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[1] Data from spaceborne light detection and ranging (lidar) opens the possibility to map
forest vertical structure globally. We present a wall‐to‐wall, global map of canopy
height at 1‐km spatial resolution, using 2005 data from the Geoscience Laser Altimeter
System (GLAS) aboard ICESat (Ice, Cloud, and land Elevation Satellite). A challenge in
the use of GLAS data for global vegetation studies is the sparse coverage of lidar shots
(mean = 121 data points/degree2 for the L3C campaign). However, GLAS‐derived
canopy height (RH100) values were highly correlated with other, more spatially dense,
ancillary variables available globally, which allowed us to model global RH100 from
forest type, tree cover, elevation, and climatology maps. The difference between the model
predicted RH100 and footprint level lidar‐derived RH100 values showed that error
increased in closed broadleaved forests such as the Amazon, underscoring the challenges
in mapping tall (>40 m) canopies. The resulting map was validated with field
measurements from 66 FLUXNET sites. The modeled RH100 versus in situ canopy height
error (RMSE = 6.1 m, R2 = 0.5; or, RMSE = 4.4 m, R2 = 0.7 without 7 outliers) is
conservative as it also includes measurement uncertainty and sub pixel variability within
the 1‐km pixels. Our results were compared against a recently published canopy height
map. We found our values to be in general taller and more strongly correlated with
FLUXNET data. Our map reveals a global latitudinal gradient in canopy height, increasing
towards the equator, as well as coarse forest disturbance patterns.
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1. Introduction

[2] Forest vertical structure remains poorly characterized
despite being a predictor of aboveground live biomass
[Lefsky et al., 2002; Drake et al., 2002; Anderson et al.,
2006], primary productivity [Thomas et al., 2008], and
biodiversity [Goetz et al., 2007]. Here, we model forest
vertical structure using data from the Geoscience Laser
Altimeter System (GLAS) aboard ICESat (Ice, Cloud, and
land Elevation Satellite). The altimeter transmitted a 1024 nm
light pulse and recorded the reflected signal (waveform)
[Zwally et al., 2002]. We use these data to construct a global
wall‐to‐wall map of forest canopy height.
[3] ICESat/GLAS acquired data globally between 2003

and 2009. However, lidar shots provide an incomplete cov-
erage of the Earth. GLAS footprints were approximately 65m
in diameter, spaced by 170 m along track and several tens of
kilometers across tracks, a distance that increased in the tro-
pics. To compound this data dearth, obstruction by clouds
often hindered coverage. Thus, producing a wall‐to‐wall map

requires exploiting the relationship between footprint level
lidar‐derived canopy height estimates and spatially continu-
ous ancillary variables, such as data from the Moderate
Resolution Imaging Spectroradiometer (MODIS).
[4] There are numerous approaches to associate the sparse

lidar footprints with the spatially continuous ancillary vari-
ables. One option is to segment or classify the study site to
obtain patches that share a meaningful ecological parameter
(e.g. age, species composition), such that lidar measurements
can be scaled up to the patch level [i.e., Lefsky et al., 2005a;
Boudreau et al., 2008]. A recent global canopy height map
[Lefsky, 2010] was produced by segmenting MODIS reflec-
tance data to delineate forest patches. We argue that those
results can be difficult to interpret at coarse resolution given
that (i) MODIS images were segmented based on spectral/
textural heterogeneity thresholds that do not readily translate
into forest stand properties; (ii) model error can be attributed
to both sub‐pixel (500‐m MODIS) and sub‐patch (1–900
MODIS pixels) variability. As an alternative, we propose to
associate selected GLAS shots with 1‐km pixels as we
believe that in the absence of high‐resolution forest distur-
bance/age maps to serve as segments, the pixel approach
deserves evaluation.
[5] We produced a global wall‐to‐wall canopy height map

by combining GLAS RH100 estimates and global ancillary
variables. This paper also extends previous work [Lefsky,
2010] by validating results against field measurements and
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considering the impact of sub‐pixel variability on model
accuracy. In mapping canopy height globally, we are inter-
ested in characterizing fine‐scale variability (attributable to
disturbance) against a backdrop of generally more coarsely
changing edaphic and climatic gradients. With that goal in
mind, we selected globally available climate, elevation, and
vegetation cover layers. This includes the MOD44B percent
tree cover product [Hansen et al., 2003] from MODIS, ele-
vation from the Shuttle Radar Topography Mission, SRTM
[Farr et al., 2007], as well as climatology maps from the
Tropical Rainfall Measuring Mission, TRMM [Kummerow
et al., 1998] and Worldclim database [Hijmans et al., 2005].
All ancillary variables were resampled to bring the resolution
of the output wall‐to‐wall map to 1‐km.
[6] In the context of building a systematic algorithm, the

