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Abstract
Urban boundaries, an essential property of cities, are widely used in many urban studies. However,
extracting urban boundaries from satellite images is still a great challenge, especially at a global
scale and a fine resolution. In this study, we developed an automatic delineation framework to
generate a multi-temporal dataset of global urban boundaries (GUB) using 30 m global artificial
impervious area (GAIA) data. First, we delineated an initial urban boundary by filling inner
non-urban areas of each city. A kernel density estimation approach and cellular-automata based
urban growth modeling were jointly used in this step. Second, we improved the initial urban
boundaries around urban fringe areas, using a morphological approach by dilating and eroding the
derived urban extent. We implemented this delineation on the Google Earth Engine platform and
generated a 30 m resolution global urban boundary dataset in seven representative years (i.e. 1990,
1995, 2000, 2005, 2010, 2015, and 2018). Our extracted urban boundaries show a good agreement
with results derived from nighttime light data and human interpretation, and they can well
delineate the urban extent of cities when compared with high-resolution Google Earth images. The
total area of 65 582 GUBs, each of which exceeds 1 km2, is 809 664 km2 in 2018. The impervious
surface areas account for approximately 60% of the total. From 1990 to 2018, the proportion of
impervious areas in delineated boundaries increased from 53% to 60%, suggesting a compact
urban growth over the past decades. We found that the United States has the highest per capita
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urban area (i.e. more than 900 m2) among the top 10 most urbanized
nations in 2018. This dataset provides a physical boundary of urban
areas that can be used to study the impact of urbanization on food
security, biodiversity, climate change, and urban health. The GUB
dataset can be accessed from http://data.ess.tsinghua.edu.cn.

1. Introduction

Our planet is experiencing unprecedented global urb-
anization. The current rate of more than 50% of the
world population living in urban areas is projected
to reach ~70% by the middle of this century (United
Nations 2019). One of the direct consequences of
urban population growth is the rapid expansion of
urban areas, which causes large tracts of cropland
loss and deforestation (Foley et al 2005, 2011, DeFries
et al 2010, Xi et al 2016), and creates great barri-
ers to achieving the sustainable development goals
(SDGs), particularly in developing regions such as
Asia and Africa (Mbow et al 2017). Also, the rapid
urban expansion has a great impact on urban heat
island (Zhou et al 2004, Clinton and Gong 2013),
building energy use (Güneralp et al 2017), flooding
(Li et al 2016, Zhang et al 2018), air pollution (Gong
et al 2012, Zhang et al 2012), and urban ecosystem
(Alberti et al 2017, Li et al 2017, Wang et al 2019).

Accurate information on the dynamics of the
global urban extent is highly needed for sustainable
development goals (Lu et al 2015, Li and Gong 2016b,
Li et al 2019). For example, predicting future urban
development is a premise to evaluate the potential
urbanization impact on our environment (Li et al
2019). Therefore, spatially explicit delineations of
urban boundaries are crucial for a better understand-
ing of the global urbanization.

Although it is possible to delineate urban bound-
aries through field surveys, it is not feasible to con-
sistently carry out such activities in different cities
over large areas. Satellite data have become a primary
source for monitoring urban dynamics, with con-
tinuous observations spanning over the years to dec-
ades. Representative urban extent data have been
derived from the nighttime light (NTL) data from the
Defense Meteorological Satellite Program (DMSP)
(Elvidge et al 2007, Zhou et al 2018), optical satellite
observations from the moderate resolution imaging
spectroradiometer (MODIS) (Schneider et al 2010),
Landsat (Gong et al 2013, 2019a, Pesaresi et al 2015,
Li et al 2018, 2020b, Liu et al 2018), Sentinel (Gong
et al 2019b), and synthetic aperture radar data (Esch
et al 2013, Li et al 2020a). Due to the difference in
launch time and detection approaches, the derived
urban extent maps from data on board of these
various satellites are different in terms of their defini-
tions, dates, and regions (Liu et al 2014), which limit
their application in global change studies. Recently,
a new dataset named global annual impervious area

(GAIA) was produced using massive Landsat time
series data (Gong et al 2020). This dataset provides
annual dynamics of global urban extents at 30-m
resolution from 1985 to 2018, using full archives of
Landsat images and a consistent mapping approach
(Li et al 2015, Li and Gong 2016a). The time series
impervious area extents in GAIA are temporally con-
sistent (i.e. fromnon-urban to urbanmonotonically).

