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Abstract: The majority of the aboveground biomass on the Earth’s land surface is stored in forests.
Thus, forest biomass plays a critical role in the global carbon cycle. Yet accurate estimate of forest
aboveground biomass (FAGB) remains elusive. This study proposed a new conceptual model to map
FAGB using remotely sensed data from multiple sensors. The conceptual model, which provides
guidance for selecting remotely sensed data, is based on the principle of estimating FAGB on the
ground using allometry, which needs species, diameter at breast height (DBH), and tree height as
inputs. Based on the conceptual model, we used multiseasonal Landsat images to provide information
about species composition for the forests in the study area, LiDAR data for canopy height, and the
image texture and image texture ratio at two spatial resolutions for tree crown size, which is related
to DBH. Moreover, we added RaDAR data to provide canopy volume information to the model. All
the data layers were fed to a Random Forest (RF) regression model. The study was carried out in
eastern North Carolina. We used biomass from the USFS Forest Inventory and Analysis plots to train
and test the model performance. The best model achieved an R2 of 0.625 with a root mean squared
error (RMSE) of 18.8 Mg/ha (47.6%) with the “out-of-bag” samples at 30 × 30 m spatial resolution.
The top five most important variables include the 95th, 85th, 75th, and 50th percentile heights of the
LiDAR points and their standard deviations of 85th heights. Numerous features from multiseasonal
Sentinel-1 C-Band SAR, multiseasonal Landsat 8 imagery along with image texture features from
very high-resolution imagery were selected. But the importance of the height metrics dwarfed all
other variables. More tests of the conceptual model in places with a broader range of biomass and
more diverse species composition are needed to evaluate the importance of other input variables.

Keywords: forest aboveground biomass; random forest; optical remote sensing; LiDAR; RaDAR

1. Introduction
1.1. Importance of Forests in Global Carbon Cycle

Forests provide essential ecosystem goods and services upon which human welfare
depends. Removing CO2 from the atmosphere through photosynthesis and storing the carbon
as organic matter are among the most critical services forest ecosystems provide. CO2 in
the atmosphere is the major greenhouse gas that causes global warming [1]. The current
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concentration of CO2 in the atmosphere is the highest in the past 800,000 years [2]. Since
the Industrial Revolution, the extra CO2 released into the atmosphere has contributed to
2/3 of the extra energy that all greenhouse gases have trapped [3]. The majority of the
increased CO2 in the atmosphere comes from fossil fuel burning, while land-use change,
primarily deforestation, also contributed a significant amount of CO2 to the atmosphere [4,5].
Reducing emissions from deforestation and forest degradation, plus sustainable forest
management, conservation, and enhancement of forest carbon stocks (REDD+), has been
recognized as a major mechanism for global warming mitigation (http://un-redd.org,
accessed on 5 February 2022). REDD+ projects are primarily implemented in developing
countries in the tropical region, with funding donated from developed countries. How-
ever, deforestation and forest degradation can happen anywhere in the world as a result
of both natural and anthropogenic disturbances. In contrast, forest growth could signif-
icantly offset the carbon emissions from fossil fuel burning. Removing CO2 from the
atmosphere by forests is one of the most economically efficient nature-based solutions
for global warming mitigation [6]. In fact, the vast majority of the Earth’s aboveground
carbon is stored in forests as biomass. Therefore, forests play a critical role in the global
carbon cycle. According to the most recent accounting, we still cannot balance the global
carbon budget [7]. One of the critical limitations in balancing the global carbon bud-
get is the lack of accurate information about forest biomass and its dynamics over time.
Without accurate forest biomass information, we do not know the amount of carbohydrates
produced in photosynthesis and accumulated through time in the forests. Consequently,
we do not know how much carbon is released from the forest ecosystem due to natural
and anthropogenic disturbances, such as deforestation from timber harvesting or shifting
agriculture, wildfires, forest destruction from hurricanes, mass mortality from droughts [8–10]
or insect infestations [11]. Therefore, knowledge about where forest biomass is located
and how it is changing with time is vital for global carbon cycle science and, consequently,
global climate change in the future.

1.2. Biomass Estimation on the Ground

Forest biomass is the total dry weight of all live parts of every tree in a unit area,
including the parts both aboveground (leaves, branches, and stems) and belowground (fine
and coarse roots) [12]. Forest Aboveground Biomass (FAGB) is the total forest biomass
minus the belowground components, which have to be estimated through excavation [13].
FAGB is relatively easy to obtain and thus is often sought after instead of the total biomass
that includes both above- and belowground components. The most reliable approach
to estimate biomass on the ground is through destructive sampling, in which standard
trees are cut, and their biomass is estimated from drying samples of the fresh components
(e.g., leaves, branches, and stems). Then a species-specific allometric relationship of biomass
is derived based on the tree height and diameter at breast height (DBH). The allometry is
then applied to all the standing trees to estimate their biomass by species within a sampling
plot. Summarizing the biomass from all trees within the sampling plot provides an area-
based biomass estimation [12]. Tremendous efforts had been dedicated to developing
the species-specific allometric relationships for forest biomass [14,15]. These allometric
relationships can be re-used in the place where they were developed. Despite the availability
of allometric equations for biomass for nearly all the major species in the U.S. and possibly
most countries in the world, they cannot be directly used over large areas as we cannot
obtain DBH, height, and species continuously in space for each tree. Although the existing
allometric relationships for biomass cannot be used with remote sensing data, the variables
used for estimating biomass with allometry should guide the selection of remotely sensed
features for accurate biomass estimation, i.e., we need information related to species, DBH,
and height to estimate forest biomass accurately over space and time. Many forest biomass
products exist [16–18], but they are not produced based on such a principle. Consequently,
accurate estimation of forest biomass over large areas remains elusive [19].