first step was to develop an objective procedure to select
waveforms and correct slope‐induced distortions in RH100
[Lefsky et al., 2005b] and calibrate canopy height estimates;
RH100 estimates were calibrated with field measurements.
Second, we used a regression tree approach to model lidar
points from the available ancillary variables. Finally, model
predictions were independently validated against field esti-
mates from 66 FLUXNET sites distributed globally and
covering a broad range of forest types.
[7] Our error analysis accounted for the disparity in scales

between lidar footprints and the resolution of the ancillary
variables. In our model, lidar shots effectively represented
samples of the underlying forest structure, and did not always
intersect the tallest tree within a 1‐km pixel. Conversely,
ancillary variables might not always reflect the environmental
conditions at the lidar footprint, but rather comprise an
average over 1‐km2. Due to the scarcity of fine‐resolution
global vegetation maps, we have examined the impact of sub
pixel variability on model error indirectly by looking at two
surrogates of forest heterogeneity: degree of disturbance and
forest type. First, we hypothesize that our estimates at pro-
tected sites (as defined by the UN World Database on Pro-
tected Areas, www.wdpa.org) have less error due to less
structural variability associated with anthropogenic distur-
bance. Second, we hypothesize that across forest types,
model error increases with variance in canopy height.
[8] The resulting wall‐to‐wall map can be downloaded

from the web (http://lidarradar.jpl.nasa.gov) and reveals
regional canopy height gradients as well as coarse distur-
bance patterns. Our results were compared against another
canopy height product [Lefsky, 2010], and differences were
examined in light of the choice of calibration algorithm,
ancillary variables, and modeling procedures.

2. Methods

2.1. Canopy Height Estimation

[9] Our analyses were based on the GLA14 land product
version 31. Each GLA14 waveform is a fit of the original
GLAS waveform, modeled by a maximum of 6 Gaussian
distributions [Brenner et al., 2003]. The GLAS‐derived
estimate of canopy height is the waveform metric RH100,
defined as the distance between signal beginning and the
location of the lidar ground peak [Harding and Carabajal,
2005; Sun et al., 2008; Boudreau et al., 2008]. In the
GLA14 product version 31, the signal beginning is defined
as the location at which the signal is 3.5 times above the

noise standard deviation. The location of the Gaussian dis-
tributions is constrained to be between the signal beginning
and end. Generally, the ground can be determined as the last
Gaussian peak, which works best in flat areas and open
canopies. Within closed canopies, locating the ground is
sometimes difficult (e.g. when the last peak has low ampli-
tude relative to another neighboring peak) [Boudreau et al.,
2008]. It has been shown that using a regression through
waveform extent and a terrain index derived from an ancil-
lary DEM can alleviate ground detection issues and improve
canopy height estimates [Lefsky et al., 2005b; Rosette et al.,
2008]. However, the regressions may be site specific and
may introduce significant biases. On the other hand, Rosette
et al. [2008] obtained reasonable results using the location of
the last Gaussian peak as the ground level and, importantly,
found it had the lowest mean error (0.39 m). Since the
regression tree methodology essentially represents overall
trends, it is important that potential bias in the GLAS esti-
mate of canopy height be minimized.
[10] After the systematic selection process described in

section 2.2, the RH100 values were rounded to the nearest
meter and used as input in the regression tree to produce a
wall‐to‐wall canopy height map (see section 2.3). If more
than one GLAS shot intersected a 1‐km pixel, all points
were used. Instead of locally combining multiple GLAS
shots, model averaging is performed as the last step of the
regression tree approach (see section 2.3).

2.2. Waveform Selection

[11] We selected the data acquired with laser L3C
between 2005‐05‐20 and 2005‐06‐23. This campaign was
chosen due to its temporal overlap with the 2005 MODIS
Percent Tree Cover product (MOD44B).
[12] The overall goal of the waveform selection procedure

was to isolate data points from forested sites while reducing
the impact of slopes and cloud contamination on canopy
height estimates. We selected GLAS shots that fell within a
forest class as defined by the Globcover map [Hagolle et al.,
2005]. Because the 65 m GLAS footprint samples only a
fraction of the 1‐km2 land cover pixel, not all waveforms are
from forest canopies. Those cases were problematic given
our objective to model the tallest canopies as opposed to
gaps or forest edges. To ensure that shots were reflected
from a forest canopy, we selected waveforms characterized
by more than one Gaussian peak, assuming that waveforms
with a single peak are due to ground reflection only.
[13] GLA14 waveforms were also filtered using engi-

neering and signal parameters to account for cloud cover
and terrain slope. The GLA14 product contains a cloud
detection flag that we found to be too stringent. Instead, we
computed the Signal‐to‐Noise Ratio (SNR) to detect
waveform hindered by clouds as well as waveforms with
other unidentified measurement and system issues. To fur-
ther remove waveforms with signal dominated by clouds,
we selected waveforms that were co‐located close to the
ground as defined by SRTM (i.e. within 80 m to account for
forest height and SRTM elevation errors).
[14] Terrain slope is the main factor contributing to canopy