Urban boundary is a fundamental spatial prop-
erty that can be used to study the impacts of urb-
anization and other human socio-economic activities
on surrounding ecological and environmental phe-
nomena. The definition of urban boundaries varies
with different applications and datasets. Population
is a commonly used indicator when separating urban
and rural areas (Li andGong 2016a). For example, the
urban center (i.e. an approximate boundary) in the
Global Human Settlement (GHS) database is defined
jointly with population (i.e. more than 1500 inhabit-
ants per km2) and urban extent data at a 1 km resol-
ution in 2015 (Florczyk et al 2019). Thus, the derived
urban center in GHS is smaller than the boundary
that is commonly used, which includes most artificial
impervious areas and associated elements (e.g. parks,
lakes, and infrastructures) within the boundary (Jun
2004). NTL observations are widely used to delineate
urban boundaries (or extents) from space. The delin-
eation of NTL-based urban boundary is mainly based
on the emitted lights from cities at night, which may
omit small human settlements with low brightness
(Li and Zhou 2017). Additionally, given that there
exists a saturation effect inNTLdata, the urban extent
is mapped using pre-calibrated optimal thresholds,
which are determined based on high-resolution land
cover maps (Zhou et al 2014, 2015). Nonetheless, the
GHS and NTL data have relatively coarse resolution
(~1 km), resulting in a noticeable saw-toothed effect
in derived urban boundaries.

Presently, it is still a great challenge in delin-
eating global urban boundaries from fine resolution
urban extent maps in multiple years. Although sev-
eral attempts have been carried out to delineate urban
boundaries from 30-m urban extent maps, most of
them were made at the local scale using ancillary
datasets or complicated models. Vizzari et al (2018)
used a clustering approach and land cover data to
derive urban boundaries in France. Hu et al (2015)
integrated land use information entropy model and
Kriging interpretation approach to extract the urban
boundary in Wuhan, China. Peng et al (2016) used
a spatial wavelet transform approach to identify the
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urban boundary in Beijing from a detailed land use
dataset. Taubenböck et al (2019) used a sectorial
approach to delineate the urban boundary for mono-
centric cities. The results agree with the general pat-
tern of urban form, whereas they cannot well capture
details of urban boundaries in urban fringe areas.

To address these challenges, we built the first
global multi-temporal urban boundary dataset using
the GAIA data (Gong et al 2020). In general, the
definition of urban boundaries relies on the high
resolution information such as roads, rivers, build-
ing blocks, and urban districts (Zhang et al 2019),
some of which are generally not available at the global
scale. Considering themapping scope being the entire
globe with diverse urban environments and multiple
years, we adopted the widely used definition of urban
boundary, which is mainly based on the spatial dis-
tribution of artificial impervious areas from Land-
sat data (Hu et al 2015, Peng et al 2016). That is,
small urban patches are removed and inner non-
urban areas (e.g. green spaces and water bodies) were
filled within the boundary of a city (Liang et al 2018).
To generate such a dataset, we developed an automatic
approach to map urban boundaries on the Google
Earth Engine (GEE) platform. The remainder of this
paper describes the method (section 2), the results
with discussion (section 3), and concluding remarks
(section 4).

2. Method

We developed a framework to delineate global urban
boundaries from the moderate 30 m resolution GAIA
data on the GEE platform (figure 1). First, we gen-
erated a kernel density map using a kernel density
estimation (KDE) approach from 1 km impervious
surface area (ISA) data aggregated from GAIA (figure
1(a)). Second, we derived an initial urban boundary
using the result from a cellular automata (CA) based
modeling approach at a 30 m resolution, combined
with the kernel density map from the KDE approach
at a 1 km resolution (figure 1(b)). This process can
efficiently fill most non-urban areas in/around the
urban center. Third, we improved the urban bound-
ary around the urban fringe area, using a morpholo-
gical approach with dilation and erosion processing
(figure 1(c)). Finally, based on the derived urban
boundaries, we remove small ‘holes’ (e.g. small water
bodies and green spaces) using a post-processing
procedure to retrieve the final boundaries (figure
1(d)). The delineated urban boundary can be used
as a basic spatial unit in many applications such as
urban planning and assessment of urban develop-
ment. We implemented this framework on the cloud-
based GEE platform (Gorelick et al 2017).

