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ABSTRACT
Motivation: Gene Ontology (GO) consortium provides
structural description of protein function that is used as
a common language for gene annotation in many organ-
isms. Large-scale techniques have generated many valuable
protein–protein interaction datasets that are useful for the
study of protein function. Combining both GO and protein–
protein interaction data allows the prediction of function for
unknown proteins.
Result: We apply a Markov random field method to the predic-
tion of yeast protein function based on multiple protein–protein
interaction datasets. We assign function to unknown proteins
with a probability representing the confidence of this prediction.
The functions are based on three general categories of cellular
component, molecular function and biological process defined
in GO. The yeast proteins are defined in the Saccharomyces
Genome Database (SGD). The protein–protein interaction
datasets are obtained from the Munich Information Center for
Protein Sequences (MIPS), including physical interactions and
genetic interactions. The efficiency of our prediction is meas-
ured by applying the leave-one-out validation procedure to a
functional path matching scheme, which compares the pre-
diction with the GO description of a protein’s function from
the abstract level to the detailed level along the GO structure.
For biological process, the leave-one-out validation procedure
shows 52% precision and recall of our method, much better
than that of the simple guilty-by-association methods.
Supplementary material: http://www.cmb.usc.edu/~msms/
gomapping
Contact: fsun@hto.usc.edu

1 INTRODUCTION
With the completion of genome sequencing of several
model organisms, the functional annotation of the proteins
is of most importance. Up to December 4, 2002, the
Saccharomyces Genome Database (SGD, http://genome-
www.stanford.edu/Saccharomyces/) (Dwight et al., 2002)
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lists 6264 open reading frames (ORF) with three Gene Onto-
logy (GO, http://www.geneontology.org/) categories of cel-
lular component, molecular function and biological process,
while at least one-third of the proteins are unknown for each
category. A major challenge is to assign function to those
proteins whose biological function is yet to be understood.

Several methods have been developed to assign function
to an unknown protein. The classical way is to find homo-
logous proteins in databases such as SWISSPROT, using
programs such as FASTA (Pearson and Lipman, 1988) and
PSI-BLAST (Altschul et al., 1997), and then to predict
function of this unknown protein based on function of the
homologous proteins. However, not all unknown proteins
have homologous proteins in databases. Accordingly, several
non-homology-based methods have recently been introduced
to assign putative functions to unknown proteins, e.g. the
chromosomal proximity method (Overbeek et al., 1999), the
Rosetta stone method (Marcotte et al., 1999a; Enright et al.,
1999), the phylogenetic method (Pellegrini et al., 1999) and
the combined method (Marcotte et al., 1999b; Zheng et al.,
2002; Pavlidis and Weston, 2001).

The development of high-throughput bio-techniques and
their applications in many areas of biology have generated
a large amount of data that are useful for the study of
protein function. Several attempts have been made to pre-
dict protein function using such data as gene expressions,
mutant phenotype and protein–protein interactions. Cluster-
ing analysis of gene expression data can be used to predict
function of unknown proteins based on the idea that genes
with similar function are likely to be co-expressed (Brown
et al., 2000; Eisen et al., 1998). Several methods have been
developed to predict protein function based on simple guilty-
by-association rules, such as the neighbor-counting method
(Fellenberg et al., 2000; Schwikowski et al., 2000) and
the Chi-square method (Hishigaki et al., 2001). We have
developed a Markov random field (MRF) model (Deng et al.,
2002) to combine a physical interaction network and the
protein function defined in Yeast Proteome Database (YPD,
http://www.incyte.com/proteome/) (Costanzo et al., 2001) for
function prediction. Recently, Vazquez et al. (2003) proposed
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a combinatorial method to assign protein functions based
on physical interaction network by minimizing the number
of protein interactions among different functional categories.
Our approach is significantly different from that of Vazquez
et al. (2003) in two important aspects. (1) Vazquez et al.
(2003) used only the interaction network and did not con-
sider the fraction of proteins having the function of interest
in the known proteins. We considered the fraction of proteins
having the function of interest in our model. (2) They gave
an equal weight to intra-function class interactions. In reality,
different intra-function class interactions do not contribute the
same to protein function prediction. We estimated the con-
tributions of inter- and intra-function classes. Letovsky and
Kasif (2003) proposed a model to assign functions to proteins
based on a probabilistic analysis of graph neighborhoods in
a protein–protein interaction network, which is fundament-
ally a MRF model, and the belief propagation algorithm was
used to assign function probabilities for proteins in the net-
work. Our approach differs from Letovsky and Kasif (2003)
in that we apply the MRF method to the function categor-
ies in GO and multiple protein–protein interaction networks
(Deng et al., 2003b). The efficiency of our prediction is meas-
ured by applying the leave-one-out validation procedure to a
functional path matching scheme, which compares the pre-
diction with the GO description of a protein’s function from
the abstract level to the detail level along the GO structure.
For biological process, the leave-one-out validation procedure
shows 52% precision and recall of our method, much better
than that of the simple guilty-by-association methods.