http://un-redd.org
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1.3. Challenges in Estimating Forest Aboveground Biomass with Remote Sensing

Remotely sensed data from nearly all types of sensors have been used to estimate
FAGB because remotely sensed data can be used to derive a biomass surface. Optical
remotely sensed data can be used to effectively estimate the gross primary production
of the terrestrial ecosystem [20–22]. Gross primary production is the total carbon flux
from the atmosphere to the terrestrial ecosystem through photosynthesis. A large portion
of gross primary production is consumed by vegetation via autotrophic respiration [23].
The balance of gross primary production after autotrophic respiration is the net primary
production, which shows up in plant growth. Not all the net primary production is
accumulated through time due to litterfall and mortality [24]. Disturbances from both
natural and anthropogenic origins also significantly alter FAGB almost instantaneously.
Thus, the dynamics of FAGB are jointly controlled by forest growth and disturbances [25].
Forest biomass dynamics through time are critical information for future global carbon
cycle prediction.

Nearly all the optical remotely sensed data currently available had been used for
biomass mapping [19]. Spectral reflectance, transformed spectral reflectance (e.g., prin-
cipal components, Tasseled Cap components, and vegetation indices), and the spatial
information (e.g., image texture) have been used as independent variables for biomass esti-
mation [26]. Song [12] identified three primary approaches used to estimate biomass from
optical images, including k-nearest neighbor imputation, multiple regression, and machine
learning algorithms. More recently, Pflugmacher et al. [27], took advantage of the long-term
record of Landsat imagery and developed an algorithm to map FAGB using disturbance
and recovery history.

Although tremendous efforts have been dedicated to mapping FAGB with remotely
sensed data, the margin of error remains too big to help close the global carbon budget
gap. The major challenge in mapping FAGB is that there is no direct remotely sensed
biomass signal, unlike the leaf area index. We can only estimate biomass through remotely
sensed signals that are correlated to biomass. For example, the leaf area index was used
to estimate biomass [28]. However, these signals only work when the biomass is low.
Forest leaf area index reaches its asymptote early in its successional stage [29], while the
biomass of a forest continues to increase for centuries [30]. Remotely sensed signals that are
correlated to forest aboveground biomass, such as vegetation indices or surface reflectance
in a particular wavelength, saturate when biomass reaches a threshold of 100–200 mg/ha.
Signal saturation from optical and RaDAR sensors is the primary reason why remote
sensing-based approaches mapping FAGB do not work well when the FAGB is beyond that
threshold from these sensors [19,31–33].

Similarly, extensive research had been conducted on mapping FAGB with RaDAR
data, recently reviewed by [19]. There are consistent findings that the backscatter intensity
from the longer wavelength (L- or P-band) is better correlated with FAGB than that from
the shorter wavelength (C-band) because the longer wavelength RaDAR waves penetrate
deeper into the canopy [34–37], and the cross-polarization (HV or VH) backscatters are
more sensitive to biomass than the co-polarization returns (HH or VV) [38,39]. However,
a major obstacle for mapping biomass with RaDAR imagery remains—signal saturation,
i.e., the remotely sensed signal no longer changes after the aboveground biomass reaches
~100–200 Mg/ha [19,32].

LiDAR is a relatively new revolutionary technology that provides information about
the vertical structure of vegetation [40]. LiDAR data can be obtained from two types of
sensors, discrete-return LiDAR and full-return (also known as waveform) LiDAR [41].
Discrete-return LiDAR provides one or a small number of major signal peaks from the
objects, while full-return LiDAR records the returns of the photons continuously along
the laser illumination path. Waveform LiDAR provides more detailed information on
vegetation structure compared with discrete LiDAR. Most of the LiDAR data currently
available were collected by airborne sensors [42–44], although data from ICESat were
used to map FAGB [45]. Hyde et al. [46] compared LiDAR and RaDAR data in mapping
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forest biomass, and they found that the performance of LiDAR far exceeds that of RaDAR.
Although forest height derived from LiDAR data does not suffer from signal saturation
problem, no universal relationship between height and biomass exists due to variation of
species [42]. Therefore, variables related to DBH and species from other sensors are needed
for accurate biomass mapping [47].

