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1. Introduction

Not only is the world experiencing rapid changes in climate

and biodiversity patterns, but increasing consumption of goods

and services is placing an enormous pressure on natural

ecosystems and the resources they harbour (Butchart et al.,

2010; Foley et al., 2005). Particularly, land use has become a major

driver of global change because human populations drastically

alter land in order to satisfy their basic needs for food, fibre, energy

and housing. Human utilization of the biosphere has reached such

a magnitude that now more than 75% of ice-free land shows

evidence of marked human alteration (Ellis and Ramankutty,

2008) and almost 30% of global terrestrial net primary production

is appropriated for human use (Haberl et al., 2007). Current land-

use practices result in changes in the Earth’s biogeochemical

cycles and ultimately in the ability of ecosystems to deliver

services critical to human well-being (MEA, 2005). While land use

is essential for human societies, it is also becoming increasingly

clear that the current global land-use system is unsustainable.

Transitioning to sustainable land-use systems that would balance

growing resource demands with the conservation of ecosystems

and biodiversity is therefore a central challenge for science and

society (Foley et al., 2007).

Land-based agricultural production is expected to increase

further to meet future demands for food and other commodities,

such as biofuel or fibre (Kearney, 2010; Kiers et al., 2008).

However, as fertile land resources are getting scarcer and

ecosystem functions and services degraded, further agricultural

expansion becomes hardly acceptable. Future production

increases will have to be, to a large part, achieved via intensifying

existing production systems in order to reach global food security

and environmental sustainability (Tilman et al., 2011, 2002).

Whereas the distribution of agricultural expansion is relatively

well mapped (DeFries et al., 2010; Klein Goldewijk, 2001; Klein

Goldewijk et al., 2011; Ramankutty et al., 2008, 2002),

the patterns of land-use intensity remain poorly understood at

the global scale. To identify the potential for sustainable

intensification and to better understand the environmental and
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A B S T R A C T

Land use is a key driver of global environmental change. Unless major shifts in consumptive behaviours

occur, land-based production will have to increase drastically to meet future demands for food and other

commodities. One approach to better understand the drivers and impacts of agricultural intensification

is the identification of global, archetypical patterns of land systems. Current approaches focus on broad-

scale representations of dominant land cover with limited consideration of land-use intensity. In this

study, we derived a new global representation of land systems based on more than 30 high-resolution

datasets on land-use intensity, environmental conditions and socioeconomic indicators. Using a self-

organizing map algorithm, we identified and mapped twelve archetypes of land systems for the year

2005. Our analysis reveals similarities in land systems across the globe but the diverse pattern at sub-

national scales implies that there are no ‘one-size-fits-all’ solutions to sustainable land management.

Our results help to identify generic patterns of land pressures and environmental threats and provide

means to target regionalized strategies to cope with the challenges of global change. Mapping global

archetypes of land systems represents a first step towards better understanding the global patterns of

human–environment interactions and the environmental and social outcomes of land system dynamics.
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social trade-offs, constraints, and opportunities connected to it,

we urgently need to move beyond mapping broad agricultural

classes towards mapping land use systems (DeFries and Rosenz-

weig, 2010).

Traditional models of land systems focus on broad-scale

representations of land cover with limited consideration of human

influence or land-use intensity (GlobCover, Arino et al., 2007; GLC

2000, Bartholome and Belward, 2005). However, the recent surge in

global-scale geospatial data pertaining to land management, such as

cropland densities (Ramankutty et al., 2008), fertilizer use (Potter

et al., 2010), or soil erosion (Van Oost et al., 2007), provide

opportunities to incorporate indicators of land-use intensity.

Mapping land systems, and thereby incorporating the multidimen-

sional aspects of land-use intensity and land management practices,

can help us to (i) better understand the interactions and feedbacks

among different biophysical and social components, (ii) measure

impacts that are currently difficult to quantify (e.g. effects of

changing land use intensity on biodiversity or social implications of

land system transitions), (iii) address global trade-offs and distant

impacts of land-use change (Seppelt et al., 2011), and (iv) develop

better policies and spatially explicit solutions adapted to regional

conditions (Foley et al., 2011). These efforts require a global analysis

of land systems that would help identify both the intensity and

geographical manifestation of human–environment interactions.

Several new studies made critical strides towards better

integrating land management patterns in global representations

of the earth’s surface. For instance, Ellis and Ramankutty (2008)

suggested a new classification of anthropogenic biomes as an

innovative view of the human-dominated biosphere. These

anthromes are based on empirical analyses of global land cover,

irrigation and population data, assuming that population density is

a sufficient indicator of sustained human interactions with

ecosystems. The anthrome concept was developed further by

Letourneau et al. (2012) who proposed a classification of global

land-use systems based on additional data on irrigation, livestock

type and market accessibility. Most recently, van Asselen and

Verburg (2012) improved the representation of land systems by

including fractional land cover, livestock density and the efficiency

of agricultural production for wheat, maize and rice. These studies

used either indirect or a few direct indicators of land-use intensity.

They also applied top-down approaches to define land system

classes based on expert’s rules or a priori classification. To

complement these efforts and reduce the level of subjectivity in

the classification, an alternative approach is needed that would

account for the multiple dimensions of land-use intensity and

provide a typology of land systems driven mostly by data rather

than by predefined assumptions. Such analysis may help us better

understand the global patterns of human–environment interac-

tions and land use intensity and examine the social and

environmental outcomes of land system dynamics.