2.1. Kernel density map generation
The kernel density map provides an approximate
extent to delineate the urban boundary since it

smooths the heterogeneity of urban lands in cent-
ral urban areas (Peng et al 2016). First, we pro-
duced the ISA data (i.e. the percentage of urban areas
within the 1 km grid) by aggregating the 30 m urban
extent data. Second, we estimated the kernel density
of each ISA pixel using the KDE approach. A sym-
metricGaussian point-spread functionwith amoving
circle window of 5 km was used in this step (Zhao et
al 2019). Compared to the spatial pattern of ISA, the
derived kernel density map from the impervious sur-
face areas (ISA-KD) shows a more homogeneous sur-
face in central urban areas (figure S1 (available online
at stacks.iop.org/ERL/15/094044/mmedia)).

2.2. Initial urban boundary delineation
The KDE approach fills inner urban areas at a macro-
scale, given that the search window is about 25 km2

(a 5 × 5 window). We regarded pixels with ISA-
KD values above 20% as urban areas (Homer et al
2015). This step can fill most inner urban areas (fig-
ure S2(a)). However, due to the coarse resolution,
the derived urban boundary may miss some small
urban patches in/around the city center. Therefore,
we filled these inner urban areas using a CA based
approach at a 30 m resolution. We used an 11 × 11
Moore neighborhood in our CA model and treated
those pixels with neighborhood densities (i.e. the per-
centage of urban pixels in the window) above 20%
as urban areas (Kocabas and Dragicevic 2006). We
iteratively run the urban CA model three times, res-
ulting in a total expansion distance of about 1 km
(around 33 pixels) (figure S2(b)). The window size
and iteration number were determined under con-
siderations of mapping performance and computa-
tion time. Given that the purpose of the CA based
approach in this study is to generate the approximate
urban boundary, rather than modelling urban expan-
sion, we used the neighborhood component in this
CA based approach. Finally, we derived the initial
urban boundary by combining results from the urban
CA model (30 m) and the KDE approach (1 km) (fig-
ure S2(c)). We found that the derived initial urban
boundary agrees well with the urban extent from
the Google Earth image (figure S2(d)). The com-
bined result from macro- and micro-scales can fill
most inner urban areas. Also, the CA based model-
ing approach can well capture the spatial pattern of
urban extents.

2.3. Urban boundary improvement around urban
fringe areas
We improved the derived urban boundary around
urban fringe areas using a morphological approach.
Dilation and erosion are two widely used operations
in the set theory (Narayanan 2006). Commonly, these
two operations are implemented on a binary image
(e.g. urban and non-urban) with a structuring ele-
ment (e.g. an N×N window). We chose the structur-
ing element as a 7 × 7 window as suggested in Liang
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Figure 1. The framework of delineating global urban boundaries from the moderate resolution (30 m) GAIA data, including
generating the kernel density map (a), delineating the initial urban boundary (b), improving the urban boundary around the
urban fringe area (c), and the post-processing of the derived urban boundaries (d).

et al (2018). The dilation operation can change those
non-urban pixels in the structuring element into
urban when the structuring element moves around
urban pixels. In contrast, the erosion operation can
remove those small and isolated urban pixels. We first
implemented a dilation operation to combine those
small urban patches to the main urban extent (i.e. the
initial urban boundary), and then applied an erosion
operation to remove isolated urban patches using the
same structuring element. By using these two opera-
tions sequentially, we improved the urban boundary
around urban fringe areas.

2.4. Post-processing
We derived the final urban boundary after a series
of post-processing steps (figure 1(d)). First, we iden-
tified spatially disconnected urban clusters using an
object-based approach. These derived urban clusters
are different in terms of their sizes. We screened out
small urban clusters (<1 km2) in this study. Second,
we removed holes within urban boundaries of some
urban clusters, although the total number of such
urban clusters is low. Most of these holes are green
spaces and water bodies, which are difficult to be
entirely excluded in our previous steps. After these
post-processing steps, we delineated global urban
boundaries in 1990, 1995, 2000, 2005, 2010, 2015, and
the ending year of 2018 in our GAIA data. We did not
include 1985 in this study due to the noticeable uncer-
tainty caused by the availability and quality of Landsat
data (Gong et al 2020). The main urban clusters and
its surrounding smaller cities were identified in our
approach (figure S3).

3. Results and discussion

3.1. Comparison with other products
Our global urban boundaries (GUB) outperform
those from NTL data in terms of the overall pattern
of urban boundaries and their spatial details around
urban fringe areas (figure 2). The NTL derived urban

boundary was mapped from annual observations
from theDMSPNTLdata (Zhou et al 2018). Available
results in these two data sources were compared (i.e.
1995, 2000, 2005, and 2010). Overall, urban dynamics
reflected by these two data products agree well (figure
2(a)). Compared to the NTL derived result, GUB can
provide more details around urban fringe areas (fig-
ure 2(b)). Similar results can also be found in other
cities (figure S4).