2 METHODS
Suppose a genome has N proteins P1, . . . , PN and M func-
tional categories F1, . . . , FM . Some proteins are known and
others are unknown. Let P1, . . . , Pn be the unknown proteins
and Pn+1, . . . , Pn+m be the known proteins, N = n + m.
Through some biological experiments, we are given sev-
eral protein–protein interaction networks. Our objective is to
assign function to all the unknown proteins based on function
of the known proteins and the interaction networks.

Our MRF model based function prediction method is
detailed elsewhere (Deng et al., 2002, 2003b). Here we just
describe it briefly. Let a function of interest be category 1 and
the rest be category 0. All the known proteins can be classi-
fied into one of the two categories according to their function.
Thus, an interaction between two known proteins can be clas-
sified into one of the three groups: (1, 1), (1, 0) and (0, 0).
Given a protein physical interaction network (Net1) and a
genetic interaction network (Net2), the belief can be repres-
ented by a Gibbs distribution (Li, 1995) for this function by
considering the classification of all the proteins,

Pr(X | Net1, Net2) = exp[−U(x; θ)]
Z(θ)

, (1)

where

U(x; θ) = −(αN1 + β1N111 + γ1N110 + κ1N100

+ β2N211 + γ2N210 + κ2N200).

U(x; θ) represents the potential function of the two networks
given a functional configuration of X = (x1, . . . , xN). N1 is
the number of proteins for category 1, and Nkll′ is the num-
ber of protein interactions between category l and category
l′ in the k-th network where k = 1 for the physical interac-
tion network and k = 2 for the genetic interaction network.
θ = (α, β1, γ1, κ1, β2, γ2, κ2) are parameters. Z(θ) is a nor-
malized constant, which is calculated by summing over all the
configurations,

Z(θ) =
∑
x

exp[−U(x; θ)].

Z(θ) is called the partition function in the general theory of
MRF. Note that parameters κ1 and κ2 are redundant and can be
set to 1. In Deng et al. (2002, 2003b), we presented a Gibbs
sampler strategy to estimate θ and the posterior probability
that an unknown protein has the function of interest given the
interaction networks and the functions of known proteins.

The model of Vazquez et al. (2003) is a special case of
our model. There is an edge between two proteins if they
interact. Their energy function is a special case of U(x, θ)

where α = 0, β = κ = 1 and γ = 0. Thus, they gave the
same weight to different within-class interactions. The model
of Letovsky and Kasif (2003) is essentially the same as Deng
et al. (2002) although they formulated the problem differently.
Here our model is extended to multiple networks.