In this study, we propose a new approach for representing

human–environment interactions as global archetypes of land

systems, which we define as unique combinations of land-use

intensity, environmental conditions and socioeconomic factors,

with patterns that appear repeatedly across the terrestrial surface

of the earth. We aim to move beyond the abovementioned

representations by explicitly addressing the multidimensional

aspects of land-use intensity and both the drivers of land use and

its impacts. Our analysis takes advantage of globally continuous,

high spatial resolution datasets on more than 30 indicators of land

systems and adopts a bottom-up approach driven solely by the

data. We hypothesize that (1) land systems can be clustered in

consistent groups based on the similarity of available indicators of

global land-use and that (2) the same land system archetypes

(LSAs) can be identified across the globe, while diverse patterns can

be found at the sub-national scale. By mapping LSAs, we offer a

broad view of the most relevant characteristics of human–

environment interactions while still preserving local context

Table 1

Datasets used for classification of land system archetypes.

Archetype factor Spatial resolution Unit Source

Land-use intensity factors

Cropland area 5 arc-minutes km2 per grid cell Klein Goldewijk et al. (2011)

Cropland area trend 5 arc-minutes km2 per grid cell Klein Goldewijk et al. (2011)

Pasture area 5 arc-minutes km2 per grid cell Klein Goldewijk et al. (2011)

Pasture area trend 5 arc-minutes km2 per grid cell Klein Goldewijk et al. (2011)

N fertilizer 0.5 arc-degrees kg ha�1 Potter et al. (2010)

Irrigation 5 arc-minutes Ha per grid cell Siebert et al. (2007)

Soil erosion 5 arc-minutes Mg ha�1year�1 Van Oost et al. (2007)

Yields (wheat, maize, rice) 5 arc-minutes t ha�1year�1 http://www.gaez.iiasa.ac.at/

Yield gaps (wheat, maize, rice) 5 arc-minutes 1000 t http://www.gaez.iiasa.ac.at/

Total production index National level Index http://faostat.fao.org/

HANPP 5 arc-minutes % of NPP0 Haberl et al. (2007)

Environmental factors

Temperature 10 arc-minutes 8C � 10 Kriticos et al. (2012)

Diurnal temperature range 10 arc-minutes 8C � 10 Kriticos et al. (2012)

Precipitation 10 arc-minutes mm Kriticos et al. (2012)

Precipitation seasonality 10 arc-minutes Coeff. of variation Kriticos et al. (2012)

Solar radiation 10 arc-minutes W m�2 Kriticos et al. (2012)

Climate anomalies 5 arc-degrees 8C � 10 http://www.ncdc.noaa.gov/cmb-faq/anomalies.php#grid

NDVI – mean 4.36 arc-minutes Index Tucker et al. (2005)

NDVI – seasonality 4.36 arc-minutes Index Tucker et al. (2005)

Soil organic carbon 5 arc-minutes g C kg�1 of soil Batjes (2006)

Species richness Calculated from range polygons # of species per grid cell http://www.iucnredlist.org/technical-documents/spatial-data

Socioeconomic factors

Gross domestic product National level $ per capita http://faostat.fao.org/

Gross domestic product in agriculture National level % of GDP http://faostat.fao.org/

Capital stock in agriculture National level $ http://faostat.fao.org/

Population density 2.5 arc-minutes persons km�2 CIESIN (2005)

Population density trend 2.5 arc-minutes persons km�2 CIESIN (2005)

Political stability National level Index http://www.govindicators.org

Accessibility 0.5 arc-minutes Minutes of travel time http://bioval.jrc.ec.europa.eu/products/gam/index.htm
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needed for place-specific solutions to global challenges of land use

and sustainability.

2. Materials and methods

2.1. Data sources and preparation

Global patterns of land system archetypes were identified

based on 32 indicators characterizing land-use intensity (covering

input and output intensity factors), environmental factors and

socioeconomic factors (Table 1). We hypothesized these variables

would well represent the multidimensional aspects of human–

environment interactions, while many of these factors function

both as drivers and consequences in the complex land systems.

While some variables were not completely independent from each

other, as they were created by a combination of several datasets or

models, we inspected Pearson correlations between all variables to

avoid redundancy in the input information (Table A1). Our final set

of input data included only those variables with |r| < 0.7 (Dormann

et al., 2013). All datasets on the current land-use status were

derived for the period around the year 2005 and were aggregated

prior to the analysis to 5 arc-minutes (�9.3 � 9.3 km at the

equator) spatial resolution. In addition, we included several

indicators of temporal trends to account for legacies and transient

dynamics of LSAs. The Arctic and Antarctic regions were excluded

from the analysis.

2.1.1. Land-use intensity factors

Land-use intensity is a multidimensional issue and we therefore

used indicators that characterize land-use intensity in terms of

inputs, outputs and system properties (Kuemmerle et al., 2013).