Although many aboveground biomass products had been produced, such as the National
Biomass and Carbon Dataset 2000 for the U.S. [16,48] and tropical biomass [45,49,50], these
biomass maps are usually made as a snapshot of biomass at a particular time or with
coarse spatial resolution. Moreover, there is significant room for accuracy improvement.
For example, the U.S. aboveground biomass produced by Blackard et al. [16] only has
a correlation coefficient of 0.31 with the FIA biomass in the southern region of the U.S.
As a result, there are large discrepancies between biomass maps [49]. Moreover, none of
the existing biomass maps can be reproduced in a timely manner with sufficient spatial
detail to monitor the dynamics of FAGB change as a result of natural and anthropogenic
disturbances. The objective of this study is to develop a new algorithm to map FAGB
using remotely sensed data from multiple sensors that are related to forest height, DBH,
and species, including LiDAR for canopy height, multispectral for vegetation composition,
RaDAR for canopy structure, and texture from high-resolution optical images. Image
texture from high-resolution optical images is highly correlated to tree crown size, which in
turn relates to DBH [24,51]. These remotely sensed data capture information about height,
DBH, and species composition for the forests. The new algorithm has the potential to
overcome the limitations in existing FAGB mapping algorithms, enhancing the accuracy of
FAGB mapping.

2. Materials and Methods
2.1. Study Area

The study area is located in eastern North Carolina (NC), USA, spanning approxi-
mately 23,000 km2 covered by a Landsat scene of WGS path = 15, row = 36 (Figure 1).
This region belongs to the Southern Coastal Plain, with most vegetation being classified
as coniferous forest, dominated by Loblolly pine (Pinus taeda). The majority of counties
within this region are over 70% timberland by area, making it an important forest resource.
Being most severely hit by Hurricane Florence in 2018, we selected this region to pave
the way for an eventual estimation of the impact of the Hurricane on forest biomass. We
currently focus on pre-hurricane forest biomass estimation as the post hurricane LiDAR is
not yet available.

2.2. Forest Inventory and Analysis Data

We used FAGB derived from U.S. Forest Service Forest Inventory and Analysis (FIA)
data. The FIA program collects, analyzes, and reports the status of American Forests for
all 50 states of the U.S. and its territories and possessions (http://fia.fs.fed.us, accessed on
5 February 2022). The FIA program designed a national hexagon grid covering 50 states
with each hexagon spanning 5937 acres (~2404 ha) in area and contain a randomly located
plot [52]. Each FIA plot consists of four 7.3 m radius subplots, with one located in the plot
center, and the centers of the other three subplots are 120 ft (36 m) away from the center
plot distributed 120 degrees from each other [53]. Because our LiDAR data were collected
in 2014, plots that were sampled in 2013, 2014, and 2015 within the study area were used
as the reference for model development and evaluation. The sum of the aboveground
biomass for all trees within a sampling plot with DBH greater than 5 inches (i.e., 12.7 cm)
makes up the total FAGB for the plot. We selected the FIA sampling plots in this study that
fall into the forest land cover based on the USGS National Land Cover Dataset [54] with
aboveground forest biomass carbon greater than zero and the 95th percentile height greater
than ten feet (~3 m). After applying these exclusion criteria, the remaining 227 plots in the
study area are available for model training and testing.

http://fia.fs.fed.us
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To ensure the privacy of private landowners and to protect plots from vandalism, the lo-
cations of the plots within the publicly available FIA database are fuzzed and swapped.
To overcover the confidentiality of the accurate FIA plot locations, our USFS collaborators
helped extract the multisource remotely sensed data for plot locations using the accurate plot
coordinates and then provided us a table that contains the plot attributes (including biomass)
and the extracted remotely sensed data without the accurate plot coordinates to the rest of the
research team. This essentially provided this study with access to the data with their precise
locations without anyone outside of USFS accessing the confidential information [51].
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Figure 1. The study area in eastern North Carolina is enclosed by the red line. This area is the extent
of one Landsat scene of WGS path = 15, row = 36.

2.3. Remote Sensing Data
2.3.1. LiDAR Data

We used airborne LiDAR to provide canopy height information. The statewide discrete
return LiDAR data used in this study were collected as part of a joint project by the NC
Risk Management Office, NC Department of Transportation, and other state collaborators
(available for download at https://sdd.nc.gov/, accessed on 5 February 2022). The LiDAR
data were collected in the Spring of 2014 in the leaf-off condition with no snow on the
ground. The data were collected using a combination of airborne Leica ALS70HP-II and
Optech Pegasus HA500 sensors at a resolution of 2 points per square meter. The NC Risk
Management Office provided the LiDAR data in the LAS version 1.3 standard format with
associated 5-foot resolution DEMs in a 5000-foot by 5000-foot tiling scheme or ~1.5 × 1.5 km.

Using the 5-foot (~1.5 m) DEMs, the LiDAR data were first normalized to the ground,
i.e., the height measurements in the LiDAR data are heights from the ground. The nor-
malized LiDAR data were then used to calculate a set of height metrics, each representing
height at 25, 50, 75, 85, and 95% of points within the 30 m spatial resolution. These height
metrics represent the vertical canopy structure, which are used as variables associated with
FAGB. The percentiles used for analysis were chosen to characterize the upper canopy
containing the majority of biomass and to eliminate extreme height values due to sensor
errors and undesirable interactions.

https://sdd.nc.gov/
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2.3.2. RaDAR Data

The European Space Agency’s (ESA) Sentinel-1 mission comprises two polar-orbiting
satellites with a relative azimuth angle of 180◦ from each other, Sentinel-1A and Sentinel-
1B, each of which is equipped with the Synthetic Aperture Radar (SAR) instrument for
collecting surface backscatter in the C-band in multiple modes and in dual-polarization
(VV + VH, HH + HV). The use of the C-band allows the acquisition of imagery day and night
and in all weather conditions. Two Sentinel-1 scenes were acquired for this study, one dated
3 March 2015, representing winter leaf-off conditions, and one dated 18 August 2015,
representing summer leaf-on conditions. The Sentinel-1 scenes were retrieved as the Level-
1 High Resolution (roughly 10-m) Ground Range Detected (GRD) Interferometric Wide
(IW) Swath mode data product in the VV and VH polarizations from ESA’s Copernicus
Open Access Hub (https://scihub.copernicus.eu/, accessed on 5 February 2022).

