heuristic method due to Fabrikant [7], ostensibly
applicable to cracks of any shape. Applications to fracture mechanics are discussed by
Rice [27],
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6. Discussion. In Sec. 4, we showed how to transform the simplest hypersingular
integral equation over a bounded, simply-connected region f2 into a similar equation
over a circular region. The method requires an appropriate conformal mapping; such
mappings are catalogued in [15]. In particular, the method could be applied to potential
flow past a square plate.

The method will also generalise to other scalar problems, such as that of acoustic scat-
tering by a sound-hard plate. Here, the free-space fundamental solution is exp{ikR}/R,
where k is the wavenumber; the singular behaviour of this function is the same as for
potential flow (k — 0), and so the regularization method of Sec. 4 is applicable. For some-
what circular plates, the method of Sec. 5 could then be used to study low-frequency
diffraction problems.

The method will also generalise to vector problems, such as the shear loading of a flat
crack; the required Fourier-Gegenbauer expansions for penny-shaped cracks have been
developed by Krenk [17].

All of these extensions and applications of the basic methods described herein are
currently being made.

Appendix A. EfFect of the mapping (4.1). The original kernel has a singularity
at R = 0, where

i?2 = r2 + r-g — 2rr0 cos(0 - 0O) — s2p2 + s2,po - 2ss0pp0 cos{<p - ip0),

x = r cos 0 = sp cos <p, y = r sin 6 = sp sin <p,

xq = r0 cos 00 = SoPo cos <fi0, y0 = r0 sin 0O = s0po sin <p0,

p = p{ip) and po = p(<po)- Since p(<p) > 0, the only zero of R is at (s,tp) = (so,¥>o)- Let
us fix so and and expand R, in a neighbourhood of the fixed point (soi Relative
to this point, the point (s,ip) has polar coordinates S and defined by

s cos((p — tpo) = sq + S cos $ and s sin(<£> — q) = S sin $.

We expand R for small S. We have

R2 = SqPo + P2(so + S2 + 2soS cos <£) - 2sopp0(s0 -1- S cos <$)

= slip- Po)2 + 2 s0Spip - Po) cos $ + p2S2,

exactly. Since (</> — ipo) is small, we have p — po — i<p - <fio)p'o — (-S"/so)Po sin where
the error is 0(5"2) and p'Q = p'ifo). Hence

R2 ~ 52k($; po)

where
/c($; ipo) — pi sin2 $ + (p0 cos + p'0 sin $)2

is positive. So, locally,
1 ^ g($;<A))

R3 ~ S3 '
where cr(<3>; <po) — [k(^E>; <^o)]-3^2; this shows that the (isotropic) singularity at R = 0 has
been mapped into a singularity at S = 0 of the same order (S1-3), but with a strength
that depends on the angle of approach, $.
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Appendix B. The kernel K is weakly singular. The kernel K is defined by (4.4);
we expand it for small S. Write

h - 2 /'{<„) '

thus, fi = 0(S) and = 0(S2) as S —+ 0. Hence,

/'(C) — /'(Co){l + fi + /*2} 5
/(C) - /(Co) ̂  (C - Co)/'(Co){i + \h +1/2},

and

2

Now, for constants a,/?, and 7, we have

1 ( 11 + /1 + /213/2 1
-53l|l + I/1 + I/2|3 }■

|1 + af\ + /3/2I7 ~ 1 + ayui + ^{(7 - l)a2u\ + a2v\ + 2/3u2}

with an error of 0(S3), where fi—u\+ iv 1 and fi = 112 + iv2. Hence

K ~ - uj) + 5M2},

which is 0(5 ) as S" —» 0.
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