height estimation error [Lefsky et al., 2005b; Duncanson
et al., 2010]. The impact of slope is to broaden the lidar
waveform, thereby introducing a bias in canopy height
estimates. For a large footprint lidar such as GLAS, pulse
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broadening can be significant. Assuming homogeneous
canopy height within the footprint, the maximum broad-
ening of the waveform extent can be calculated as the
distance between the lowest ground point and the top of
the highest tree within the footprint. This implies a potential
bias = Df *tan(slope) [Chen, 2010], where Df is the footprint
diameter. As an example, laser L3 with a ∼65 m footprint
may exhibit an 11.5 m canopy height estimation bias over a
10 degree slope.
[15] To minimize canopy height estimation bias due to

terrain slope, we produced a slope map extending between
60S and 60N, from the 90 m SRTM elevation data to esti-
mate the potential bias. Building on this simplified model, we
only preserved waveforms located in slopes below 5 degrees
and for which the necessary bias correction was less than 25%
of the measured RH100. For instance, a waveform located on
a 5° hill was selected if the original RH100 was greater than
23 m. We found this step significantly improved predictions
in comparison with an earlier product version [Simard et al.,
2008]. Although, slope compensation should always reduce
the measured canopy height (RH100), the random DEM
errors cause under‐and over‐estimation of slopes (∼±5°).
This generates a random compensation error (∼6 m) that is
reduced through averaging within the regression tree model.
On the other hand, a heterogeneous canopy within the GLAS
footprint may be over‐compensated by our simplistic cor-
rection model that assumes homogeneous stands at the scale
of a GLAS footprint.

2.3. Producing a Global Wall‐to‐Wall Forest Canopy
Height Map

[16] We employed the regression tree method Random
Forest (RF) [Breiman, 2001] to model RH100 values based
on global ancillary variables, and to estimate canopy height
values for areas not covered by GLAS waveforms. RF has
been formalized in the context of non‐parametric statistics
and machine learning algorithms. The method has been
successfully used in initiatives to map vegetation flood state
[Whitcomb et al., 2009], biomass [Baccini et al., 2008;
Powell et al., 2010] and species distribution [Prasad et al.,
2006]. One main advantage is that multiple predictor vari-
ables can be incorporated without making assumptions
about their statistical distribution or covariance structure. RF
iteratively splits the response variable (RH100) into two
groups. At each split the model chooses the predictor vari-
able that minimizes the within‐group variance in RH100.

The list of splitting rules is stored in a “tree” object. RF has
been shown to outperform other machine learning algo-
rithms due to its “bagging” strategy [Prasad et al., 2006].
Essentially, before growing each tree, RF selects a user‐
defined number of input points and subsamples the predictor
variables. This procedure is expected to decrease the cor-
relation among individual “trees,” which improves model
accuracy [Breiman, 2001]. After the model is run, a single
prediction is obtained by averaging the predictions from all
“trees.”
[17] We included 7 ancillary variables in our regression tree

model, primarily corresponding to climate and vegetation
characteristics (Table 1). Some datasets were combined to
achieve global coverage, as follows. The 3B43_V6 Accu-
mulated Precipitation product from the Tropical Rainfall
Measurement Mission (TRMM) covers latitudes between
−50 and 50. For large latitudes, the precipitation estimates
were obtained from the Worldclim product (Table 1).
Similarly, the SRTM elevation product is restricted to
latitudes −60 and 60, and the coverage was extended using
the GTOPO product. We found pixels above 70N that were
identified as forest sites by the Globcover product, but yet
not covered by the MOD44 map. For these sites, we defined
the percent tree cover as the average percent tree cover for
each Globcover class, calculated for latitudes 68–70N. All
maps were interpolated to 1‐km using majority rule (for
categorical variables) or bilinear interpolation (for continu-
ous variables).
[18] The RF package used here was implemented in C++

with a wrapper in R language (R Development Core Team,
http://www.R-project.org, 2011), and includes both regression
and classification functions. Here, we employ a regression
tree approach to handle a continuous, ordinal response vari-
able (RH100). We generated one “RF forest” per Globcover
class [Hagolle et al., 2005]. We considered 12 classes here,
including forest/cropland mosaics but excluding shrublands.
Each “RF forest” contained 500 “RF trees,” and individual
“RF trees” were grown from a subset of 25000 randomly
selected points and 4 predictor variables. The sampling was
performed with replacement, that is, there is some overlap in
the input data among “RF trees.” The results were mosaicked
to produce the wall‐to‐wall map.
[19] An initial modeling attempt included slope maps

derived from SRTM, but that introduced artifacts in the
results so slope was removed from the list of ancillary vari-
ables. Inclusion of Normalized Difference Vegetation Index