Data on cropland and pasture cover were obtained from the HYDE

3.1 database (Klein Goldewijk et al., 2011), an updated version of

the standard data source for investigations of human-induced land

change (Ellis et al., 2010; Hurtt et al., 2006). The HYDE model

combines agricultural statistics with remote sensing data and

allocation algorithms to produce spatially explicit maps of

agricultural intensity (Klein Goldewijk, 2001; Klein Goldewijk

et al., 2011). In addition to the status for 2005, we included

temporal trends in cropland and pasture densities over the last 50

years. These trends were calculated as the difference between the

values in 2005 and 1955, so the variables describe overall increase

or decrease of the factors in the 50-year period. The amount of

fertilizer applied and area under irrigation were used as additional

indicators of land-use intensity. We acquired spatially explicit

estimates of nitrogen (N) and phosphorus (P) inputs resulting from

global fertilizer application and manure production (Potter et al.,

2010). We used only the N fertilizer variable in the final analysis

due to its high correlations with P fertilizer (Pearson

correlation > 0.9). Irrigation data were obtained from the Global

Map of Irrigation Areas version 4.0.1 which shows the area

equipped for irrigation estimated by combining subnational

statistics with geospatial information on the position and extent

of irrigation schemes (Siebert et al., 2007). As large-scale soil

erosion is a major consequence of industrial agriculture and an

indicator of land degradation (Boardman, 2006), we also acquired

data from Van Oost et al. (2007) who simulated global distribution

of soil erosion caused by water and tillage. The estimates were

based on mechanistic models that quantitatively described the

relationship between sediment erosion and land use, topography,

climate and soils as controlling factors.

As an indicator of the intensity and efficiency of land-based

production, we acquired data on yields and yield gaps for wheat,

maize and rice from the GAEZ v3.0 database (IIASA/FAO, 2012).

These data were developed by downscaling the national and

subnational crop production statistics (Monfreda et al., 2008) and

allocating them to cultivated land. Yields were calculated for both

rain-fed and irrigated croplands in t ha�1 year�1 and yield gaps

represented the difference between actual production and

potential agro-ecological productivity. We also included one

country-level indicator of land-based production: the total

production index (TPI) which represents the relative level of the

aggregate volume of agricultural production in comparison with

the base period 1999–2001. As an additional indicator of land-use

intensity and human pressure on land, we used data on the human

appropriation of net primary production (HANPP) that represents

an aggregate impact of land use on biomass available in

ecosystems (Haberl et al., 2007). HANPP accounts not only for

biomass withdrawn from ecosystems through harvest but also for

NPP losses due to biomass being destroyed during harvest and due

to decreased productivity of human-dominated ecosystems as

compared to productivity of natural ecosystems (Erb et al., 2009).

2.1.2. Environmental factors

Global patterns of land-use forms and processes are constrained

by climate and other biophysical attributes that represent the

system as a whole. To represent climate, we mapped annual means

of 35 bioclimatic variables derived from the CliMond database

(Kriticos et al., 2012). These interpolated surfaces were calculated

from the original WorldClim variables (Hijmans et al., 2005) as

historical climate averages centred on 1975. For the final analysis,

we selected five bioclimatic factors with low correlation (<0.6) to

avoid redundant information in the dataset (Table 1). In addition,

we mapped mean climate anomalies reflecting 10 years (2001–

2010) of anomalies in land surface temperatures measured by

NOAA’s Global Historical Climatology Network (Menne et al.,

2009). Because the 58 aggregated data contained missing values,

we interpolated them with thin plate spline algorithm (Hutch-

inson, 1995) to obtain global coverage. To account for biophysical

factors that reflect the productivity of ecosystems, we calculated

the mean and standard deviation (seasonality) of the normalized

difference vegetation index (NDVI) acquired from the Global

Inventory Modelling and Mapping Studies (GIMMS) available for a

25 year period spanning from 1981 to 2006 (Tucker et al., 2005).

NDVI has been used extensively for investigations of global change

because it correlates with primary productivity of ecosystems and

is an indicator of vegetation cover and land-use practices (DeFries

and Townshend, 1994; Lunetta et al., 2006; Pettorelli et al., 2005).

As soil is a crucial physical constraint for plant growth and crop

production (FAO, 1999), we included data on soil organic carbon

from the ISRIC–World Soil Information project (Batjes, 2006).

Finally, we included a measure of species diversity because

biodiversity reflects both natural conditions and long-term effects

of land management (Ewers et al., 2009; Green et al., 2005; Phalan

et al., 2011). For the taxonomic groups of terrestrial mammals,

birds, reptiles and amphibians, we obtained global range polygon

data from the International Union for Conservation of Nature

(IUCN) database and used overlay analysis to calculate species

richness (number of species) for each grid cell.

2.1.3. Socioeconomic factors

As economic indicators of land systems, we used three

statistical indices provided by the Food and Agriculture Organiza-

tion (FAO) at a national level. Gross domestic product (GDP)

represents the market value of all officially recognized goods and

services produced within a country, and GDP from agriculture

indicates the proportion of an economy’s total domestic output

resulting from the agricultural sector. The capital stock in

agriculture quantifies investments and physical assets used in

the production process covering land development, irrigation

works, structures, machinery and livestock. As broad indicators of

the degree of human impact on land, we used gridded data on
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globally consistent estimates of population density (CIESIN,

2005). Similar to the case of cropland and pasture areas, we used

the status for 2005 but also calculated changes in global

population density for the last 50 years. For socioeconomic

indicators, we used the worldwide governance indicators (WGI)

and market accessibility. WGI reports on six dimensions of a

country’s governance, including voice and accountability, politi-

cal stability, government effectiveness, regulatory quality, rule of

law and control of corruption (Kaufmann et al., 2010). We chose

only one index, political stability, to represent governance

indicators in the final classification, in order to avoid multi-

collinearity in the data. Finally, we used the global map of

accessibility that measures travel time to major cities and market

places (Uchida and Nelson, 2009). This dataset developed by the

European Commission and the World Bank captures connectivity

and concentrations of economic activities which are critical

drivers of human interactions with the global environment

(Verburg et al., 2011a).