A standard Sentinel-1 GRD preprocessing workflow was applied to process the images
acquired for this study. All Sentinel-1 preprocessing was conducted in the ESA’s own
Sentinel Applications Platform (SNAP). Accurate orbit information was applied, thermal
noise was removed, digital pixel values were converted into radiometrically calibrated SAR
backscatter, a Lee-Sigma speckle filter was applied, range-doppler terrain correction was
performed, and the unitless backscatter was converted to backscatter coefficient in decibels
using a logarithmic transformation. Border noise removal performed through SNAP does
not adequately work on Sentinel-1 images captured before March 2018. As a result, border
noise was manually cropped from the images where needed.

2.3.3. Multispectral Data

Landsat 8 Analysis Ready Data (ARD) data, retrieved from the USGS Earth Explorer
data portal (https://earthexplorer.usgs.gov/, accessed on 5 February 2022), were used in
this study. We used two images representing the leaf-on and leaf-off conditions similar
to the RaDAR data. These images capture species composition information for image
classification [55,56]. The leaf-off condition image was acquired on 6 February 2015, and the
leaf-on condition image was on 30 June 2015. Both images were almost cloud-free, but any
clouded or nonclear pixels were masked out using the pixel quality assessment band.
The bands used for this analysis include Band 2 (Visible Blue), Band 3 (Visible Green),
Band 4 (Visible Red), Band 5 (Near-Infrared), Band 6 (Shortwave Infrared 1), and Band 7
(Shortwave Infrared 2). We first conducted the Tasseled Cap (TC) transformation for each
image and used the brightness, greenness, and wetness components in the biomass model,
instead of the six original bands. Three vegetation indices were further derived, including
Normalized Difference Vegetation Index (NDVI, Equation (1)), Enhanced Vegetation Index
(EVI, Equation (2)), and Structural Index (SI, Equation (3)) [57]. These vegetation indices,
along with the TC brightness, greenness, and wetness, represent the data input from the
optical sensor.

NDVI =
ρNIR − ρRed
ρNIR + ρRed

, (1)

EVI =
G(ρNIR − ρRed)

ρNIR − 6.0ρBlu + 7.5ρRed + 1
, (2)

SI =
ρMIR
ρNIR

, (3)

where ρBlu, ρRed, ρNIR, ρMIR are surface reflectance for blue, red, near-infrared, and mid-
infrared bands, respectively.

2.3.4. Very High-Resolution Optical Imagery

The Very-High-Resolution (VHR) imagery for this study was derived from the National
Agriculture Imagery Program (NAIP) under the USDA Farm Service Agency (https://www.
fsa.usda.gov/programs-and-services/aerial-photography/, accessed on 5 February 2022).
The VHR imagery provided image texture for this study. We used the 4-band visible-

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://www.fsa.usda.gov/programs-and-services/aerial-photography/
https://www.fsa.usda.gov/programs-and-services/aerial-photography/
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infrared aerial imagery collected in the Spring of 2014 with a 1-m spatial resolution to
cover the study area. All NAIP imagery was acquired as compressed county mosaics from
the USDA’s geospatial data gateway (https://datagateway.nrcs.usda.gov/GDGHome_
DirectDownLoad.aspx, accessed on 5 February 2022).

We first conducted a principal component transformation of the NAIP imagery and
selected the first principal component, which represents a brightness feature that contains
information from all bands. The first principal component contains more information in the
image than any of the original bands or other principal components. Second, the first prin-
cipal component image was further resampled to 2 m and 3 m spatial resolutions, and the
local texture was calculated for the 1, 2 and 3 m spatial resolution first principal component
images. Third, the local variance calculated at 1, 2 and 3 m spatial resolutions were down-
scaled to 30 m spatial resolution with simple averaging. Fourth, we calculated the ratio (i.e.,
Equation (4)) of degraded image texture at 30 m spatial resolution with initial image texture
derived at the 2 m spatial resolution to that at the 3 m spatial resolution because this ratio
correlates with mean stand crown diameter, which in turn strongly relates to DBH [51,58].

R2/3 =
T2 × 2

T3 × 3
, (4)

where T2×2 is the image texture calculated at 2 m spatial resolution and downscaled to
30 m spatial resolution with simple average; T3×3 is the image texture calculated at 3 m
spatial resolution and downscaled to 30 m spatial resolution with simple average. R2/3 is
the ratio of T2×2 to T3×3. Eventually, we derived two layers of spatial data both at 30 m
spatial resolution as the model inputs, i.e., the image texture initially calculated at the 1 m
spatial resolution, and the ratio of image variance at 2 m to that of 3 m.

