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Abstract

Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural char-

acteristics of vegetation only. The aim of this work is to derive a phenological fuel map

based on the functional attributes of coarse-scale vegetation phenology, such as seasonali-

ty and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean is-

land with high frequency of fire incidence, were acquired for the period 2000–2012 to

construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following

procedure was used to develop the phenological fuel map: (i) image segmentation on the

Fourier components of the NDVI profiles to identify phenologically homogeneous landscape

units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-prone-

ness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization

(in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-

resolution satellite time-series to characterize the fire-proneness of Sardinia with an ade-

quate level of accuracy. The remotely sensed phenological framework presented may rep-

resent a suitable basis for the development of fire distribution prediction models, coarse-

scale fuel maps and for various biogeographic studies.

Introduction

Phenological studies of vegetation can be carried out at the species level (bud break, flowering,

leaf flush, etc.) using in-situ field techniques [1]. However, only remote sensing can offer infor-

mation on ecosystem phenology and productivity over several temporal scales and continuous

spatial coverage. Space-borne optical sensors such as Moderate Resolution Imaging Spectrora-

diometer (MODIS) provide daily measurements of a variety of biophysical parameters of the

land surface [2]. MODIS is a key instrument aboard the Terra and Aqua NASA satellites view-

ing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands (http://
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modis.gsfc.nasa.gov/about/). These earth observation systems examine coarse-scale phenome-

na that allow retrievals of whole-system phenological metrics, such as the timing and magni-

tudes of greening, peak activity, and drying phases of the growing season [1]. At this landscape

scale, the spatio-temporal dynamics of the vegetated land surface is often referred to as ‘land

surface phenology’, as the remotely sensed phenology deals with mixtures of land cover and

vegetation [3]. Land surface phenology thus provides information on key aspects of vegetation

functionality, such as seasonality, productivity and inter-annual variability. Also, as vegetation

functioning responds faster to environmental change and variability than vegetation structure

and composition, there is a high potential for characterizing, classifying and mapping vegeta-

tion based on remotely sensed phenology [4–6].

Although, a number of studies have used remotely-sensed indices, such as the Normalized

Difference Vegetation Index (NDVI), for the monitoring of vegetation dynamics from regional

to global scales [7–9], the capability of remote sensing indicators to capture ecosystem func-

tional dynamics has been only partially faced so far. The NDVI has been usually considered a

reliable indicator of plant biomass and vegetation primary productivity [10–12]. Therefore,

NDVI time series have been routinely used to measure vegetation dynamics and ecosystem

phenology over large geographic areas [13–15]. Remote sensing derived vegetation phenology

may provide an integrated measure of ecosystem responses to climatic factors, such as temper-

ature and rainfall, as well as a synthetic quantification of the determinant conditions for fires

and other disturbances [6].

Phenological classification characterizes and stratifies the land surface based on similar phe-

nological patterns. White et al. [16] developed a global pheno-region database as a geographic

framework for studying global climate change. They used Advanced Very High Resolution Ra-

diometer (AVHRR) NDVI time series (8 km of pixel resolution) from 1982 to 1999 in conjunc-

tion with an eight-element monthly global climatology to generate global pheno-regions with a

minimized probability of non-climatic forcing. Hargrove et al. [17] derived 15 phenological

ecoregions based on clustering the similarities in five years (2002–2006) of cumulative MODIS

NDVI data (250 m of pixel resolution). Gu et al. [18] performed a phenological classification of

the conterminous United States based on MODIS NDVI time-series and a digital elevation

model. The resulting pheno-class map is composed of 40 pheno-classes, each having unique

phenological and topographic characteristics. Clerici et al. [19] explored the use of MODIS

NDVI-derived phenology metrics for the identification and classification of Forest General

Habitat Categories in Europe. Finally, De Angelis et al. [20] also used MODIS NDVI-derived

phenology metrics to classify the vegetation of Sardinia (Italy) into clusters showing uniform

fire behavior.

In the framework of fire risk assessment, variations in satellite-based NDVI values proved

to be indicative of variations in water and nutrient availability, plant disease, and other stress

factors, which are in turn indicators of a marked vulnerability of the vegetation to fire [21]. For

this reason, over the years, many authors have proposed the use of multitemporal NDVI pro-

files to assess the proneness of vegetation to fire (for a detailed review, see [22]). Accordingly,

as vegetation phenological status represents the main driver affecting fuel availability and mois-

ture content, any investigation on fire behavior over large areas requires the ability of capturing

spatio-temporal changes in vegetation phenology [20, 23].