3 RESULTS
We apply our method to infer the function of unknown proteins
in Yeast. In the following, we use genes and proteins inter-
changeably. We use the functional annotations from GO
Consortium (GO Consortium, 2000, 2001). GO is a set of
structured vocabularies organized in a rooted directed acyclic
graph (DAG), describing attributes of gene products (proteins
or RNA) in three categories of ‘cellular component’, ‘molecu-
lar function’ and ‘biological process’. We study these three
categories separately. Due to space limitations, we present
the results based on ‘biological process’ only. The results
based on the other two categories are provided as supple-
mentary materials. Generally, a gene is annotated by one or
multiple GO nodes along the DAG. The nodes at the higher
levels correspond to more abstract functional descriptions for
gene products. If a gene is annotated with a GO node, we say
that this node as well as its parents covers this specific gene.
Thus, the nodes at the higher levels cover more genes. Sim-
ilar to the definition used in (Zhou et al., 2002), we say that
a GO node is an informative node if it covers more than 50
genes, and none of its child nodes covers the same number of
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Table 1. Gene ontology informative nodes define 134 functions in functional category ‘biological process’ (only part of them are listed, see Supplemental
material for the full table)

Genes no. GO ids Function description

0 2541 4 biological_process unknown
1 348 7154 cell communication
2 231 9605 response to external stimulus
3 50 7606 chemosensory perception
4 145 9628 response to abiotic stimulus
5 91 9607 response to biotic stimulus
6 137 7165 signal transduction
7 84 7242 intracellular signaling cascade
8 54 7264 small GTPase mediated signal transduction
9 3668 8151 cell growth and/or maintenance

10 98 7114 budding
11 504 7049 cell cycle
12 201 67 DNA replication and chromosome cycle
13 60 7059 chromosome segregation
14 91 6260 DNA replication
15 73 6261 DNA dependent DNA replication
16 269 279 M phase
17 118 87 M phase of mitotic cell cycle
18 116 7067 mitosis
19 57 72 M-phase specific microtubule process
20 210 280 nuclear division
21 107 7126 meiosis
22 265 278 mitotic cell cycle
23 93 84 S phase of mitotic cell cycle
24 105 74 regulation of cell cycle
25 941 16043 cell organization and biogenesis
26 647 7028 cytoplasm organization and biogenesis
27 486 6996 organelle organization and biogenesis
28 234 7010 cytoskeleton organization and biogenesis
29 59 30029 actin filament-based process
30 53 30036 actin cytoskeleton organization and biogenesis
31 88 30012 establishment and/or maintenance of cell polarity (sensu Saccharomyces)
32 86 283 establishment of cell polarity (sensu Saccharomyces)
33 89 7017 microtubule-based process
34 80 226 microtubule cytoskeleton organization and biogenesis
35 93 7005 mitochondrion organization and biogenesis
36 111 7033 vacuole organization and biogenesis
37 59 6623 protein-vacuolar targeting
38 165 42254 ribosome biogenesis and assembly
39 50 42255 ribosome assembly
40 127 7046 ribosome biogenesis
41 100 6364 rRNA processing
42 122 7047 cell wall organization and biogenesis

Nodes with underlines are the terminal informative nodes.

genes as the parent node, and the terminal informative nodes
as the informative nodes such that none of their descendants
are informative. In this study, we define a functional path for
a node as the path from the root to the node. The closer a node
is to the root, the more abstract the corresponding function
is and the farther away from the root, the more detailed. By
definition, if a gene belongs to a functional node, it automat-
ically belongs to all the nodes on its functional paths. It is
easy to see that the DAG structure allows multiple functional

paths for a given node. In this study, we use the concept of
functional paths to define the function of a gene product, so
that a gene can be predicted with GO functions at different
resolutions.

We downloaded three ontology files from the GO data-
base on December 4, 2002. We also downloaded the SGD
gene list with GO annotations from the SGD database. For
‘biological process’, part of the informative nodes and the ter-
minal informative nodes are given in Table 1. The full table is
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available in Supplementary material. It should be noted that
the ‘Root’ node is not used for prediction since it covers all the
proteins. The known proteins are those proteins covered by at
least one GO node except the ‘unknown’ node. When we use
the informative nodes to define function, some known pro-
teins may not be covered by any of these informative nodes,
so we call them as uncovered proteins. The total number of
uncovered proteins is quite small. For protein interactions,
we downloaded the Munich Information Center for Protein
Sequences (MIPS, Mewes et al., 2002, http://mips.gsf.de)
physical and genetic interaction data.