2.4. Biomass Model with Random Forest

We developed our biomass model based on Random Forest (RF), a machine learning
algorithm that can be used for both classification and regression [59]. A “tree” in the “forest”
is established from a bootstrapped sample from the reference data with the remaining
reference data left “out-of-bag”, which are used to derive the relative importance of each of
the input features, making it easy to compare predictor variables and determine the most
useful set for regression. RF is not as susceptible to overfitting as an individual tree [59,60],
and it is especially effective in capturing nonlinearity and interactions among the predictive
variables [61]. In addition, RF models are relatively robust to noise in training data. For
this implementation of random forest, variable importance is measured as the percent
increase in mean squared error that results in the exclusion of the given variable. The
general workflow is shown in Figure 2.

We tested many RF models, each with a different set of independent variable combi-
nations. Each model run produces a degree of fitness, i.e., R2, and the root mean squared
error (RMSE) based on the “out-of-bag” samples. We selected the model that predicts the
aboveground biomass with the highest R2 and smallest RMSE. Finally, we evaluated the
selected RF model with a predicted FAGB map and the biomass from all FIA plots within
the study area.

https://datagateway.nrcs.usda.gov/GDGHome_DirectDownLoad.aspx
https://datagateway.nrcs.usda.gov/GDGHome_DirectDownLoad.aspx
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Figure 2. Flow chart for biomass model development. The predictive accuracy by Random Forest is
based on the “out-of-bag” samples. Although the biomass used for calibration and validation are
both from the FIA sampling plots, the validated samples are not used in the calibration.

Table 1 lists all remote sensing features derived from LiDAR, RaDAR (Sentinel-1),
multispectral (Landsat 8), and very high-resolution (NAIP) data that were used for biomass
mapping with RF. Due to the large number of feature variables, we implemented an au-
tomatic feature selection with KnowGRRF, which is an R package developed by Guan
and Liu [62] for statistical computation, to identify the most important remotely sensed
predictors for biomass estimation. In order to use KnowGRRF, we first need to generate
a regularization coefficient for each variable by running the RF to map FAGB with all
variables included. The regularization coefficient for each variable is calculated using
Equation (5) based on the variable importance value from the initial RF run.

Cj = 0.5 + 0.5
( Ij

Imax

)
, (5)

where Cj is the regularization coefficient for the jth variable; Ij is the importance value
of jth variable generated by the initial RF model, and Imax is the maximum importance
value from the initial RF model. After we generated the regularization coefficient for
each variable, we used KnowGRRF to eliminate the least important variable following
a stepwise model based on the Akaike Information Criterion (AIC). Due to the randomness
of bootstrapping in RF, there will be some variations in the outputs from different model
runs. To produce a robust feature selection, the KnowGRRF was run 100 times. Based on
the frequency of feature selection in the 100 runs, the variables were added sequentially
from the most frequently selected ones and gradually adding the less frequently selected
variables from the 100 model runs, and the final set of features was selected based on the
smallest AIC values [62]. We also tested the effect of the sample size on the robustness of
the model output. We tested the final model with two-thirds, half, and one-third of the FIA
biomass data. We ran the model 50 times for each subset of the samples, and each time we
randomly selected the desired subset of plot samples as input to the model. We analyzed
the out-of-bag R2 and RMSE from these model outputs to evaluate the model performance.
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Table 1. Summary of all the remotely sensed predictor variables tested for biomass estimation.

Predictor Description

LiDAR
ZQ25 25th Percentile Height of the LiDAR point cloud
ZQ50 50th Percentile Height of the LiDAR point cloud
ZQ75 75th Percentile Height of the LiDAR point cloud
ZQ85 85th Percentile Height of the LiDAR point cloud
ZQ95 95th Percentile Height of the LiDAR point cloud
SD_ZQ25 Standard Deviation of ZQ25 within 3 × 3 window
SD_ZQ50 Standard Deviation of ZQ50 within 3 × 3 window
SD_ZQ75 Standard Deviation of ZQ75 within 3 × 3 window
SD_ZQ85 Standard Deviation of ZQ85 within 3 × 3 window
SD_ZQ95 Standard Deviation of ZQ95 within 3 × 3 window

RaDAR-Sentinel-1C
VV_winter VV Polarization, Leaf-off Conditions
VH_winter VH Polarization, Leaf-off Conditions
VV_summer VV Polarization, Leaf-on Conditions
VH_summer VH Polarization, Leaf-on Conditions
SD_VV_winter Standard Deviation of the VV Polarization, Leaf-off Conditions
SD_VH_winter Standard Deviation of the VH Polarization, Leaf-off Conditions
SD_VV_summer Standard Deviation of the VV Polarization, Leaf-on Conditions
SD_VH_summer Standard Deviation of the VH Polarization, Leaf-on Conditions