Fire managers have tried to summarize the physical parameters and spatial distribution of

fuel in different fuel types or fuel models [24–25]. More specifically, a fuel model has been de-

fined as “an identifiable association of fuel elements of distinctive species, form, size, arrange-

ment, and continuity that will exhibit characteristic fire behavior under defined burning

conditions” [26]. Two well-known fire behavior fuel type systems are the Northern Forest Fire

Laboratory (NFFL) system and the Canadian Forest Fire Behavior Prediction (FBP) system
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[27]. Also european researchers developed a new system, in the framework of the Prometheus

project, which is better adapted to fuels found in Mediterranean ecosystems. These fuel types

were defined for surface fire modelling, taking into account fuel height and density. However,

traditional fuel maps, being built in terms of fuel types, represent the static, structural proper-

ties of fuel [28], not involving its dynamic, functional characteristics, such as moisture content,

or vegetation health status.

In the wake of the work of De Angelis et al. [20], the aim of this paper is to use MODIS

NDVI time-series (2000–2012) to develop a phenological fuel map of Sardinia (Italy) that takes

into account the functional (rather than the structural) aspects of fuels, and to demonstrate its

potential in characterizing fire risk (i.e. the chance of a fire to start).

Study Area

Sardinia is an island located in the Mediterranean Sea between 38° 51' N and 41° 15' N latitude

and 8° 8' E and 9° 50' E longitude, covering roughly 24000 km2. The island is characterized by

a complex physical geography, with a prevalently hilly topography. The highest elevation is

1834 m, average elevation is 338 m. The island has a Mediterranean climate along the coast

and a more continental climate on the interior mountain ranges. The average temperature is

between 11 and 17° C, rainfalls have generally a Mediterranean distribution, with dry summers

and two peaks of rainfall in spring and autumn. Mean annual precipitation is about 800 mm.

Land use along the coast and the main river valleys is dominated by agriculture that covers

about 45% of the study area. Most urban areas of Sardinia are located in the coastal zone. In

the interior areas, forest stands combined with pastures and shrublands prevail. The principal

formations include Quercus ilex and Quercus suber forests. At higher elevations the sclerophyl-

lous oak forests merge with broadleaved forests of Quercus pubescens and Castanea sativa.

The island is considered a wildfire hotspot, with a mean of more than 2500 events per year

[29–30]. Fires are mainly of limited size, more than 67% of the events are smaller than 1 ha. Al-

though most of the recorded fires are human-caused rather than ‘natural’ in origin, fire is a

process largely correlated with climate. Like in most Mediterranean regions, in Sardinia fire is

strongly seasonal, with the majority of fires occurring during the hottest and driest portion of

the year. More than 98% of fires occur between May and October with a peak of fires (54%) in

July and August.

Data

In this study, information on the remotely sensed phenology of the vegetation of Sardinia was

extracted from the 16-day MODIS 250 m NDVI maximum value composite product

(MOD13Q1; https://lpdaac.usgs.gov/products/modis_products_table/mod13q1). Twenty-

three NDVI images per year from 2000 to 2012 were acquired, for a total of 299 MODIS im-

ages. Late fall and winter scenes revealed several low quality and noisy pixels regions due to

bad weather events. Therefore, we focused only on late spring-early autumn scenes, i.e. eleven

yearly MODIS NDVI images (143 images in total) from Julian day 113 (April 23rd) to Julian

day 273 (October 1st), which correspond to the months of highest fire occurrence. By averaging

the NDVI values of each 16-day composite over the period 2000–2012, for each image pixel we

derived a mean NDVI temporal profile showing mean seasonal variations in the NDVI values

Wildfire data were provided by the Forest Service of Sardinia and contain all fires recorded

from 2000 to 2010, together with the geographic (UTM) coordinates of their ignition points,

and is assumed to be complete and reliable down to the smallest fires. The database used in this

study includes all the fires recorded from April 23rd to October 1st during the period 2000–

2010, and contains 28744 events.
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Methods

The following procedure was used to develop the phenological fuel map: (i) image segmenta-

tion on the Fourier components of the NDVI profiles to identify phenologically homogeneous

landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-

proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization

(in terms of land cover and climate) of the PFCs.