2.2. Archetype classification

We adopted a multidimensional classification procedure that

explicitly considers the complexity of land-use intensity to

examine how this phenomenon manifests itself at a global scale.

Hierarchical clustering has been previously used to delineate land

cover and farming systems (FAO, 2011; Kruska et al., 2003;

Letourneau et al., 2012; van Asselen and Verburg, 2012; van de

Steeg et al., 2010) but these approaches required expert rules or

supervised threshold selection and used relatively few variables in

order to keep the interpretation of classification trees manageable.

We used a self-organizing map (SOM) algorithm, an unsupervised

neural network, that allows both (i) visualizing complex data sets

by reducing their dimensionality and (ii) performing cluster

analysis by grouping observations (grid cells in a map) into

exclusive sets based on their similarity (Skupin and Agarwal,

2008). SOM is especially useful for the classification of archetypes

because our exploratory aim is geared towards uncovering

relevant patterns in land systems rather than confirming existing

hypotheses. Also, the method preserves topology based on

distances (similarity) among input vectors in the two-dimensional

output space. If two high-dimensional clusters are very similar,

then their position in the two-dimensional space should be very

similar (Spielman and Thill, 2008).

The SOM analysis was conducted in R version 2.14.0 (R

Development Core Team, 2011) using the package kohonen

(Wehrens and Buydens, 2007). First, we prepared training data

by randomly sampling all 32 variables with one million data

points, in order to decrease the computational burden and reduce

spatial autocorrelation in the variables. Second, we checked data

for extreme outliers or skewed distributions. Because of their

differing units, we normalized all variables by scaling them to zero

mean and unit variance. This z-score normalization was important,

as it allowed the results to be interpreted in terms of how much

and in which direction the characteristic factor in each archetype

deviates from the global average. Third, we selected the size and

type of the two-dimensional output space. We chose a 3 by 4

hexagonal plane to provide high generalization of clusters required

for the purpose of our analysis, while maintaining sufficient links

among units in the neural network (for details see Skupin and

Agarwal, 2008). We based our choice on a sensitivity analysis that

compared different sizes and shapes of SOM output planes, ranging

from 2 by 2 to 10 by 10 clusters. For each possible combination, we

calculated the mean distance of samples to the codebook vector

(see below) of that cluster to which the samples were assigned,

normalized by the number of clusters (Wehrens and Buydens,

2007). We identified a natural break in the mean distance for the 3

by 4 SOM size, suggesting a useful trade-off between the number of

clusters and their quality of data representation.

The final pattern was identified through an iterative self-

organizing process which represents the core of the SOM analysis.

During this process, individual input vectors were presented to the

output units, the best-matching units were found and the weights

of the winning and neighbouring units repeatedly modified until

the algorithm converged (Skupin and Agarwal, 2008). To analyze

the spatial manifestation of identified clusters, we mapped all

samples back to the geographical space and created the final map

of LSAs by assigning each grid cell a cluster value of its closest

sample point. We evaluated the quality of the classification

procedure by calculating the distance of each grid cell, mapped to a

particular cluster, to the codebook vector of that cluster (i.e. the

combination of variable values that best characterizes the

particular cluster). A good classification should show relatively

small distances for most locations in the map (Wehrens and

Buydens, 2007).

3. Results

The final map of global land system archetypes revealed a

clustered pattern of human–environment interactions and land-

use intensity (Fig. 1). Each archetype was characterized by a

specific combination of land management indicators and its spatial

position in the SOM indicated its relation (similarity) to other

archetypes (Fig. 2 and Fig. A2). The non-standardized values of land

system determinants that best characterize each archetype were

summarized in Fig. 3 and Table A2.

Forest systems in the tropics cover approximately 14% of

terrestrial ecosystems and are determined mainly by climate

conditions, namely high temperature and precipitation, which

naturally correspond with primary production that is the highest

among all archetypes and supports high species richness (201

species of selected taxonomic groups per grid cell). The climate

conditions, however, have experienced most pronounced temper-

ature anomalies in the recent decade. While the cropland and

pasture densities are close to the global average (5 and 15% of

cover, respectively), their extent has expanded in the last 50 years

as a result of continuing deforestation (by 2 and 5 km2 per grid cell,

respectively). Yields for wheat, maize and rice, however, remain

below 1 t ha�1 year�1. These regions have low average GDP (2011 $

per capita) but 18% of their national GDP comes from the

agricultural sector. The population density varies substantially

from place to place but most of the regions exhibit low political

stability. These regions occur in Latin America and the Amazon

basin, Central and West Africa, and in Southeast Asia.