Multispectral-Landsat 8
B_winter Brightness TCT Component, Leaf-off Conditions
G_winter Greenness TCT Component, Leaf-off Conditions
W_winter Wetness TCT Component, Leaf-off Conditions
EVI_winter Enhanced Vegetation Index, Leaf-off Conditions
NDVI_winter Normalized Difference Vegetation Index, Leaf-off Conditions
SI_winter Structural Index, Leaf-off Conditions
B_summer Brightness TCT Component, Leaf-on Conditions
G_summer Greenness TCT Component, Leaf-on Conditions
W_summer Wetness TCT Component, Leaf-on Conditions
EVI_summer Enhanced Vegetation Index, Leaf-on Conditions
NDVI_summer Normalized Difference Vegetation Index, Leaf-on Conditions
SI_summer Structural Index, Leaf-on Conditions

Very High Resolution-NAIP
T1×1 Local texture at 1 m spatial resolution
R2/3 Ratio of the local texture at 2 m to that at 3 m resolution
SD_T1×1 Standard deviation of T1×1
SD_R2/3 Standard deviation of R2/3

In addition to automatic feature selection using KnowGRRF for the final biomass
mapping model, we tested the performance of various subsets of the remotely sensed data
with RF. Sub-datasets included data from each sensor, i.e., LiDAR, RaDAR, multispectral,
and very-high resolution aerial imagery, as well as the combination of the RaDAR and
multispectral data split by the season they were acquired. The overall performance of
each model was evaluated based on selected features that maximized accuracy while
reducing the overall number of inputs. The number of trees contained in each RF model
was set to 300, sufficiently high to allow all input rows to be used multiple times in model
development and to produce a stable output.

3. Results

The automatic feature selection R package, KnowGRRF, selected 18 variables from
Table 1 based on AIC. Figure 3 shows the importance order of these 18 variables. The
top five most important variables are all from the lidar height metrics, including ZQ95,
ZQ85, ZQ75, ZQ50, and SD_ZQ85. In addition, ZQ25 and SD_ZQ50 from the LiDAR
sensor also made it to the model, although they were not as important. For multispectral
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remotely sensed features from Landsat 8, the selected features include G_summer, SI_winter,
EVI_winter, NDVI_summer, and B_summer. Thus, the multiseasonal optical images are
valuable for biomass mapping. For features from the RaDAR sensor, VH_winter, VV_winter,
SD_VV_winter, and SD_VH_summer were selected into the model. Moreover, VH_winter
is the most important variable not from the LiDAR sensor in the model. It is understandable
why VH_winter, not VH_summer, was selected because the short wavelength C-band from
Sentinel-1 cannot penetrate much into the canopy in the summer when the forest canopies
are dense. Variables from the VHR image include T1×1 and SD_T1×1, which are related to
tree crown size. Therefore, all four types of data made it into the final model, indicating the
validity of our conceptual model.
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The variable importance values provided by RF (Figure 3) indicate the top four most
important variables are the ZQ95, ZQ85, ZQ75, and ZQ50 canopy height of total LiDAR
returns, followed by SD_ZQ85 of LiDAR points. Among the height metrics, the height
of the 95th percentile LiDAR points is the most important height metric. The subsequent
highly important feature after the height metrics is RaDAR backscatter intensity from the
VH polarization in the wintertime. Although VV_winter and SD_VV_winter also enter the
model, they are not important as VH_winter. Summer backscatter intensity do not enter
the model, but only SD_VH_summer is selected, ranking last in its importance among the
variables selected. The features from the Landsat 8 imagery include G_summer, SI_winter,
EVI_winter, NDVI_summer, and B_summer in order of importance. Variables selected from
NAIP include T1×1 and SD_T1×1 with relatively low importance ranking. Surprisingly
R2/3 do not enter the model. This may be because of the relatively low aboveground forest
biomass (Figure 4) with relatively small trees. Thus, the spatial information is not very
helpful in mapping the biomass. For this model, the parameter ‘mtry’, the number of
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variables considered at each split within a tree, was tested to produce the highest accuracy.
By testing every possible value of ‘mtry’ for the highest model accuracy, we find that the
model leads to the most accurate prediction when ‘mtry’ is set to five.
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The selected model yields an R2 of 0.625 with an RMSE of 18.8 Mg/ha (47.6%) based
on the “out-of-bag” samples. When using the selected model to produce the biomass map
and validated with the biomass from all the FIA plots, the R2 increased to 0.64 with the
regression RMSE = 10.8 Mg/ha (Figure 4), which is smaller than the RMSE based on the
“out-of-bag” samples. The R2 for the whole sample was slightly higher than the out-of-bag
sample because each plot would be “seen” by some of the trees in the RF, increasing the R2.
The out-of-bag samples are not seen by any of the “trees” in the training process; thus, it is
a more rigorous validation. Figure 4 shows that the predicted biomass and the FIA biomass
distribute well along the 1:1 line. There is a slight overestimation of biomass for plots with
low biomass and an underestimation for plots with high biomass.

To understand the contribution of each sensor to biomass mapping, we tested its
respective predictive power with the data (Table 2). When all variables are included,
the model performance is not as good as the parsimonious model after eliminating the less
important variables. Among all the different types of data, the performance of features
from the LiDAR sensor dwarfed all other sensors. It is not surprising that the top five most
important variables are all from the LiDAR sensor. The performances of multiseasonal
features from RaDAR and multispectral sensors are similar, with an R2 of 0.065. It is
interesting to notice that the Tasseled Cap transformation components have much higher
R2. Vegetation indices alone performed much poorer than the Tasseled Cap components.
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Table 2. Accuracy summary of sub-dataset testing.