Fourier analysis and image segmentation

The vegetation (i.e. fuel) seasonality can only be captured by repeated measurements over

time. Serial correlation among successive observations taken over a period of time reduces the

statistical utility of multitemporal imagery [31]. Therefore, data reduction (usually ordination

methods, like Principal Component Analysis) is typically applied to remove image correlation.

However, in the ordination process, explicit reference to vegetation seasonality is lost, such that

data reduction is achieved at the expense of ecological relevance. Alternative methods for re-

taining information on vegetation seasonality include polynomial functions [32] and Temporal

Fourier Analysis (TFA) [23, 33–34]. Therefore, to analyze remotely-sensed fuel seasonality, we

applied Temporal Fourier Analysis to the average NDVI profiles of each pixel.

TFA allows a complex signal to be expressed as the sum of a series of sine and cosine waves

(harmonics) and an additive term [33]. The constant additive term corresponds to the arithme-

tic mean of the time series, while the harmonics correspond to the amplitudes into which the

temporal signal is decomposed. TFA transforms a series of N observations taken at regular

time intervals into a spectrum of (uncorrelated) harmonics at frequencies of 1, 1/2, 1/3, . . ., 2/

N times the duration over which the N observations were made [31]. The obtained spectrum is

a true partition of the variance of the series among frequencies, therefore spectral analysis, like

TFA, represents a type of variance decomposition analysis [35]. In TFA there are as many har-

monic variables as the data points. However, in practice only a few harmonics usually contrib-

ute substantially to the overall variance, and only these need to be calculated for capturing the

main features of the vegetation seasonality [23, 31].

In this paper, we used late spring-early autumn NDVI profiles as our basic unit for TFA, the

amplitude at one cycle period A1 (i.e. the first Fourier component) thus corresponds to the

maximum variability of the NDVI values over the whole fire season, while the second Fourier

component A2 summarizes the NDVI variability within the half-period of the NDVI profile.

Accordingly, significant amplitude values associated to the first and second periodic terms in-

dicate major variability of the NDVI profiles in response to the seasonal patterns of bioclimatic

conditions. Finally, the additive term A0 is related to the summation of the NDVI values over

the whole temporal profile [36] and can therefore be considered as a good indicator of the

coarse-scale net primary productivity of vegetation on a seasonal basis. For additional details

on Fourier analysis, see e.g. [37].

We used the TFA module of IDRISI Selva (Clark Labs, Worchester, MA) to extract the con-

stant additive term (A0) and the amplitude values for the first and second Fourier harmonics

(A1 and A2) of the seasonal NDVI profiles of each pixel, with 11 as number of time series im-

ages and 16 days as time lag between images. The constant and the first two amplitude output

images of the TFA were then used for segmenting the territory of Sardinia into phenologically

homogeneous units in the multispectral Fourier feature space.

Image segmentation was conducted using the Fractal Net Evolution Approach [38] of the

Definiens eCognition software (Definiens Imaging, Germany). In this bottom-up segmentation

technique, individual pixels are perceived as the initial regions, which are sequentially merged

pairwise into larger ones, with the intent of minimizing the heterogeneity of the resulting
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objects. The sequence of the merging objects, as well as the size and shape of the resulting ob-

jects, are empirically determined by the analyst [39]. A crucial unitless threshold, named scale

parameter, is determined to specify the maximum allowed increase in the heterogeneity after a

pairwise merge of the objects [40]. For the segmentation of the three TFA components two cri-

teria were used: color (i.e. the value of each Fourier component for each pixel) and shape. The

selection of the best value for each segmentation criterion was based on trial-and-error and on

the visual interpretation of the results. Scale parameter is considered as the most effective pa-

rameter that is used to control the average image object size [41–42]. It depends on spatial reso-

lution of the corresponding image and features of the study area. The higher value is selected

for scale parameter, the larger the object is obtained. On these basis, the following values were

selected for all three TFA components: scale parameter = 500, shape criterion = 0.2, and com-

pactness = 0.8. The segmentation produced 60 phenological units (PUs) of at least 25 pixels in

size, homogeneous in terms of mean seasonal NDVI timing (Fig. 1).