Table 1. Ancillary Variables Used in the Regression Tree Approach to Model Canopy Height (RH100) Estimates From GLAS

Variable Dataset Year Resolution Reference

Annual Mean Precipitation (mm) Worldclim 1950–2000 0.00833 Deg Hijmans et al. [2005]
TRMM 2001–2008 0.25 Deg Kummerow et al. [1998]

Precipitation Seasonality
100 * SD (mm)/mean (mm)

Worldclim 1950–2000 0.00833 Deg Hijmans et al. [2005]
TRMM 2001–2008 0.25 Deg Kummerow et al. [1998]

Annual Mean
Temperature °C * 10

Worldclim 1950–2000 1 km Hijmans et al. [2005]

Temperature Seasonality
100 * SD (°C)

Worldclim 1950–2000 1 km Hijmans et al. [2005]

Elevation (m) SRTM + GTOPO 2000 1 km U.S. Geological Survey [2006]
Tree Cover (%) MOD44B 2005 500 m Hansen et al. [2003]
Protection Status (7 classes) UN World Database on

Protected Areas
2010 Vector format www.wdpa.org
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(NDVI) maps from MODIS, did not improve model accu-
racy. Furthermore, the model averaging employed by Ran-
dom Forest creates a trade‐off between overall model
accuracy and ability to predict extreme values. We updated
the model to address this issue with two modifications: (1) by
taking themaximum prediction across all 500 trees, instead of
calculating the average prediction; and (2) by developing a
stratified sampling strategy to ensure that all height classes
are equally represented in the training data. These two strat-
egies led to a significant decrease in model accuracy. We
decided for using the model in its original inception, which
facilitates reproducibility.

2.4. Field Calibration/Validation

[20] We present two forms of field validation—one for the
individual GLAS estimates of canopy height within the 65 m
footprints, and the other for the resultant modeled 1‐km
pixels from the wall‐to‐wall map. For clarity, we will refer to
the former as the calibration procedure since it is to ensure
the footprint‐level RH100 measurements correspond to the
top canopy height. On the other hand, comparison of field
data with the resulting canopy height map will be considered
as the validation procedure.
[21] Calibration of the RH100 derived from GLAS

waveforms was based on a set of 98 co‐located field mea-
surements collected in tropical ecosystems in Uganda,
Africa, during September 2008. Each field sample covered
an area of 1600 m2 centered on a GLAS shot. The height of
the three tallest trees within the plot was measured using a
clinometer. To minimize the effect of slope [Lefsky et al.,
2005b; Yang et al., 2011] in the field data, we considered
only GLAS shots on terrain with a slope smaller than 10%
(slope was measured with a clinometer). To minimize the
effect of roughness we limited the area where tree height
was collected and measured tree height only of the 3 tallest
trees within a radius of 20 meters. By doing so, the mea-
surements are derived from the footprint region with highest
gain [Lee et al., 2011]. The height of the tallest tree and the
average height of the three tallest trees were compared to the
co‐located footprint level estimates of RH100.

[22] The Uganda dataset (above), as well as canopy
height data from the FLUXNET La Thuille database
[Baldocchi, 2008; Baldocchi et al., 2001] were used to
validate the 1‐km wall‐to‐wall map and assess model
error/uncertainty. The FLUXNET database was selected
for three primary reasons: (i) most sites are relatively
homogeneous and flat to 1‐km2, which minimizes error
due to sub pixel variability; (ii) the sites have global
coverage, include most major biome types and climates,
and represent one of the largest available datasets of eco-
system measurements; and, (iii) data quality is generally
high due to the presence of a physical above‐canopy tower
at each site, as well as repeated measurements for these
well‐instrumented sites that require accurate canopy height
for their core flux measurements. The FLUXNET database
contains 475 sites, of which 120 sites contained tree height
data relevant to the ICESat time period, 86 sites had in situ
data and were covered by our map. Finally, 66 FLUXNET
sites with vegetation known to be greater than 5 m were
covered by our map. This represents 9 vegetation classes,
primarily dominated by closed (>40%) broadleaved
deciduous forest (16 sites) and closed (>40%) needleleaved
evergreen forest (15 sites). Some error is introduced
because the longitude/latitude for each site was given for
the tower location, but the canopy (e.g., footprint) that the
tower instruments measure is often adjacent to the tower,
rather than symmetrically surrounding the tower. The accu-
racy and method of the in situ canopy height measurements
was generally not reported and non‐uniform, though from
experience working at some of these sites and taking such
measurements the in situ uncertainty typically increases lin-
early with height from negligible to up to 10% for the tallest
(>30 m) trees. Method of measurement ranges from: ground‐
based or airborne lidar, laser rangefinder/clinometer, and
climbing the tower or tree and measuring distance to ground
with a tape measure (or directly holding up a tape measure to
shorter vegetation). At seven sites, land cover heterogeneity
surrounding the site was significant and led to severe pixel
contamination. We present results for both with and without
those seven “outliers.”