Degraded forest/cropland systems in the tropics cover only 0.35%

of terrestrial ecosystems but represent areas with the highest

estimated soil erosion in the world (120 Mg ha�1 year�1). This LSA

exhibits a scattered pattern in locations where tropical forest had

been converted to croplands with the average cropland cover of

25% that increased by 22 km2 per grid cell in the last 50 years.

Although the input of N fertilizer is approximately 9 kg ha�1, the

yields of the three major crops are relatively low. However, more

than 39% of the net primary production is appropriated for human

use. These areas have environmental and socioeconomic condi-

tions highly similar to the forest system archetype and occur

especially in Southeast Asia and Latin America.

Boreal systems of the western world (14% of terrestrial

ecosystems) consist of a mixture of boreal forests and tundra.

The archetype is determined by a combination of boreal climate

and low human impact but advanced socioeconomic conditions.

The average cover of cropland and pasture is about 6% and both

indicators experienced a decreasing trend in the last 50 years.

Agricultural intensity is very low with minimal potential for higher
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land productivity. Low and seasonally dependent NDVI corre-

sponds to a cold and relatively dry climate that causes slow

decomposition of organic material in soils and does not allow

persistence of a large number of species. High GDP is a distinctive

factor (average of 25,725 $ per capita) but less than 2% of GDP

originates from the agricultural sector. Boreal systems are scarcely

populated (average of 5 persons per km2), far from cities and

market places (average of 2270 min of travel time) but politically

Fig. 1. Global land system archetypes: world map and regional areas. The data for this classification refer to the year 2005.
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highly stable. This LSA occurs predominantly in Canada and

Northern Europe but also in Patagonia and the higher elevations of

Japan or the Alps.

Boreal systems of the eastern world (20% of terrestrial ecosys-

tems) closely resemble the previous archetype with the exception

of several socio-economic factors. While the climate and land-use

intensities are almost the same, this archetype has on average

substantially lower GDP (1779 $ per capita) but a higher share of

GDP (6%) comes from the agricultural sector. The population

density is comparable but the regions have slightly better

accessibility to cities and market places (average of 1580 min)

and have lower values of governance indicators. This archetype

occurs predominantly in Russia and Northeast China.

High-density urban agglomerations (0.1% of terrestrial ecosys-

tems) are characterized by extreme values of a few land system

determinants, mainly population indicators (>15 s.d.). The popu-

lation density is by orders of magnitude higher than in other

archetypes (average of 7138 persons km�2) and in the last 50 years

it increased by 4319 persons per km2. Urban agglomerations have

an average cropland cover of 13% but its decrease in the last 50

years by 22 km2 per grid cell indicates a rapid urbanization process

on fertile land. High values for N fertilizers (23 kg ha�1), irrigated

areas (1035 ha per grid cell) and HANPP (51%) represent a legacy of

formerly cultivated land but also reflects soil sealing and NPP

losses from urbanization. As urban agglomerations are scattered

throughout the world, most other factors are highly variable but

the travel time to market places is naturally the lowest from all

archetypes. Urban areas with lower population densities, which

sum up to 0.5% of the terrestrial Earth surface (Seto et al., 2012) are

part of other archetypes.

Irrigated cropping systems with rice yield gap (1% of the terrestrial

ecosystems) are characterized by high cropland density (49%),

large extents of irrigated areas (2613 ha per grid cell) and high

inputs of N fertilizers (average of 33 kg ha�1). Actual yields are low

for wheat and maize and higher for rice (3 t ha�1 year�1) but the

yield gap for rice due to nutrient limitation is the largest from all

archetypes. Climate factors point to relatively warm climate with

high precipitation amounts and seasonality. While these regions

have more than 17% of their GDP resulting from agriculture, they

are economically very poor (GDP of 757 $ per capita) and politically

unstable. The intense land-use pressure is illustrated also by dense

population (509 persons per km2) that increased by 307 person-

s per km2 in the last 50 years. These areas have relatively good

accessibility to cities and market places (average of 122 min) and

occur predominantly in India, Bangladesh and Southeast Asia.

Extensive cropping systems (11% of terrestrial ecosystems) are

characterized by high density of cropland (average cropland cover

of 30%) and its high increase in the last 50 years (15 km2 per grid

cell). Although varying spatially, the extent of irrigated areas

exceeds the global average and the land receives relatively high

inputs of N fertilizer (approx. 13 kg ha�1), while in the same time

suffers from soil erosion (average of 9 Mg ha�1 year�1). Yields of

the three major cereals vary between 1 and 3 t ha�1 and almost

49% of NPP is appropriated for human use but there is still a

substantial yield gap, especially for wheat and maize. The

characteristic climate is mainly temperate but the conditions

vary due to the wide spatial distribution of this LSA. GDP is below

global average (4030 $ per capita) and about 12% originates from

agriculture. The population density and its trend is highly variable

but exceeds the global average (102 and 56 persons per km2,

respectively). Most regions are relatively well accessible, having a

mean travel time of 208 min to cities and market places. This LSA

occurs in Eastern Europe, India, China but also in South America

and Sub-Saharan Africa.