Dataset R2 RMSE (Mg/ha)

All Data 0.598 19.5
LiDAR 0.595 19.6
RaDAR 0.065 29.7
Multispectral 0.065 29.7
Very High Resolution −0.027 -
Tasseled Cap Components 0.123 28.8
Spectral Indices 0.043 30.1

The effects of sample size with our final model on mapping FAGB is shown in Table 3,
which shows basic statistics of the 50 model runs for each subset of the samples. As
expected, the models with the smaller subsamples have a lower R2, larger variation in
R2 among different model runs, and consequently produced a larger out-of-bag RMSE
and larger variation in RMSE. As demonstrated in Table 3, the model is very robust to the
variation in sample sizes. The out-of-bag R2 decreased only 0.044 using only one-third of
the whole sample, and the RMSE increased by 1.0 Mg/ha. Therefore, we can safely say that
our model results are robust.

Table 3. Statistical summary of sample size manipulation.

Sample Size Mean R2 Min R2 Max R2 Std. Dev. R2

One-Third (75) 0.567 0.396 0.725 0.08894
Half (113) 0.586 0.413 0.669 0.05041
Two-Thirds (150) 0.598 0.513 0.679 0.03585
All Data Points (227) 0.611 0.598 0.626 0.00625

Sample Size Mean RMSE Min RMSE Max RMSE Std. Dev. RMSE

One-Third (75) 20.2 14.5 24.5 2.60506
Half (113) 19.8 15.6 23.0 1.89259
Two-Thirds (150) 19.4 16.7 21.8 1.22976
All Data Points (227) 19.2 18.8 19.5 0.15180

Using the selected RF model, we produced the forest aboveground biomass map as
shown in Figure 5, on which we masked out nonforest areas based on the 2016 land-cover
map from the National Land Cover Dataset [54]. The area is dominated by agricultural land,
and we do not see a large expanse of land with high biomass. We can see that the highest
biomass is distributed in the riparian zones, partly because these areas are strictly protected
from logging and partly because the abundance of nutrients and water that favorably
supports forest growth over the areas that are further away from the riparian zones.
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4. Discussion

This study used remotely sensed data from multiple sensors, including Landsat 8,
airborne LiDAR, Sentinel-1 RaDAR, and very high-resolution optical imagery from the
National Agriculture Imagery Program. Multiseasonal Landsat 8 imagery was intended to
capture the species variation in space; LiDAR height metrics to describe vertical canopy
structure; Sentinel-1 RaDAR backscatter in the C-band in dual-polarization (VV and VH)
for both winter and summer seasons to capture the canopy volume; the image texture
from very high-resolution optical imagery to provide texture measures of forest canopies
as well as the ratio of the image texture of 2 m to that of 3 m spatial resolution. However,
the importance ranking information provided by the RF model showed the height metrics
dominate all other variables. Moreover, it is not the height at a single energy level, but the
entire height profile. This finding is different from a previous study that found the height
of the median energy, i.e., the height where the 50th percentile of LiDAR data points from
the ground, was the most important variable [42]. The forests in the study area here are
primarily Loblolly pine stands with relatively simple canopy structures, making ZQ95 the
most important canopy height metric in biomass mapping, but heights at other energy
levels are also important for biomass mapping. The height metrics alone capture 59.5% of
the variance in biomass, compared to 62.5% from the full model. The importance of canopy
height in biomass mapping is consistent with findings in the literature [41,42,63–65]. The
performance of our model is equivalent to other studies using RF with multiple sources of
data mapping biomass [63,66]. Despite the robust model performance, there remains some
systemic bias in the biomass estimation, i.e., a slight overestimation at the lower end and
an underestimation at the higher end of biomass. Such a bias pattern is a common issue for
remotely sensed biomass estimation in other studies [50,66].

Unlike other land surface biophysical parameters, such as leaf area or canopy height,
that can be measured directly from remotely sensed signals, there is no direct remotely
sensed signal for biomass [32]. Remote sensing only measures biomass proxies that are
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imperfectly related to biomass, such as canopy height and species composition. The leaf
area index in the canopy had been used to measure biomass fairly effectively [28]. However,
the leaf area index of forest canopies saturates within a couple of decades, whereas forest
biomass can continue to increase for centuries [24]. Among the biomass proxy variables
measured remotely, the relationship of vegetation canopy height does not saturate with
FAGB. Therefore, canopy height from LiDAR sensors has proved to be the most important
variable for biomass mapping [67]. However, the height–biomass relationship is species-
dependent, as is a well-known fact in allometry [14,15,68]. Although reports used optical
sensors alone that produced reliable biomass maps, these studies are generally based on
coarse resolution remotely sensed data [50,69,70]. The relative success of using the optical
sensors in mapping forest biomass over a large area using coarse resolution imagery is
primarily driven by the vegetation cover effect. Such an approach may not apply to higher
spatial resolution applications. Many localized studies found that optical sensors alone
cannot accurately map biomass beyond 150 Mg/ha [33], and the Root Mean Squared Error
(RMSE) for biomass mapping can be as high as 50% or higher [28,71]. As a result, many
studies used remotely sensed data from multiple sensors.