To quantify the fire-proneness of each PUs, the coordinates of the ignition points of all fires

that occurred in the period 2000–2010 were overlaid on the PUs and the number of fires within

each PU was computed. Next, we calculated a summary statistic of fire risk as the proportion

of fires in each PU divided by the relative area of that PU in the study site [20]. This ratio,

named ‘selection ratio’ (σ) [43, 29], takes values in the range [0,1]. If all PUs were equally fire

prone, fire ignitions would occur randomly across the landscape, such that the number of igni-

tions within a given PU would be nearly proportional to the relative area of that PU and σ� 1.

Values larger than 1 denote PUs where ignitions occur more frequently than expected by

chance alone, values lower than 1 denote PUs where ignition is less frequent than expected

[29].

Cluster analysis

In order to identify groups of phenological units with similar seasonality, we performed a hier-

archical cluster analysis on the mean values of the Fourier components of each PU. Clustering

is an agglomerative classification method for determining the intrinsic grouping in a set of data

and identifying subpopulations of related objects with similar behavior with respect to some

user-defined ecological property [44]. The cluster analysis was performed within the statistical

software package Past 3.04 (free downloadable from http://folk.uio.no/ohammer/past/) using

the Euclidean distance as similarity measure and the UPGMAmethod (average linkage be-

tween groups) as linkage criterion (see [35]). This analysis produced a dendrogram in which

three distinctive phenological fuel classes (PFCs) homogeneous in terms of phenological pat-

terns were detected: PFC1, PFC2 and PFC3. Based on our territorial knowledge, we divided the

largest cluster into two subgroups: PFC2a (mainly distributed in the coastal zones) and PFC2b

(mainly located in the inner parts).

Next, to evaluate the pyrological uniqueness of the four PFCs, we performed a permutation-

al analysis of variance on the selection ratios of all PUs. Like for traditional univariate

ANOVA, we calculated an F-value by dividing the between-group variability of the selection

ratios by the corresponding within-group variability. A p‐value is then computed by permuta-

tion of the PUs among the different phenological classes (9999 randomizations, one-tailed test,

see [45]).

Finally, in order to test the fire-proneness of the four PFCs, we first calculated the selection

ratio of each class as the ratio between the relative proportion of fires in each class and the rela-

tive area of that class in the study site. Next, to determine whether the number of fires in each

class is significantly different from random, we constructed the following Monte Carlo simula-

tion. The 28744 fires that occurred in Sardinia during 2000–2010 were randomly reassigned to
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Fig 1. Spatial distribution of the 60 phenological units (PUs) and of the four phenological fuel classes (PFCs).

doi:10.1371/journal.pone.0119811.g001
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the PFCs, such that the probability of assignment of each fire to a given PFC was kept equal to

its relative area. The null hypothesis is that fires occur randomly across the landscape, such

that there is no difference between the relative abundance of fires in each class and its relative

area within the analyzed landscape. Based on this procedure, we compared the actual value of σ

for each PFC with the results of 9999 randomizations using a Microsoft Excel macro developed

by Pezzatti et al. [46]. For each class, p-values (two-tailed test) were computed as the propor-

tion of random values that were as low or lower (as high or higher) than the actual values.

Environmental characterization of the phenological classes

To frame the PFCs within the environmental context of the study area, we analyzed the degree

of association of each class with the land cover types and the climatic zonation of Sardinia. The

land cover map was derived from the CORINE Land Cover (CLC) 2006 data [47]. The CLC

data were aggregated into seven macro-classes: urban areas, arable lands, permanent crops,

heterogeneous agricultural areas, forests, shrublands, and natural grasslands and pastures.

Non-combustible classes, such as bare soils, wetlands and water bodies were excluded from fur-

ther analysis. Because of the relative homogeneity of the CLC (macro-)classes in terms of fuel

load and continuity, these classes were considered adequate for coarse-scale analysis of fire risk

(see [29]).

The climatic zonation of the Island was obtained from the climatic map of Sardinia at scale

1:250,000 in Bajocco et al. [48]. According to this map, Sardinia is classified into three main cli-

matic regions (CRs): Mediterranean, Transitional Mediterranean, and Transitional Temperate

that are mainly characterized by a clear gradient of decreasing summer drought and mean

annual temperatures.