For a function of interest, we first test the hypothesis that
the number of within-class (1, 1) interaction pairs is higher
than expected within a network. For a given network, let K

be the number of interaction pairs in which both proteins are
known. Let K11 be the number of interaction pairs with both
proteins having the function of interest. Let p be the fraction
of known proteins having the function of interest among all
the known proteins of Saccharomyces cerevisiae. Under the
null hypothesis of no association between protein function
and protein interactions, we should expect E(K11) = Kp2.
We define the fold number as

Fold = K11

Kp2
.

We first calculate the fold number for each informative node
based on the physical interaction network and the genetic
interaction network separately. The fold numbers are sim-
ilar for the two networks and, thus, we then combine the two
networks to calculate the fold numbers for all the informative
nodes. For biological process, all terminal informative nodes
have fold number greater than 1, and the average fold number
is 35.7. Therefore, the MRF model should be applicable to
most functional classes. The prediction accuracy based on the
MRF should increase as the fold number increases.

We apply the MRF method to predict protein function
under the three GO categories. For each informative node,
the parameters can be estimated by the quasi-likelihood
approach (Li, 1995) using the interaction subnetworks con-
sisting of known proteins. The computation is done in S-PLUS
(Venables and Ripley, 1996). With these parameters, the
Gibbs sampler computes the posterior probability that an
unknown protein has the function of interest. We assign this
function to an unknown protein if this posterior probability is
above a certain threshold.

For comparison, we also implement the neighbor-counting
method (Schwikowski et al., 2000) and the Chi-square method
(Hishigaki et al., 2001) to predict protein function. For the
neighbor-counting method and 1 ≤ k ≤ 10, we assign
min(k, ni) functions with the top frequencies among the
neighbors of the i-th protein, where ni is the number of
functions among the neighbors of the i-th protein. For the
Chi-square method and 1 ≤ k ≤ 10, we assign k functions
with the top k Chi-square values for each protein with at least

one interaction partners. To quantify how the effective use of
interaction data can increase the prediction accuracy, we also
randomly assign functions to a protein according to the frac-
tion of the known proteins having the function among all the
known proteins.

The accuracy of the predictions is measured by a leave-one-
out method. The method randomly selects a known protein and
assumes it as unknown. We predict its functions by the above
methods, and then compare the predictions with the original
functions of the protein. For example, in Figure 1, PRP12 is
annotated with two GO terminal informative nodes 35 and 41,
corresponding to four functional paths, (−1 → 9 → 25 →
26 → 27 → 35, −1 → 9 → 25 → 26 → 38 → 40 → 41,
−1 → 9 → 57 → 89 → 102 → 106 → 107 → 41,
and −1 → 9 → 57 → 89 → 96 → 98 → 41), and
predicted with eight informative nodes of 9, 25, 26, 27, 57,
89, 96 and 98, corresponding to two predicted functional paths
(−1 → 9 → 25 → 26 → 27, and −1 → 9 → 57 → 89 →
96 → 98).

We use precision and recall to summarize the comparison as
in (Owen et al., 2003). The precision is defined as the fraction
of matches between the annotated and the predicted functions
among the predictions, and the recall is defined as the fraction
of matches between the annotated and the predicted functions
among the original function annotations as detailed below. We
repeat the leave-one-out experiment for all the known proteins
with at least one interaction partner. Because of the specialty
of the structured GO annotation, different criteria can be used
to count the number of matches between the annotated and
the predicted functional paths. In the Appendix, we give three
approaches for counting matches between the annotated and
predicted functional paths and their limitations. In the first
approach, we treat the functional attributes as independent
without considering their relationship in the GO structure. In
the second approach, we treat functional paths as units of
analysis and two functional paths match each other if and
only if they are exactly the same. The above two approaches
represent two extreme cases for counting matches between
annotated and predicted functional paths. In the Appendix,
we define new precision and recall measures considering the
relationship between functional paths. The following results
are based on the new precision and recall measures. However,
the correlation between prediction accuracy and fold number
is not very strong. This maybe due either to errors in the
interaction networks or in the function annotations of known
proteins.