Tremendous efforts were also dedicated to mapping forest aboveground biomass
using RaDAR data because RaDAR signals can penetrate clouds, which are a constant
impediment to biomass mapping using optical images, particularly in the tropics. An early
attempt to map forest aboveground biomass with RaDAR was conducted with NASA/JPL
SAR data [35,36], and they found that RaDAR backscatter intensity of P-band best corre-
lated with biomass, and the relationship decreases with increasing frequencies. Moreover,
they found that the cross-polarized backscatter intensity best explains the forest biomass
variation [36,39]. However, RaDAR signals saturate with biomass at about 200 Mg/ha for
P-band, 100 Mg/ha for L-band, and C-band backscatter is much less sensitive to forest
aboveground biomass variation. Soil and vegetation moisture can have a stronger influence
on high frequency (X or C-band) backscatter RaDAR signals than FAGB [37,72]. These
findings were later confirmed by Luckman et al. [73]. Recently, Liao et al. [74] compared
coherence magnitude, interferometric phase, and backscatter signals of P-band PolInSAR
from TropiSAR to map forest aboveground biomass and found the volume backscatter
from the forest canopy best predicts tropical FAGB. Two promising RaDAR instruments,
BIOMASS with a full polarimetric P-band SAR to be launched by the European Space
Agency in 2023 and NISAR with L- and S-band SAR also to be launched in 2023 by a joint
U.S.-India effort [75], will bring new momentum in mapping FAGB with RaDAR data in
the near future.

Given the complexity of remotely sensed signal interactions with land surface condi-
tions, it seems no single sensor can provide data that can reliably map FAGB. Most recent
efforts in mapping forest aboveground biomass almost all engage with remotely sensed
data from multiple sensors. Blackard et al. [16] produced the nationwide forest biomass
for the U.S. using MODIS remote sensing data and data products as well as topographic,
climatic variables, and other ancillary data. However, this biomass map tends to overesti-
mate low biomass and underestimate high biomass. Animi and Sumantyo [76] found that
biomass estimation accuracy based on a multilayer perceptron neural network model was
significantly better when using both RaDAR and optical data than either alone. Huang
et al. [66] and Cutler et al. [77] found that RaDAR image texture significantly improved
biomass mapping with Landsat TM data. Image texture for both optical and RaDAR
sensors, SD_VV_winter, SD_VH_Summer, and T1×1_ were selected into our final model
using an automatic feature selection algorithm, KnowGRRF, based on AIC in this study.
Similarly, synergistic use of optical and LiDAR data also improves the accuracy of biomass
mapping [78–80]. More recently, Brovkina et al. [81] used airborne hyperspectral and
LiDAR data to map FAGB in central Europe and found that the biomass maps estimated
using both data simultaneously were much more accurate than using either datum alone.
Andersen et al. [82] and Babcock et al. [67] found that stratifying LiDAR data based on land
cover derived from optical sensors improved the biomass mapping accuracy in interior
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Alaska, USA. There is strong evidence in the literature that using remotely sensed data from
multiple sensors enhances the accuracy of biomass mapped. This paper proposes to use
data from multiseasonal optical, multiseasonal RaDAR, LiDAR, and very high-resolution
data to map FAGB. These data provide information related to forest species, canopy volume,
canopy height, and DBH, which are the key data needed to estimate individual tree biomass
on the ground. Therefore, the use of data from multiple sensors that provide information
on these factors should be the theoretical basis for mapping FAGB with remote sensing. Its
potential has not been fully demonstrated in this study. More studies are needed to test
this mapping algorithm in areas with a higher biomass density and more heterogeneity
species variation because the variables accounting for the effects of tree crown size and
species variation did not fully realize their potential in this study.

5. Conclusions

This study proposes a conceptual model to map aboveground forest biomass using
remotely sensed data. The new conceptual model posits that we need remotely sensed
data to provide information about species composition, canopy height, and diameter at
breast height. We test the conceptual model by fusing optical medium resolution data from
Landsat, very high-resolution images from USDA NAIP, airborne LiDAR, and RaDAR
images from Sentinel-1 to map aboveground forest biomass. Our final model is able to
explain 62.5% of the biomass variation and the RMSE of the model is 18.5 Mg/ha (47.6%)
calculated from out-of-bag samples. We find that the LiDAR height metrics are the most
important variables. We need the height profile for the 95th, 85th, 75th, 50th, and 25th
percentile canopy heights of the LiDAR points in mapping the biomass, rather than a single
height metric. The importance of height metrics dwarfs all other variables, although the
inclusion of Landsat, very high-resolution imagery, and the RaDAR data from Sentinel-
1 only marginally improves the performance of the model. The lack of importance from
multiseasonal optical imagery in aboveground forest biomass mapping in this study is
likely due to the dominance of evergreen pine forests in the region. The lack of significant
contribution from Sentinel-1 C-band SAR backscatter is consistent with the literature
because C-band has a limited capacity to penetrate the canopy. The limited contribution
from the image texture from USDA NAIP imagery deserves further investigation because
biomass for these FIA plots is relatively low. In addition, we find that our model is robust
because its performance is not sensitive to minor changes in training sample size. More
studies are needed to further test the conceptual model for aboveground biomass mapping
in areas with a broader biomass range and a more diverse species composition.
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