GUB data agree well with the human interpreted
results from Landsat images (figure 3), which are
commonly used in applications such as urban plan-
ning and ecological protection. Here, GUB in China
was compared with human interpreted results, that
were also based on Landsat images, in three repres-
entative years (i.e. 1990, 2000, and 2010) (Wang et al
2012).We foundGUBagreeswell with the interpreted
boundaries, not only about the overall pattern (fig-
ure 3(a)) but also the spatial details around urban
fringe areas (figure 3(b)). However, it should be noted
that our approach can: (1) delineate urban boundar-
ies automatically, (2) reduce intensive human labor
and subjectivity, and (3) generate consistent results
across space and time. The case in Wuhan (China)
also suggests that the delineated urban boundary is
close to the interpreted result (figure S5).

3.2. Characteristics of GUB
GUB canwell capture the spatial extent of urban areas
across cities globally (figure 4). Through overlaying
the derived boundaries on high resolution Google
Earth images, we can find that our mapped results
match well with the actual urban extent from satel-
lite images. That is, the boundary can well separate
urban and surrounding non-urban areas. In addition,
these cities are different in terms of their shapes
of derived urban boundaries. For example, cities in
North America (e.g. Las Vegas and Edmonton) are
more aggregated than cities in Asia (e.g. Bangkok,
New Delhi, and Xi’An), of which there are different
branches at urban fringe areas. This suggests that the
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Figure 2. Comparison of urban boundaries derived from GUB and NTL data in Dallas (US) at multiple periods (a) and their
enlarged views at the urban fringe areas in 2010 (b). Spatial extents of each subplot in (a) and (b) are 150 km × 150 km and
15 km × 15 km, respectively. Each image is composited by Landsat data using a natural color (R: Band 3, G: Band 2; B: Band 1).

Figure 3. Comparison of urban boundaries from GUB and interpreted results in Shenyang (China) at multiple periods (a) and
their enlarged views at the urban fringe areas in 2010 (b). Spatial extents of each subplot in (a) and (b) are 60 km × 60 km and
10 km × 10 km, respectively. Each image is composited by Landsat data using a natural color (R: Band 3, G: Band 2; B: Band 1).

boundaries between urban and rural settlements of
cities in Asia are more challenging to identify due to
the close interactions between urban and rural areas
in these cities (Seto and Kaufmann 2003).

GUB also agrees well with actual urban extents,
for both aggregated and scattered cities (figure 5). We
selected cities with different distributions and sizes
in the US and China for illustration. Given that our
approach is consistent at the global scale, aggreg-
ated and scattered cities can be well distinguished by
analyzing the spatial connectivity between cities and
their surrounding urban areas. Aggregated cities with
closely connected small settlements were regarded as
an entirety and delineated as a large urban cluster
(e.g. A1 and A2 in figure 5), while scattered cities isol-
ated from others were delineated as separated urban
clusters (e.g. B1, B2, C1, andC2 in figure 5). Although
these scatter cities are small, GUB shows a good agree-
ment with the urban extent in high resolution Google
Earth images.

In addition, GUB can well capture the dynam-
ics of urban extents (figure 6). The urban extent in

Changsha (China) experienced an evident growth
over the past three decades. The delineated urban
boundaries include most impervious areas and
exclude small urban patches around the urban fringe
areas (figure 6(a)). This suggests the developed delin-
eation approach works well for the moderate res-
olution urban extent maps, which have a relatively
high degree of heterogeneity in cities. By overlay-
ing the delineated urban boundaries on satellite
images, we found the derived results were reliable
and matched well with the actual urban extent (fig-
ure 6(b)). A similar case can also be found in cit-
ies in developed countries (e.g. Des Moines, US,
figure S6).

3.3. Urban size comparison with other datasets
The derived urban sizes between GUB data and ref-
erence data in the US and China are consistent (fig-
ure 7). Urban boundaries in 2010 from the US Census
Bureau were digitized with the consideration of pop-
ulation density and land use data within the territ-
ory of each census block (https://www.census.gov/).
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Figure 4. Delineated urban boundaries in eight selected cities in 2018.

Figure 5. Delineated urban boundaries in example aggregated and scattered cities in the US (upper) and China (bottom).