Fig. 2. Overview of land system archetypes (simplified version of Fig. A1 in the appendix), summarizing major land-use intensity indicators (A), environmental conditions (B)

and socioeconomic factors (C) that best characterize each archetype. The + and � signs show whether the factor is above or below global average (+ is up to 1 s.d., ++ is 1–2 s.d.,

+++ is >2 s.d.); the " and # signs signify increasing/decreasing trends within the last 50 years; the numbers represent percentages of terrestrial land coverage. The spatial

position in this self-organizing map indicates similarity among land system indicators.
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Pastoral systems (13% of terrestrial ecosystems) are character-

ized especially by high densities of pastures and grasslands

(average cover of 52%) and their increasing trends (average

increase of 21 km2 per grid cell). The agricultural inputs in the form

of N fertilizer and irrigation are small, while the land has low actual

and potential productivity. The total production index is relatively

high in comparison to the base period but due to low cropland

coverage, the total volume of cropland production is small. Low

NDVI corresponds to drier climate but higher precipitation

seasonality and diurnal temperature range. Countries that overlap

with this LSA have relatively high proportion of GDP resulting from

agriculture (14%), although the average total GDP is significantly

lower than the global average (1772 $ per capita). These areas are

scarcely populated (14 persons per km2), although the population

density has increased in the last 50 years (by 8 persons per km2).

Their accessibility is similar to the global average (945 min).

Fig. 3. Comparison of land-use input/output indicators, environmental conditions and socioeconomic factors that characterize each land system archetype. Dots represent

mean values; whiskers represent standard deviations. For variable units, see Table 1.
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Pastoral systems occur predominantly in Central Asia but also in

South and North Africa, Sahel, and in portions of Mexico and South

America.

Irrigated cropping systems cover only about 2% of terrestrial

ecosystems but represent managed landscapes with the highest

agricultural inputs. This archetype is typical by having the largest

extents of irrigated areas (3539 ha per grid cell) and extremely

high inputs of N fertilizers (60 kg ha�1). The cropland density is

also one of the highest (average cover of 44%) but has decreased in

the last 50 years by 5 km2 per grid cell due to settlement

encroachment. The yields are high for all three major cereals (3–

5 t ha�1 year�1) and about 39% of NPP is appropriated for human

use but opportunities for agricultural intensification still exist,

especially for wheat and maize. Considered climate factors point to

relatively warm climate with high precipitation seasonality but the

variation in climate anomalies suggests a potential threat for

sustaining agricultural production. While these regions are

politically unstable and economically poor (GDP of 2952 $ per

capita), they have more than 14% of their GDP resulting from

agriculture and relatively high capital investments in the

agricultural sector. The intense land-use pressure is illustrated

also by dense population (447 persons per km2) that increased by

256 persons per km2 in the last 50 years. Irrigated croplands have

good accessibility to cities and market places (average of 116 min)

and occur predominantly in India, China, Egypt, but also in Europe.

Intensive cropping systems (5% of terrestrial ecosystems) are

characterized by a high density of cropland (cover of 22%) that has

slightly decreased in the last 50 years and high inputs of N fertilizer

(approx. 27 kg ha�1). These inputs correspond to high yields for

wheat and maize, although yield gaps for both crops still exist. The

TPI has decreased in comparison to the base period but the total

volume of production is higher than in other archetypes due to

larger areas of harvested crops. Climate factors indicate a

temperate climate with low seasonality that corresponds to

productive ecosystems (high NDVI) but more than 47% of NPP is

appropriated by humans. These regions are politically and

economically stable (GDP of 27,287 $ per capita) and although

only 2% of GDP originates from agriculture, they have the highest

capital investments in the agricultural sector. Population density is

on average 92 persons per km2 and increased by 28 person-

s per km2 in the last half century. Most regions are well accessible,

having a short travel time (average of 134 min) to cities and market

places. This LSA occurs mainly in Western Europe, Eastern USA and

Western Australia.

Marginal lands in the developed world (9% of terrestrial

ecosystems) are driven largely by pronounced positive socioeco-

nomic factors and low values for indicators of land-use intensity.

The average cover of pasture/grasslands is 33% but the average

cropland cover is only 3% and has decreased in the last 50 years.

Yields of major cereals are marginal but the conditions do not allow

much potential to increase land-based production. The TPI even

shows there has been a decrease in agricultural production in

comparison to the base period. Temperature and precipitation

indicators point to a warm and dry climate affected by frequent

positive climate anomalies. These regions have similar values of

socioeconomic indicators as the intensive cropping systems but

the population density is only 6 people per km2 with decreasing

trend. This LSA occurs predominantly in Western USA, Australia,

Argentina, but also in North and South Africa.

Barren lands in the developing world (11% of terrestrial

ecosystems) consist of mostly barren and desert areas. Low

densities of cropland (average cover of 2%) and pastures (average

cover of 9%) allow only marginal agriculture with minimal yields

and potentials for intensification. The limitation for growing crops

is also emphasized by the low organic carbon content. Extremely

low primary production as measured by NDVI corresponds to an

extreme climate with high temperatures and their diurnal range,

high solar radiation and low precipitation. The countries are

economically poor (1954 $ per capita) but despite their low

agricultural production and capital investments, about 18% of their

GDP is generated by the agricultural sector. The population density

in this archetype is only 12 people per km2 but the settlement

density varies substantially due to spatial clustering in urbanized

areas. Regions in this archetype have the lowest political stability

among all archetypes and include the Middle East, Saharan Africa

and also deserts of Namibia, Gobi and Atacama.