To analyze the association of fuel phenology with land cover we first constructed a two-way

contingency table in which the PFCs of all fire ignition points were associated to the corre-

sponding CLC types (see [48]). Next, the actual values of all entries of the contingency table

were compared to a distribution of 9999 random values (two-tailed test) obtained under the

null hypothesis of no association between the phenological fuel classes and the land cover

types. For all ignition points the association between the PFCs and the CLC types was random-

ized keeping constant the number of fires in each phenological and land use class. In addition,

we also calculated a χ2 test statistic for the entire contingency table, the significance of which

was tested with the same randomization procedure. The same approach was then used for ana-

lyzing the association between the phenological classes and the climatic regions of Sardinia.

Results

Fig. 2 shows the dendrogram obtained from the cluster analysis of the phenological units of

Sardinia (see also Fig. 1). Four clusters, PFC1 = (σ = 1.98), PFC2a (σ = 1.40), PFC2b (σ = 0.67)

and PFC3 (σ = 0.32), were identified with selection ratios denoting decreasing fire risk from

PFC1 to PFC3. According to the randomization test, fire incidence in terms of ignition is selec-

tive for all PFCs with very high significance (p< 0.001). The classes PFC1 and PFC2a showed

high to moderately high fire-proneness, whereas PFC2b and PFC3 were characterized by sig-

nificant fire-avoidance, meaning that the total number of fires observed in both classes is lower

than expected by chance alone.

Fig. 3 shows the mean values of each Fourier component A0, A1 and A2 for each phenologi-

cal fuel class. Results highlight that the additive term follows an increasing gradient from the

highest to the lowest fire risk class, to the contrary, the values of the first and second harmonics

progressively decrease from PFC1 to PFC3.
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Overall, the permutational analysis of variance showed a significant pyrological difference

between the PFCs (F = 30.56, p< 0.001). Likewise, the a-posteriori pairwise comparison between

PFCs revealed that all classes are statistically unique in terms of fire-proneness at p< 0.05

(Table 1). The analysis of the degree of association between the phenological fuel classes

and CLC types gave an observed value of χ2 = 9423.42 (p< 0.001). The same level of signifi-

cance was found for the association between the PFCs and the CRs with an observed value of

χ
2 = 8097.30 (Table 2 and 3), denoting that the remotely sensed phenological fuel classes

proved to be strongly associated both with the corresponding land cover types and the cli-

matic regions of the study area.

In particular, the class of highest fire risk, PFC1, shows a marked positive association with

arable lands and a negative association with the natural and semi-natural land cover types.

From a climatic viewpoint, PFC1 shows a significant positive association with the Mediterra-

nean CR, and a negative association with both transitional CRs. The class of moderately high

fire risk, PFC2a, is driven mainly by fuel size rather than by climate. Accordingly, PFC2a is pos-

itively associated to urban areas and to all land use types that are characterized by fine fuels,

such as permanent crops and heterogeneous agricultural areas, which are usually located in the

Mediterranean portion of the study area, and to natural grassland and pastures, which are

Fig 2. Dendrogram of the hierarchical cluster analysis of the mean values of the Fourier components for each phenological unit. The dashed line
indicates the cutting level of the dendrogram. Circles indicate the grouping of the phenological units (PUs) into four clusters, named phenological fuel classes
(PFCs), based on their phenological similarity in terms of vegetation seasonality and productivity.

doi:10.1371/journal.pone.0119811.g002
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mainly located in the Transitional Temperate region. At the same time, PFC2a is negatively as-

sociated to all coarse-fuel land use types, such as shrublands and forests.

To the contrary, the moderately low fire risk class, PFC2b, has a positive association with

the Transitional Mediterranean and the Transitional Temperate CRs and a negative association

with the Mediterranean CR. As concerns land use types, PFC2b is positively associated with all

classes of low to very low human pressure, such as heterogeneous agricultural areas, pastures,

shrublands and forests, which are mainly located at higher altitudes in the transitional CRs. Fi-

nally, PFC3 shows the same climatic preferences as PFC2b. However, unlike PFC2b, this latter

Fig 3. Graph of the mean values of each Fourier component for each phenological fuel class (PFC). The first (A1), and the second (A2) Fourier
component represent the vegetation seasonality trend; the additive term (A0) expresses the vegetation productivity. The y-axis is in arbitrary units.

doi:10.1371/journal.pone.0119811.g003

Table 1. F-values of the a-posteriori pairwise comparisons between the phenological fuel classes
(PFCs) identified by the cluster analysis.