Urban boundaries from interpreted results in China
were generated based on Landsat images in 1990,
2000, and 2010 (Wang et al 2012). In general, urban
areas from this study and reference datasets are dis-
tributed around the 1:1 line (figure 7), with a mean
correlation value greater than 0.8. We found urban
sizes in our results are slightly smaller than those from

the US Census Bureau (figure 7(a)), whereas they are
slightly higher than those from the interpreted results
in China (figures 7(b)–(d)). This is likely attributed
to different definitions and approaches used in delin-
eating urban boundaries in these two reference data-
sets. While in our results, the mapping approach is
consistent over regions and across years. Besides, the
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Figure 6. Temporal dynamics of delineated urban boundaries in Changsha (China) on urban extent maps (a) and Landsat images
(b). The spatial extent is 60 km × 60 km. Each Landsat image in (b) was composited using a natural color band combination
strategy (i.e. R: Band 3, G: Band 2; B: Band 1).

Figure 7. Comparison of urban sizes (km2) from this study and the reference datasets. The relationship of urban size between
GUB and the US. Census Bureau in 2010 (a), and the interpreted results in China in 2010 (b), 2000 (c), and 1990 (d).

correlation between our and interpreted results in
China shows a slightly decreasing trend from 1990 to
2010 (i.e. the correlation coefficient decreases from
0.87 to 0.82), indicating the urban landscape in the
urban fringe areas becomes more complicated due to
the rapid urban expansion.

3.4. Spatiotemporal patterns of urban boundaries
across global urban clusters
Currently, most large urban clusters (i.e. >1000 km2)
are distributed in North America, Europe, and coastal

areas in China and Japan, but they show different
growth trends over the past three decades (figure
8(a)). In general, urban clusters in developed regions
(e.g. the US and Europe) show larger sizes than those
in developed regions such as India and China. This is
likely attributed to their varying urbanization levels,
resulting in different spatial patterns of human set-
tlements in urban and rural areas. For example, the
urbanization level (i.e. percentage of urban popula-
tion) is above 80% in the US, higher than those in
China (55%) and India (30%) (UnitedNations 2019).
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Figure 8. Distribution of global urban clusters (greater than 100 km2) in 2018 (a) and their temporal dynamics of size-rank
relationship over the past three decades (b). The top 10 urban clusters in 1990 are Los Angeles (US), Dallas (US), Tokyo (Japan),
Chicago (US), Johannesburg (South Africa), Miami (US), Detroit (US), New York (US), Bay Area (US), and Seattle (US). The top
10 urban clusters in 2018 are Pearl River Delta (China), Los Angeles (US), Yangtze River Delta (China), Chicago (US), Dallas
(US), Houston (US), Beijing (China), Johannesburg (South Africa), New York (US), and Shanghai (China).

Figure 9. Change of urban areas within delineated boundaries. Comparison of urban areas and impervious surface areas (ISA) at
the global (a) and continental scales (b).

As a result, there are many small human settlements
in China and India, although their total numbers of
large urban clusters are relatively low.

In addition, we observed a notable expansion of
urban areas over the past three decades (figure 8(b)).
The total number of large urban clusters in 1990 is
about 400, and this number is more than doubled
(1000) in 2018 (figure 8(a)). Curves of the urban
area and city rank also clearly illustrate a considerable

growth in terms of the size and number of large
urban clusters. On the one hand, medium-size urban
clusters with the same rank order from 1990 to 2018
show a notable increase in urban areas. On the other
hand, for those large urban clusters, differences of
their areas are enlarged with the increase in the rank
order and years, suggesting that those large cities also
experienced a noticeable increase. Besides, some large
urban clusters in developed countries (e.g. Seattle,
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Detroit, and Tokyo) were replaced by several rapidly
developing urban clusters in Asia (e.g. Yangtze river
delta and Pearl river delta). It should be noted that
the formation of these mega-cities is likely related to
the expansion of cities and their merging with nearby
small cities (Hu et al 2019). Although such a mer-
ging process will reduce the number of urban clusters,
the total number of urban clusters in more than 90%
of countries is increasing over the past decades due
to the growth of massive small urban clusters. For
example, China and the US account for around 40%
of urban clusters in the world, and their increases in
numbers of urban clusters (1990–2018) are from4725
to 13 916 and from 7426 to 11 337, respectively. How-
ever, for some countries without notable growth of
small urban clusters (e.g. Argentina), their numbers
of urban clusters decrease due to the merging of sur-
rounding small cities. Details of cluster numbers in
different countries can be found in supplementary
table 1.