4. Discussion

Identifying archetypical patterns of human–environment

interactions presents a major challenge for land system science

(Rounsevell et al., 2012; Turner et al., 2007). Simple approaches

based on dominant land cover with limited consideration of land

management are insufficient to draw a complete picture of coupled

human–environment systems (Verburg et al., 2009). Integrated

Assessment Models (IAMs; e.g. Bouwman et al., 2006; Schaldach

et al., 2011) strive to capture interactions among biophysical and

social systems but they represent land-use intensity in a simplified

manner, e.g. by a single, aggregated factor of land management per

world region. This represents a shortcoming for understanding the

environmental impacts and socioeconomic costs of agricultural

intensification. In this study, we offered an integrated view on land

systems by directly accounting for the multiple dimensions of land

use intensity in the context of prevailing environmental and

socioeconomic conditions. Our classification identified interesting

regional patterns that go beyond mono-causal analyses of a few

land-use indicators. For example, the results revealed unexpected

similarities in land systems across the globe (e.g. the extensive

cropping archetype in East Europe, India, Argentina and China) but

also showed a diversity of land systems at a sub-national scale,

such as in China or India. Such findings challenge the view that land

system drivers and outcomes can be modelled adequately at the

national or macro-regional scales that are typical for IAMs

(Bouwman et al., 2006).

4.1. Uncertainties in land system classification

As every classification scheme, LSAs represent a considerable

oversimplification because land systems are inherently complex

and dynamic. Still, our use of the SOM technique alleviated some of

the subjective decisions needed in previous global classifications

(e.g. Ellis et al., 2010; van Asselen and Verburg, 2012). Being an

unsupervised data driven method, SOM allows clustering multidi-

mensional data without the need of using expert rules or a priori

classification thresholds. Moreover, SOM allows evaluating the

quality of the classification procedure by calculating the distance

of each grid cell in the multi-dimensional space to the mean values

of the variables that best characterize the archetype. In our case,

this quality assessment shows a homogeneous pattern of short

distances for most locations, indicating good classification results

(Fig. A2). Examples with higher distance values that require

caution in interpretation are areas in the Nile Delta or in Western

China. Here, some of the input variables have considerably higher

or lower values than the mean values of the corresponding

archetype (e.g. very large rice yield gap or poor accessibility,

respectively) but are not different enough to be assigned to a

different LSA. Larger distance values can be also found for many

urbanized areas that do not have population densities high enough

to be assigned to the LSA of high-density urban agglomerations.

While we used the best datasets on land use and environmental

and social characteristics of land systems currently available, the

main uncertainties in our classification stem from the quality and
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spatial resolution of input data. The quality of the global datasets

used here was affected by (1) the techniques used to process

remotely sensed data (e.g. for NDVI) or (2) the reliability of ground-

based inventories (e.g. for socioeconomic data) collected by

different monitoring and reporting methods (Fritz and See,

2008; Kuemmerle et al., 2013; Verburg et al., 2011b). Because

remote sensing quantifies land use and environmental properties

only indirectly, most variables were developed by the combination

of remote sensing and inventory data, using three main

approaches. First, climate or soil data were developed from

point-based measurements using interpolation techniques. Sec-

ond, land-use intensity data were developed by disaggregation

techniques that combined statistical methods with satellite-based

land-cover maps (e.g. for irrigation or yield data) or crop-type

maps (e.g. for N fertilizer data) to transform national or sub-

national census data into grid-level metrics. Third, several datasets

(e.g. soil erosion or yield gaps) linked direct remote sensing or

ground-based measurements with outputs of mechanistic and

simulation models. The nature of the data and applied models

introduced different levels of uncertainty in the final classification.

Consequently, many of the datasets were downscaled or upscaled

from the original data or used directly in our classification at the

national level (e.g. GDP or political stability).

Incorporating relevant land-use intensity, environmental and

socioeconomic indicators is a crucial improvement in mapping

global land systems, but many influential factors were still

neglected due to the lack of data. For example, data on

mechanization, farm size, crop rotation, grazing intensity or feed

production are unavailable at the global scale, or they are

associated with large uncertainties in specific regions (e.g. Africa).

Data gaps are especially large for forestry, for which developing

globally consistent information on the types of forestry systems

(e.g. plantations, agroforestry) and harvest intensity is a major

challenge (Kuemmerle et al., 2013). In addition, national and

subnational policies such as agricultural subsidies or land access

restrictions may drive the demand for different land functions.

Similarly, cultural factors, ownership patterns or local economies

can affect the decisions made by land managers (Lambin et al.,

2001). Our assessment accounted for a wider range of determi-

nants than previous land system models, but the influence of

governance and culture is notoriously difficult to capture and is not

available in adequate quality across broad geographic extents

(Verburg et al., 2009).

Moreover, global datasets often capture information for

different points in time. We used the year 2005 as a baseline

because many datasets were not available in a full coverage for

later years. This limitation, however, had an obvious effect on final

results. For example, a part of Libya was included in the archetype

marginal lands in the developed world because socioeconomic

variables for 2005 describe it as a prosperous and politically stable

country, although the situation has changed dramatically in the

last several years. Improving existing land-use intensity metrics

and incorporating new socioeconomic and institutional data is a

key priority for land system science (Rounsevell et al., 2012).

Developing time series of such data would also allow us to study

archetypical patterns of land-use change and societal transitions.