PF classes PFC1 PFC2a PFC2b

PFC2a 7.841* - -

PFC2b 27.94 6.294* -

PFC3 100.5 36.39 14.73

*significant at p = 0.05 (9999 randomizations, one-tailed test). The remaining values are all significant

at p = 0.001. The value of the test statistic for the permutational ANOVA among all groups is F = 30.56

(p < 0.001).

doi:10.1371/journal.pone.0119811.t001
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class shows positive association only with shrublands and forests. The environmental charac-

teristics of each PFC are summarized in Table 4.

Discussion

This paper follows the wake of the work of De Angelis et al. [20] and shares with it the working

hypothesis and the methodological flow; the general objective of both studies, in fact, is to clas-

sify the vegetation by means of MODIS NDVI time-series. However, unlike De Angelis et al.

[20], the specific aim of this paper is not to investigate the phenological metrics that best char-

acterize the fire selectivity behavior, but to introduce a coarse-resolution satellite-based frame-

work that can be reliably used for characterizing fire risk (i.e. the chance of a fire to start) and

easily developed regardless the availability of complete wildfire database or specific fuel data.

Fire risk (or ignition risk) is defined as “the chance of a fire starting as determined by the

presence and activity of any causative agent” [49]. When dealing with fire fighting strategies,

fire risk is the most important variable to consider. Knowing the fire ignitions patterns and

their determinants may represent a decision support tool about where the intervention forces

Table 2. Contingency table showing the number of fires shared by the phenological fuel classes (PFCs) and the Corine Land Cover (CLC) types
during the period 2000–2010.

PF classes

PFC1 PFC2a PFC2b PFC3

CLC types Urban areas 852
NS

880 353 NS 110

Arable lands 5921 3350 754 129

Permanent crops 521 760 216 27

Heterogeneous agricultural areas 2598 3324 1699 673

Forests 176 242 334 872

Natural grasslands and pastures 241 808 386 71

Shrublands 381 977 1186 903

Italic characters indicate a positive association between PFC and land cover.

Normal characters indicate a negative association between PFC and land cover.
NS indicates not significant at the p = 0.05 level (9999 randomizations, two-tailed test).

The remaining values are all significant at p = 0.001.

The value of χ2 for the whole contingency table is 9423.42 (p < 0.001).

doi:10.1371/journal.pone.0119811.t002

Table 3. Contingency table showing the number of fires shared by the phenological fuel classes (PFCs) and the Climatic Regions (CRs) of
Sardinia during the period 2000–2010.

PF classes

PFC1 PFC2a PFC2b PFC3

CRs Mediterranean 8313 6093 1290 561

Transitional Mediterranean 0 317 633 939

Transitional Temperate 2377 3931 3005 1285

Italic characters indicate a positive association between PFC and climate.

Normal characters indicate a negative association between PFC and climate.

All values are significant at p = 0.001 (9999 randomizations, two-tailed test).

The value of χ2 for the whole contingency table is 8097.30 (p < 0.001).

doi:10.1371/journal.pone.0119811.t003
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should be concentrated for time- and cost-efficient actions. Furthermore, unlike fire risk, the

fire spreading probability is highly dependent on the presence of severe weather conditions,

rather than on fuel characteristics alone [48, 50–52]. Therefore, focusing on fire ignition may

allow to analyze the correlation between (remotely sensed) fuel conditions and fire occurrence

without the confounding effects of extreme meteorological events [49].

Understanding the geographic distribution of vegetation phenology (i.e., the timing of fuel

availability) may be key to planning effective fire fighting and prevention strategies, since re-

gions with similar fuel phenology patterns, and hence with similar fire incidence, are regions

where similar management policies should be applied [53]. According to our results, NDVI

seasonal timing represents a main functional driver of fire risk, in terms of both fuel load and

flammability. Hence, it can be adequately used to classify the territory into fuel classes with dis-

tinctive phenological and pyrological behaviour, which in turn reflects underlying differences

in land cover and climate.