Figure 1. Signal‐to‐Noise Ratio (SNR) versus RH100 esti-
mates from GLAS points.

Figure 2. Difference between GLAS ground estimates and
SRTM elevation (m). Very large values (>1000) in general
had low Signal‐to‐Noise Ratio. These artifacts are likely
due to cloud contamination.
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2.5. Error Analysis

[23] The main objective of the error analysis was to assess
the influence of terrain and sub pixel variability on model
accuracy. That is, how consistently accurate are predictions in
disturbed vs. pristine sites, in tall vs. short forest types, and in
flat vs. steep terrain? For this task, we compared model pre-
dictions against the RH100 data points used to derive the
regression tree. The root mean square error (RMSE) was
calculated for each forest type as:

RMSE mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

ŷi � yið Þ2

N

v

u

u

u

t

Where yi is the canopy height observed from GLAS (RH100)
and ŷi is the modeled canopy height in the wall‐to‐wall map.
[24] In addition, we calculated the percent error for each

GLAS point as:

Percent Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŷi � yið Þ2

yi

s

A t‐test was used to examine the impact of protection status
(protected or not protected) on percent error. We hypothe-
size that protected areas have lower error due to lower
variability in canopy height within 1 km pixels.

2.6. Comparison With the Existing Global Canopy
Height Product

[25] We compare our wall‐to‐wall estimates of canopy
height map with the recent product from Lefsky [2010],

which is also based on GLAS data. Although both maps aim
at characterizing canopy height globally, there are important
differences in terms of canopy height metric and modeling
strategy. We calculate and discuss the differences between
the two maps in light of the different calibration procedures,

Figure 3. Density of GLAS shots (per degree) used as input in the tree regression procedure.

Figure 4. Relationship between percent tree cover esti-
mated from MODIS Vegetation Continuous Fields and
GLAS‐derived canopy height (RH100). The dashed vertical
lines indicate the range in GLAS RH100, the horizontal line
within the boxes corresponds to the median canopy height
and the boxes contain 50% of the points.

SIMARD ET AL.: FOREST HEIGHT WITH SPACEBORNE LIDAR G04021G04021

5 of 12



ancillary variables, and modeling approaches. We also
compare the individual pixels from Lefsky [2010] to the
FLUXNET validation dataset.

3. Results

3.1. Waveform Filtering and Slope Correction

[26] We first selected waveforms with multiple peaks
that belonged to a Globcover forest class. We found the
GLA14 cloud detection flag removed lidar waveforms
that could still be used for canopy height estimation. On
the other hand, the choice of a minimum acceptable SNR
value was easily identified. The plot in Figure 1 shows
that low SNR is a good indicator of the measurement
quality since the large amount of very large canopy height
(>50 m) for SNR below 50 is not realistic. Our choice of
a minimum acceptable SNR value can be strengthened by

considering the difference in terrain elevation estimates
between GLAS and SRTM data. Figure 2 shows the
elevation difference between these two datasets. For dif-
ferences greater than a few tens of meters the GLAS
returns likely originated from clouds, explaining the low
SNR values encountered. Finally, only waveforms in
terrain slopes less than 5° and requiring a slope correction
less than 25% of the uncorrected RH100 were selected to
minimize the impact of terrain slope on the regression.
[27] The waveform selection procedure generated a clean

set of 2.5 million data points from the initial 39 million land
shots for campaign L3C (6.4%). The resulting clean GLAS
dataset is globally distributed with a denser sampling in flat,
forested areas such as the temperate and boreal forest, the
Amazon and the Congo Basin (Figure 3).

3.2. Global Canopy Height Gradients

[28] Canopy height estimates from the filtered GLAS
shots revealed two main patterns. RH100 values increases
with MODIS tree cover estimates (Figure 4). In general,
canopy height decreases with latitude and elevation, except
for a peak around 40S (Figure 5). Tall forest stands (in
Victoria, Tasmania, and New Zealand) had a disproportional
contribution to this latitudinal band, whereas in the North
canopy height values were averaged across a broader range
of forest types.

3.3. Wall‐to‐Wall Canopy Height Map

[29] The wall‐to‐wall canopy height map (Figure 6) can
be downloaded from http://lidarradar.jpl.nasa.gov. In the
Amazon basin, the wall‐to‐wall map shows differences in
canopy height as a function of distance from rivers, as well
as edge effects associated with road construction and along
the Amazonian arc of deforestation (Figure 6, inset). The
distribution of canopy height values was in general slightly

Figure 6. Wall‐to‐wall map produced by modeling GLAS points with a regression tree approach. The
inset shows a disturbance gradient in the Amazon (color scale was adjusted to increase contrast).