Globally, the total urban area in delineated
boundaries for urban clusters greater than 1 km2 is
809 665 km2 in 2018, of which around 60%are imper-
vious areas (figure 9). Although the global urban
area within GUB is close to the ISA (~800 000 km2)
in GAIA in 2018, the areas in GUB include non-
impervious areas inside the delineated boundaries
but exclude small and diffused urban areas outside
the boundaries (figure 9(a)). At the global scale, the
proportion of ISA in delineated boundaries ranges
from 53% to 60%, showing a consistently increas-
ing trend from 1990 to 2018. This is likely attrib-
uted to the notable urban expansion over past dec-
ades since this proportion grows with the increase of
urban size (e.g. non-urban regions within the bound-
ary become urban due to urban sprawl) (figure S7).
Around 90% of urban areas within the delineated
boundaries are in Asia, North America, and Europe.
Asia alone occupies around 40% of the total area in
the world (figure 9(b)). Proportions of ISA within
delineated boundaries are different across continents
(figure S8(a)), despite that their trends are increasing
over past decades.Overall, this proportion is relatively
high in Africa and low in Europe among these contin-
ents. The relatively small urban cluster size in Europe
contributes to the low proportion of ISA in delin-
eated boundaries (figure S8(b)), similar to results in
figure S7. Also, urban environments of cities in these
two continents are notably different, where impervi-
ous areas within the boundaries are more compact in
Africa than Europe (figure 9).

3.5. Implication of per capita urban area
Among the top 10 most urbanized nations in 2018,
the US has the highest per capita urban areas (i.e.
more than 800 m2). Within the delineated boundar-
ies, we measured the impervious areas from the GAIA
data (Gong et al 2020) and the population from the
LandScan (Dobson et al 2000) (supplementary table

2). The top 10 most urbanized nations in 2018 are
the US, China, India, Russia, Brazil, Japan, France,
Germany, Canada, and Italy, while the top 10 coun-
tries in terms of their per capita urban areas are the
US, Canada, France, Italy, Germany, Russia, China,
Brazil, Japan, and India. As the top two countries of
urban areas, urban area in the US is almost 1.2 times
of that in China, while the per capita urban area in
the US is around tripled (2.7 times) that in China.
Besides, Japanhas the largest proportion (70%)of ISA
within delineated boundaries in these top 10 coun-
tries, due to the relatively high population density in
cities. Details of country-based urban areas, impervi-
ous surface areas, population, and per capita urban
areas can be found in supplementary table 2.

4. Conclusions

In this study, we developed a framework for delin-
eating urban boundaries from the GAIA data and
thereby generated the multi-temporal GUB data on
the GEE platform in 1990, 1995, 2000, 2005, 2010,
2015, and 2018. First, we delineated the initial urban
boundary for urban clusters through filling inner
non-urban areas, using a combined approach of KDE
and CA based urban growth modeling. Second, we
improved the initially derived urban boundaries in
fringe areas using a morphological approach.

The GUB dataset shows a good agreement with
results from other products. The comparison with
NTL derived results suggests the delineated urban
boundaries in GUB can well capture the complic-
ated shapes (or geometries) of urban extent around
urban fringe areas. Such improvements in our delin-
eation approach can result in similar urban bound-
aries as those obtained from human interpretation.
Also, the change in GUB is consistent with the
dynamics of built-up areas as reflected by the Land-
sat time series data. Globally, the total urban area in
our GUB dataset is more than 800 000 km2 in 2018,
about 40% greater than the impervious surface area
in GAIA.

This dataset shows potentials in various urb-
anization related studies such as sustainable plan-
ning and ecological protection. Different from other
products (e.g. the NTL derived urban extent), our
results are advanced in its capacity of delineating
detailed urban boundaries around the urban fringe
areas. These peri-urban areas are also the most sens-
itive regions due to the rapid urban expansion and
vulnerability of biodiversity and agricultural ecosys-
tems (Seto et al 2014). Therefore, our datasets can
support a variety of urban studies, such as the impact
of urbanization on the urban ecosystem, urban land-
scape, and urban climate (Mcdonald et al 2019).
The GUB dataset, including results before and after
post-processing (e.g. figure S9), can be freely down-
loaded from http://data.ess.tsinghua.edu.cn. We will
update the GAIA and GUB datasets in the future.
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