4.2. Interpretation and application of land system archetypes

The land system archetypes we derived in this study can be

used in a variety of ways to advance our understanding of global

and regional human–environment interactions. First, classification

of land systems at broader scales provides opportunities to detect

generic patterns of major land pressures and environmental

threats, and thus to identify regions that may require similar policy

responses, or highlight heterogeneity (e.g. within countries), of

which decision makers should be aware. For example, we show

that severe loss of soil is most pronounced in three archetypes:

degraded forest/cropland systems in the tropics, irrigated cropping

systems with rice yield gap and extensive cropping systems (Fig. 3

and Table A2). Although soil erosion occurs in other systems too,

these regions are particularly vulnerable to the loss of soil fertility

because of their high agricultural inputs, low GDP and strong

dependence on agricultural production. Similarly, water scarcity

threatens land systems in which water availability is limited due to

high irrigation (irrigated cropping systems) or low precipitation

and seasonality (pastoral systems). While the opportunities to

close yield gaps exist here through nutrient and irrigation

management, sustainable adaptation of production to possible

water scarcity is required. The analysis also shows a general

pattern of pronounced climate anomalies for the forest systems in

the tropics and irrigated cropping systems (although it cannot

capture local impacts of climate change). Being rich in biodiversity,

but economically and politically unstable with strong dependence

on cropland production, these systems are particularly vulnerable

to climate variability and further land transformation.

Second, land system archetypes can provide scientific evidence

and action-oriented knowledge to cope with the challenges of

global change. Studying land system archetypes can help us choose

between alternative land-use strategies, e.g. expansion vs.

intensification, to achieve production increases, and to assess

the environmental and social outcomes of such choices. Foley et al.

(2011) suggested that new approaches to agriculture (e.g. halting

cropland expansion, closing yield gaps and increasing cropping

efficiency) should be implemented to sustain future food demands

while shrinking agriculture’s environmental footprint. As these

strategies cannot be used in a ‘one-size-fits-all’ manner, analyses of

land systems can help identify strategies for particular regions and

support the development of portfolios of solutions relevant for

particular regions or countries (Seppelt et al., 2013). Several

examples from our analysis highlight the relevance of such place-

based approaches. For instance, our results suggest that, while the

differences between realized and attainable yields are relatively

small in intensive cropping systems, considerable opportunities

for yield improvements exist in the LSAs of extensive cropping

systems and irrigated cropping systems. These findings are

supported by Mueller et al. (2012) who showed that Eastern

Europe and Sub-Saharan Africa represent ‘low-hanging’ intensifi-

cation opportunities for wheat and maize and Southeast Asia for

rice. Here, large production gains could be achieved if yields were

increased to only 50% of attainable yields. We also show that a

large portion of LSAs is characterized by a considerably low

political stability covering 48% of the terrestrial earth surface:

forest cropping systems in the tropics, boreal cropping systems in

the eastern world, both irrigated cropping systems and barren

lands in the developing world. Any type of land management, no

matter if focusing on preserving biodiversity, adaptation to climate

change or closing yield gaps, needs to consider the limitations of

land-use options due to social and political constraints. Some of

these regions (e.g. irrigated cropping systems) also show high and

increasing population density with main threats to water supply

and low GDP.

Third, our archetypes allow for identifying areas and land

systems that are underrepresented in terms of knowledge and data

and therefore require further case studies to investigate land

change in depth. Although remote sensing and global modelling

have transformed the way we observe global land-use patterns,

anthropogenic systems are not directly observable from space and

cannot be modelled without a grasp of how humans interact with

environment locally. The synthesis of land-use case studies at local

scales is thus necessary but given the unstructured and multidis-

ciplinary nature of place-based research, there is a need to better
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link and share its findings. Our archetypes can serve as an

operational framework for such efforts and contribute to existing

initiatives, e.g. GLOBE (http://globe.umbc.edu/), that help scien-

tists identify gaps and opportunities for future research. However,

our classification should be seen as an example of possible land

system typologies that should be improved as new data and

knowledge from regional studies become available. Such classi-

fications based on finely-resolved data can be more complex or

hierarchical for regions but will allow us investigating how global

archetypes of land systems translate in specific regions and

whether different factors characterize the patterns at finer scales.

Fourth, our archetypes can serve as a way to better represent

land systems in global and sub-global assessments, and thus to

better understand the impact of land-use change on biodiversity

and ecosystem services, as well as the feedbacks of local and

regional land change to the earth system (Verburg et al., 2011b).

The concept provides a blueprint for spatially explicit global

assessments focusing on various options and objectives in

managing limited land resources. The methodological framework

gives LSAs the potential to be used as entities in land change

models and to spatially examine various scenarios of land system

changes based on shifts in driving factors. Using LSAs as inputs in

global models of land use dynamics can help us explore (i) the

interactions and non-stationarity among multiple land-use drivers

and (ii) the critical thresholds causing transitions of one land

system to another. In addition, the concept can be applied to

different sizes of SOM topologies and thus balance the trade-off

between archetype generalization and data representation. This

allows analysing land systems at different scales and testing

whether responses to a particular policy change follow different

paths in different land systems. Systematically linking biophysical

and socioeconomic drivers to land-use trajectories is a prerequisite

for the development and evaluation of sustainable land manage-

ment strategies.
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