Figure 5. Mean GLAS‐derived canopy height (RH100) as
a function of latitude.
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narrower in the wall‐to‐wall map as compared to the orig-
inal GLAS points (Table 2), but also showed a right‐skewed
distribution (Figure 7).

3.4. Ground Validation and Error Analysis

[30] Because the 98 points collected in Africa were coin-
cident with the GLAS data, we used them to calibrate the
estimates of canopy height from GLAS waveforms (i.e. local
estimates of RH100) as well as validate the model estimates
(i.e. the final spatially continuous map). The result is shown
in Figure 8 with (a) local RH100 calibration error of 4.1 m
(R2 = 0.84) and (b) wall‐to‐wall model RMSE of 6.6 m (R2 =
0.64). In the latter case, the wall‐to‐wall map tended to
underestimate canopy height of tall forest stands (Figure 8b).
[31] For the FLUXNET validation, the RMSE, coefficient

of determination (R2), and slope of the linear regression
were calculated to assess the deviation between the in situ
measurements and the wall‐to‐wall map. Figure 9 shows
our model has an RMSE of 6.1 m. By removing 7 outliers
with error larger than 10 m (triangles), the RMSE reduces
to 4.4 m with a significant r2 of 0.69.
[32] Model accuracy was also examined by looking at the

difference between the wall‐to‐wall map and the footprint
level GLAS estimates of canopy height. Figure 10 shows the
geographical distribution of model RMSE with respect to
the footprint level GLAS RH100 estimates within a 1° cells.
Mean percent model error was lower in protected sites
(26%, as compared to 32% in non‐protected sites), and this
difference was statistically significant at 0.95 confidence
level (t = 48.98, P < 0.001). Furthermore, RMSE differed
among forest cover classes. Results indicate that model
accuracy is lower in tall, closed broadleaved forests (a class

that includes the Amazon) and in mosaic land cover classes
(Table 3).

3.5. Comparison With Previous Global Map
of Canopy Height

[33] We compared our canopy height map (Figure 6) with
the Lefsky [2010] map shown with the same color coding
and geographical projection (Geographical, WGS84) in
Figure 11. There are large differences in vegetation cover-
age that can be attributed to our inclusion of land cover
classes with low forest cover densities such as mosaic crops,
open forest, and saline flooded forests. In addition, open

Figure 7. Comparison of the distribution of canopy height
values from GLAS points and the wall‐to‐wall map.

Figure 8. Validation of GLAS and regression tree predicted
top canopy height using the African dataset. (a) Field mea-
sured top canopy within GLAS footprint versus GLAS esti-
mate of the canopy height. The estimates of canopy top
height from GLAS shots correspond closely to the field esti-
mates within the footprint (RMSE = 4.1 m and R2 = 0.84).
(b) The regression tree model predicted height versus aver-
age field measured canopy height. The model tends to under-
estimate taller canopies (RMSE = 6.6 m and R2 = 0.64).

Table 2. RH100 Mean and Standard Deviation (m) for Input

GLAS Points and the Wall‐to‐Wall Canopy Height Map

Mean (m) Standard Deviation (m)

Map values 16.9 8.0
GLAS values 18.1 11.5
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needleleaf deciduous or evergreen forest and closed to
open mixed broadleaf and needleleaf forest, are only par-
tially covered in the Lefsky [2010] map, but fully covered
in our map.
[34] We calculated the difference between the two pro-

ducts, and found our canopy height estimates to be in
general taller though not everywhere (Figure 12). This is
partially explained since we modeled the top canopy height
instead of Lorey’s height, which is a tree‐size weighted
mean height. For closed to open broadleaf evergreen or
semi‐deciduous forest, which dominates the tropical belt,
our estimates are on average 12 m (±8.9 m) taller. In the

boreal zone, which is dominated by open needleleaf decid-
uous or evergreen forest our map has a canopy average 7 m
(±8.3 m) taller. However, this land cover class is not fully
covered in the Lefsky [2010] map, which greatly contributes
to this mean difference.
[35] In areas where the Lefsky [2010] map shows taller

canopies (Figure 12), we noticed a general spatial pattern
that corresponds to regions of severe topography. However,
we found no correlation between slope steepness and the
amount of difference between the map estimates. Instead, to
verify this observation, we plotted the cumulative distribu-
tion of the area where the Lefsky [2010] map is taller than
ours as a function of terrain slope (Figure 13). Terrain slope
was computed using SRTM elevation dataset. The plot
shows that around 40% of these areas occur in terrain where
slopes are steeper than 5°. We can only conclude that the
Lefsky [2010] map generally has taller forests in the pres-
ence of topography.
[36] The difference in height between the Lefsky [2010]

estimates and FLUXNET measurements should not be
impacted by topography since sites are generally flat. How-
ever, we can expect to see a bias due to the different metrics
that will not affect the r2 in the FLUXNET validation. We
found poor correspondence in the Lefsky [2010] map with
the FLUXNET validation data (r2 = 0.01, RMSE = 9.6 m;
with 17 “outliers” removed: r2 = 0.26, RMSE = 6.1 m)
(Figure 14).