Figure 2 shows the relationship between precision and recall
of our approach using different thresholds for posterior prob-
abilities for ‘biological process’. With the threshold equals
to 0.19, the corresponding precision and recall are roughly
the same and equal to 52% which is defined as the prediction
accuracy.

Figure 3 shows the relationship between precision and
recall for the four different methods discussed above: the
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Prediction of protein function

Fig. 1. The annotation and the prediction for protein PRP12. The paths in the solid rectangle are the original GO functional annotation, while
the paths in the dash rectangle are the predicted functional paths. If we count the matches by the individual function, the precision and recall
are overestimated as 100.0% and 53.3%, respectively. If we count the exact matches by the functional paths, both of the precision and recall
are underestimated as 0.0% since no exact matched path exists. If we use the path match by the levels, the precision and recall are estimate as
25.0% and 13.0%, respectively.
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Fig. 2. Precision and recall of the predictions for different posterior
probability thresholds based on ‘biological process’ and proteins
with at least one interaction partner.

MRF method, the Chi-square method, the neighbor-counting
method and random function assignment. The figure indicates
that for any given precision, the recall of the MRF method
is higher than that of the neighbor-counting method, the
Chi-square method and random function assignment for ‘bio-
logical process’. It is interesting to see that the performance
of the Chi-square method is even worse than random assign-
ment. The reason for this might be due to the relatively small
number of interaction partners a protein has and a Chi-square
statistic is not appropriate in this situation.

Figure 4 shows the relationship between the fold number
[the ratio of the observed number of (1, 1) interaction pairs
over the expected] and the prediction accuracy for the ter-
minal informative nodes. It shows a trend that the prediction
accuracy increases as the fold number increases.

4 DISCUSSION
We apply the MRF method for function prediction of
unknown proteins based on multiple protein–protein inter-
action networks and the functional annotations of known
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Fig. 3. Precision and recall of predictions for the four different
methods based on ‘biological process’ and proteins with at least one
interaction partner.
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Fig. 4. Relationship between fold number and the prediction accur-
acy for the terminal informative nodes based on ‘biological process’.

proteins in GO. Unlike other available function predication
methods where they predict whether a protein has a function
or not, we estimate the posterior probability that the protein
has the function of interest. The posterior probability indic-
ates how confident we are about assigning the function to
the protein. The distinction of the Bayesian approach we
develop here is that it is a global approach taking all the
interaction networks and the functions of known proteins into
consideration.

Two types of protein networks are considered here: the
physical interaction network and the genetic interaction
network. Other kinds of networks or networks generated by
other techniques can be easily incorporated into our Bayesian
framework (Deng et al., 2003b).

We define new precision and recall measures considering
the relationship between different functional paths and assess
the accuracy of the predictions by comparing functional paths.
The prediction results based on MRF outperform the results
of the Chi-square method and the neighbor-counting method.
We show that, for a given precision, the recall of our method
is higher than that of the other two methods. We also notice
that different functional classes can be predicted with differ-
ent accuracy. The fold number can be used as a preliminary
indicator for the prediction accuracy.

There are several limitations of our approach. We do not
consider any false positives in the protein–protein interaction
network in our model. Thus, only the MIPS interaction net-
works, which is believed to be real interactions, are used in our
analysis. The actual number of interacting protein pairs might
be much higher than what have obtained in MIPS. As more
and more data being generated, our model will perform bet-
ter. Several protein–protein interaction data such as, Database
of Interacting Proteins (DIP, http://dip.doe-mbi.ucla.edu/)
(Xenarios et al., 2002), Biomolecular Interaction Network
Database (BIND, http://www.bind.ca/) (Bader et al., 2003),
The General Repository for Interaction Datasets (GRID,
http://biodata.mshri.on.ca/grid) (Breitkreutz et al., 2003) are
available with different reliability (Deane et al., 2002; Deng
et al., 2003a). It is important to develop methods to estim-
ate the reliability of each possible interaction and incorporate
these reliability into our model. It is a topic for future
research.
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APPENDIX
In this appendix, we present three approaches for counting
overlaps between annotated and predicted functional paths
and give three ways for calculating precision and recall. The
first naive approach is to compare the set of predicted func-
tions P with the set of annotated functions A. For the example
given in Figure 1, P = {9, 25, 26, 27, 57, 89, 96, 98} and A =
{9, 25, 26, 27, 35, 38, 40, 41, 57, 89, 96, 98, 102, 106, 107}. The
overlap between P and A is P ∩ A = {9, 25, 26, 27, 57, 89,
96, 98}. The precision (Prec) and recall (Rec) for this protein
can be defined as