From a biological viewpoint, the discriminating factors among the four PFCs were repre-

sented by the vegetation seasonal productivity (i.e. the fuel amount cumulated during the ob-

served season) and the seasonal variability of the NDVI values, which expresses the fuel

flammability in terms of transition from moist to dry vegetation. The highest fire risk classes,

PFC1 and PFC2a, were characterized by a low fuel amount during the fire season and a high

variability in the NDVI values. To the contrary, the lowest fire risk categories, PFC2b and

PFC3, were characterized by high seasonal fuel load and low variability in the NDVI timing.

Looking at land cover and climate, the classes with the highest fire risk are mainly associated

to Mediterranean climates and to urban areas, agriculture and pastures. More specifically,

while PFC1 is mainly associated with urban and agricultural areas, PFC2a is associated with a

more heterogeneous vegetation cover, including grasslands and pastures in more temperate

areas at higher altitudes. These land cover types are generally characterized by high human

pressure and fine fuel that dries quickly and can therefore burn easily after short periods of dry

weather [29]. In particular, in Mediterranean regions fire has been traditionally used as a land

management tool for creating pastures or eliminating agricultural waste. On the other hand,

the classes with the lowest fire risk are mainly located in areas with higher rainfall and mostly

covered by woody vegetation. Such coarser forest fuels take longer to dry. Therefore, they can

burn only after longer (and thus infrequent) periods of dry weather. While PFC2b is mainly

covered by agricultural and more natural land cover types with different degrees of human

Table 4. Summary of the environmental characteristics of the phenological fuel classes (PFCs) obtained from the analysis.

Number of
fires

Fire risk Fuel
type

Seasonal
NDVI
variability

Main Land Cover types Main Climatic types

PFC1
(4210.25
km2)

10690 High (σ = 1.98) Fine fuel Very high Arable lands Mediterranean

PFC2a
(5759.63
km2)

10341 Moderately high
(σ = 1.40)

Fine fuel High Urban areas, Permanent crops,
Heterogeneous agricultural areas and Natural
grasslands and pastures

Mediterranean
Transitional Temperate

PFC2b
(5743.31
km2)

4928 Moderately low
(σ = 0.67)

Coarse
fuel

Low Permanent crops, Heterogeneous agricultural
areas, Natural grasslands and pastures,
Forest and Shrublands

Transitional
Mediterranean
Transitional Temperate

PFC3
(6691.31
km2)

2785 Low (σ = 0.32) Coarse
fuel

Very low Forest and Shrublands Transitional
Mediterranean
Transitional Temperate

doi:10.1371/journal.pone.0119811.t004
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impact, PFC3 is mainly associated with shrublands and forests, showing the highest fire-avoidance

due to the coexistence of reduced human impact, coarser fuels and limited summer drought.

These findings are in agreement with previous studies on fire risk in the Mediterranean

basin. For instance, Bajocco & Ricotta [29] and Guglietta et al. [54] showed that the highest

probability of fire occurrence in Sardinia is associated with agricultural and urban areas, due to

the heaviest human presence, which represents the main source of fire ignition. In contrast, the

lowest fire ignition risk can be found in the inner and higher portions of the study region,

where population density is much lower. In Portugal, Catry et al. [55] emphasized the role of

agriculture in driving the spatial distribution of fire events, due to the fine fuel load and the

land management practices (e.g. burning crop residues). Finally, Bajocco et al. [48] in Sardinia

(Italy), Pausas & Fernández-Muñoz [51] in the province of Valencia (Spain) and Oliveira et al.

[56] across Mediterranean Europe, all emphasized the combined effect of land cover (which

determines the fuel amount) and climate (which determines the fuel-proneness to burn) on

fire occurrence.

In conclusion, MODIS NDVI time-series may represent a suitable basis for the development

of coarse-scale dynamic fuel maps and fire prediction models. In addition, remotely sensed phe-

nological data may also have additional value for various wildfire-oriented applications related to

land surface monitoring and assessment (see [57]), including drought monitoring, ecological

modeling of the impact of global change on burning patterns [58–59], or the identification of

main areas of pre-fire intervention [18]. Furthermore, the possibility of updating the remotely-

sensed fuel maps year by year with low-cost, easy to retrieve, and homogeneous data allows to

keep them current so that they will retain their value for users as landscapes change.
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