4. Discussion

[37] The global distribution of RH100 estimates from
processed GLAS waveforms revealed a latitudinal gradi-
ent in which canopy height peaks at low latitudes and in
Southern temperate rainforests (Figure 5). The peak
around latitude 40S coincides with forests in SE Australia
and Tasmania that harbor the species Eucalyptus regnans,

Figure 9. Comparison of derived heights and field mea-
sured height from the FLUXNET dataset.

Figure 10. Model RMSE with respect to RH100 estimated from GLAS shots within 1° cells.
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one of the world’s tallest flowering plants [Keith et al.,
2009].
[38] A few issues complicate the comparison of our map

and the existing canopy height map [Lefsky, 2010]. Our
product (Figure 6) maps the top of the canopy as defined by
the waveform percentile metric RH100. Lefsky [2010] has
mapped Lorey’s Height (Figure 11), which is empirically
derived from waveform shape parameters and is expected to
be lower than RH100. At the lidar footprint level, Lorey’s
Height shows a robust relationship with aboveground bio-
mass (Mg/ha) [Lefsky, 2010]. On the other hand RH100 is
a more direct measurement, which can also be related to
biomass and has been used in ecosystem dynamics model-
ing [Thomas et al., 2008]. Beyond differences in canopy
height metrics, product utility will also depend on the
sampling and prediction errors that incur during the gener-
ation of the wall‐to‐wall maps.

[39] Canopy height values were aggregated when GLAS
shots fell in the same forest patch in the Lefsky [2010] map.
In our case, predicted canopy heights were averaged during
the tree regression procedure. Thus both products represent
aggregated canopy height measures, while differing with
respect to the fundamental unit and the stage at which the
aggregation is performed. In addition, the land cover prod-
uct used to delineate forest types improved our results. We
used more inclusive forest categories from [Hagolle et al.,
2005] that included mosaics, thus our map has a broader
coverage. On the other hand, the use of an ecoregion map
[Olson et al., 2001] in the Lefsky [2010] product likely
allowed the identification of extreme canopy height values
associated with particular associations (for example, Red
Woods in the Northwest USA). The observed difference in
regions with severe topography (Figure 13) indicates that
the impact of topography on large footprint lidar estimates

Table 3. Mean and Standard Deviation by Vegetation Type With Model RMSE Computed From Individual GLAS

Footprint

Class Namea Mean RH100 (m) SD RH100 (m) RMSE (m)

Mosaic Cropland/Vegetation 14.0 9.9 6.0
Mosaic Vegetation/Cropland 13.1 9.6 6.0
Closed to Open Broadleaved or Semi‐Deciduous Forest 29.9 11.7 7.8
Closed Broadleaved Deciduous Forest 19.0 8.9 6.4
Open Broadleaved Deciduous Forest/Woodland 13.0 7.0 4.4
Closed Needleleaved Evergreen Forest 20.3 9.8 5.7
Open Needleleaved Deciduous or Evergreen Forest 17.2 8.4 5.8
Closed to Open Mixed Forest 19.8 8.8 5.4
Mosaic Forest or Shrubland/Grassland 12.8 8.7 5.2
Mosaic Grassland/Forest or Shrubland 12.4 8.3 4.5
Closed to Open Broadleaved Forest Regularly

Flooded – Fresh or Brackish Water
26.1 10.8 5.2

Closed Broadleaved Forest or Shrubland Permanently
Flooded – Saline or Brackish Water

16.0 9.1 3.8

aAbridged from Hagolle et al. [2005].

Figure 11. Global forest height by Lefsky [2010] using matching color table and coordinate system (i.e.
geographical, WGS84).
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of height remains an open issue. In our case, the errors
introduced by terrain slope were mostly removed by
excluding GLAS shots that required significant slope cor-
rection and through the model’s averaging process. How-
ever, the GLAS shot selection process means our model
assumes canopy height for a given forest type and cover,
whether on steep or flat terrain, is the same if it has the same
climatic conditions, elevation, and percent tree cover. Any
residual error due to terrain slope is included in the vali-
dation with the FLUXNET data.
[40] Our product shows a better correspondence with

unweighted canopy height from FLUXNET sites, as com-

pared to the Lefsky [2010] map. This is expected given that
the Lefsky [2010] map models Lorey’s height and under-
scores the fact that the two products have different ecolog-
ical meanings and potential applications (Figure 9), although
more field data are necessary to perform a better comparison
of the two products. We argue that our use of a constant
resolution (1‐km) facilitates efforts to quantify the impact of
sub pixel variability on model error. Indeed, a recent paper
mapping forest carbon stocks (Mg/ha) over the tropics
[Saatchi et al., 2011] exploits the footprint‐level Lorey’s
Height estimates from Lefsky [2010] but models biomass
over a 1‐km grid. Lefsky [2010] argues for the use of patches,

Figure 12. Canopy height difference between forest height maps from this study and Lefsky [2010].