Prec = |P ∩ A|/|P | = 8/8 = 100.0%

Rec = |P ∩ A|/|A| = 8/15 = 53.3%.

The overall precision and recall can be defined as the mean of
the corresponding quantities over all the proteins in the test
set. The problem with this criterion is that it does not take the
level of predictions into consideration. High level functional
attributes are generally much easier to predict than low level
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detailed attributes. This criterion also ignores the relationship
among functional attributes.

The second approach is to consider exact matches among
the predicted functional paths with the annotated functional
paths. For the example in Figure 1 of Section 3, the annot-
ated functional paths are given in the solid box and the
predicted functional paths are given in the dashed box in
Figure 1. The overlap between the predicted and annotated
functional paths can be found. For the above example, no
exact matched path exists, so Rec = Prec = 0.0%. How-
ever, if we trace a functional path along the GO DAG, some
of the predictions are in fact related to the original annota-
tion even if they are not exactly the same. For example,
annotated functional path −1 → 9 → 25 → 26 →
38 → 40 → 41 and predicted functional path −1 →
9 → 25 → 26 → 27 have the same top three level attrib-
utes and differ starting from the fourth level. Ignoring the
overlapping information among functional paths may not be
reasonable.

Here, we define new precision and recall measures that
take into consideration overlaps between functional paths.
For a known protein, suppose the original annotated func-
tional paths are {O1, O2, . . . , On} with Oi = {Oi0 →
Oi1 → · · · → Oi,ki

}, where Oil is the l-th level attribute
from the root of the i-th annotated functional path. Simil-
arly, let the predicted functional paths be {P1, P2, . . . , Pm}
with Pj = {Pj0 → Pj1 → · · · → Pj ,k′

j
}, where Pjl is

the l-th level attribute from the root of the j -th predicted
functional path.

For each annotated functional path Oi and predicted func-
tional path Pj , we first define an overlap function by

overlap(Oi , Pj ) = max{L; Oil = Pjl for any 1 ≤ l ≤ L},

where we define the maximum of an empty set to be −∞.
We then define the predicted depth (pre-depth) for functional
path Oi as the maximum of the overlap between Oi with all
the predicted functional paths, i.e.

pre-depth(Oi) = m
max
j=1

overlap(Oi , Pj ).

Similarly, we define the annotated depth (annot-depth) of
Pj as

annot-depth(Pj ) = n
max
i=1

overlap(Oi , Pj ).

The general idea of our new recall measure is to give a score
4−(ki−pre-depth(Oi)) for the original functional path Oi . Thus, if
all the nodes for Oi are predicted correctly, we give a score 1,
and if the very top node is not correctly predicted, we give
a score 0. The score increases as the the number of nodes
correctly predicted increases. The recall (Rec) can then be
defined as

Rec =
∑n

i=1 4−[ki−pre-depth(Oi)]

n
.

Similarly, we can define the precision as follows.
For predicted functional path Pj , we give it a score
4−[k′

j −annot-depth(Pj )]. The precision can be defined as

Prec =
∑m

j=1 4−[k′
j −annot-depth(Pj )]

m
.

For the example in Section 3, Rec =
[

1
4+ ( 1

4

)3 + 1
4 +

( 1
4

)4
]
/4 = 13.0% and Prec = ( 1

4 + 1
4 )/2 = 25.0%.
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