Figure 13. Cumulative distribution of points where esti-
mates from the Lefsky [2010] map are larger than the ones
reported in this study as a function of terrain slope. Areas
where estimates of canopy height from this study are taller
than Lefsky’s are not shown here.

Figure 14. Comparison of Lefsky [2010] canopy height
map versus FLUXNET dataset (same field measurements
used in Figure 9).
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not pixels, as the fundamental unit used to model lidar
points. We agree there is not a single optimum resolution to
sample forests given variation in canopy geometry, eleva-
tion, and successional stage. But there is also a constellation
of clustering algorithms that can be used to delineate forest
patches. Ultimately, the question is whether these can identify
meaningful ecological units such as even‐aged stands [e.g.,
Lefsky et al., 2005a]. Alternatively if units are small enough,
their area is comparable to the lidar footprint [e.g., Kimes
et al., 2006] such that searching for homogeneous areas may
not be necessary given dense lidar coverage.
[41] Model error when comparing predictions against

relatively homogeneous forest stands near FLUXNET tow-
ers and field plots in Africa was ∼6.1 m (or 4.4 m without
outliers) and 6.6 m respectively. While these results limit
predictions at the local scale, the map produced here con-
tains one of the best descriptions of forest vertical structure at
regional and global scales currently available. For example,
regional patterns were observed in the Amazonian arc of
deforestation, where smaller trees were predicted along for-
est edges. There are still limits to our ability to capture tall
(>40 m) canopy height values at 1‐km resolution (Figures 7
and 8b). Model accuracy was mainly influenced by (i) sat-
uration of the relationship between canopy height and the
ancillary variables and (ii) sub pixel variability. The relative
contribution of these factors likely influenced the differences
in model accuracy across forest types (Table 3). In mosaic
classes, lidar points are more likely to miss tall trees and the
mismatch between lidar‐derived estimates and the 1‐km
ancillary variables is more pronounced. Tall mature tropical
forests, on the other hand, present a challenge due to the
saturation of tree cover with canopy height (Figure 4) and the
broader range of tree heights (Table 3 and Figure 8b),
meaning lidar samples might not always intersect emergent
trees. The geographical distribution of model RMSE as
compared to the RH100 derived from GLAS (Figure 10),
which is larger in forested areas, also indicates the spatial
resolution of the input layers may not be sufficient to capture
canopy heterogeneities. As expected, model accuracy was
higher in protected forests, underscoring the challenges in
modeling forest structure in the presence of anthropogenic
disturbance. Future initiatives to model vertical canopy
structure globally will have to address these sampling design
issues. One question is whether fine‐resolution continental
mosaics (Landsat, ALOS/PALSAR) can be used to model
fine‐scale disturbances and improve these results.

5. Conclusions

[42] We presented a systematic approach to select, pro-
cess, and model lidar‐derived canopy height estimates
from GLAS to produce global wall‐to‐wall canopy height
maps. The prediction map shows a reasonable correspon-
dence with 66 FLUXNET sites (RMSE = 6.1 m, R2 = 0.49;
RMSE = 4.4 m and R2 = 0.69 without outliers). A compar-
ison between the model and the input lidar points shows that
error differs across forest types and increases as a function of
canopy height. The results shown here have implications for
the design of active‐passive sensor fusion algorithms for
mapping forest vertical structure. We expect that maps with
error less than 6m can be obtainedwhen lidar‐derived canopy
height estimates are integrated with fine‐resolution maps,

and/or forest age maps. During our work, canopy height
data from FLUXNET sites emerged as a critical dataset for
validation of forest structure maps, enabling comparison
across a wide range of forest biomes. We recommend that
FLUXNET canopy height measurements (e.g. top, mean and
Lorey’s canopy height) be standardized and expanded to all
forest sites. In addition, this dataset should be centralized
and distributed publically over the internet to facilitate the
validation and comparison of future maps by international
investigators. An 890 MB GeoTIFF file of the global 1‐km
canopy height map for public download can be found on the
website http://lidarradar.jpl.nasa.gov/. Users are encouraged
to contact the first author and provide feedback about the
product.
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