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ABSTRACT 10 

  11 

The cumulative activity of all of our cells, with their myriad of interactions, life histories, and 12 

environmental experiences, gives rise to a condition that is uniquely human, and specific to 13 

each individual. It is an enduring goal to catalog our human cell types, to understand how they 14 

develop, how they vary between individuals, and how they fail in disease. Single-cell genomics 15 

has revolutionized this endeavor as sequencing-based methods provide a means to 16 

quantitatively annotate cell states based on high-information content and high-throughput 17 

measurements. Together with advances in stem cell biology and gene editing, we are in the 18 

midst of a fascinating journey to understand the cellular phenotypes that compose human 19 

bodies and how the human genome is used to build and maintain each cell. Here we will review 20 

recent advances into how single-cell genomics is being used to develop personalized 21 

phenotyping strategies that cross subcellular, cellular, and tissue scales to link our genome to 22 

our cumulative cellular phenotypes. 23 

  24 

Phenotyping in the single-cell sequencing era 25 

 26 

Phenotype can mean many things, but in general it is a way to classify a set of properties that 27 

arise from the interaction of an individual’s genotype with its environment. It is a reductionist, yet 28 

powerful, approach to take human phenotyping down to the level of single cells and use 29 

molecular states within cells to establish phenotypes at the molecular, cellular, and 30 

tissue/system level. Single-cell sequencing technologies can measure thousands of individual 31 

features per cell for thousands of cells at a time, providing a quantitative and ultra-high 32 

resolution snapshot of cell and molecular states composing a human tissue, organ, or other 33 

biosystem. Currently, there are protocols available to measure the RNA content, DNA sequence 34 

and methylation status, chromatin structure and accessibility, and protein composition in single 35 

cells(1). In addition to molecular features, cell histories can be measured in certain scenarios 36 

where mutations have arisen in nuclear(2-4) or mitochondrial(5) DNA that distinguish lineages. 37 

Furthermore, in genetically tractable model systems (such as mice, zebrafish, and organoids), it 38 

is possible to record cell fate histories and infer lineage trees using reporter barcodes and 39 

genetic scarring based on RNA-guided CRISPR (clustered regularly interspaced short 40 

palindromic repeats)-associated (Cas) nucleases(6-9). So far, generally one or two single-cell 41 

measures have been used to phenotype individual cells within tissues in each experiment. 42 

However, the field is moving towards multimodal measurements from the same cell that capture 43 
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transcriptomic, genomic, epigenomic, and lineage states to enhance feature quantifications and 44 

give a richer picture of a cell’s phenotype at any given moment(10-12). These technologies are 45 

forcing scientists to grapple with previous notions of “cell type”, as cell properties can vary 46 

discretely (type or subtype), as well as continuously (state), and classification may not always 47 

follow rigid hierarchies(13). An additional layer of complexity arises in developing systems 48 

where cell states and tissue morphologies are changing rapidly with time. Single-cell 49 

sequencing captures transient states, and computational approaches enable trajectory(14) and 50 

lineage(9) reconstructions. 51 

 The microenvironment of each cell can also be critical to a individual cell’s phenotype. 52 

Spatial transcriptomic and proteomic approaches based on multiplexed RNA hybridizations(15, 53 

16) or protein immunohistochemistry(17), in situ sequencing(18-20), mass cytometry(21) or 54 

other strategies(22) can be used to measure cell types and states in situ. In addition, methods 55 

are being developed to analyze spatial locations of molecules within a cell and cells within a 56 

tissue using barcoded oligonucleotides that can couple together when the molecules are close 57 

enough to physically interact(23, 24). These pairwise interactions are encoded in DNA and can 58 

be measured by high-throughput sequencing, and computational analyses enable spatial 59 

reconstruction of cell interactions based on the molecular proximities. 60 

 Single-cell phenotyping has provided extraordinary atlases of model organisms that 61 

span organ systems from the same animal(25-27), link cell morphologies with molecular 62 

features(28), resolve cell type classifications(18, 29) and gradients of cell states (30, 31) 63 

spatially, and assemble cell fates maps using lineage recording(7). This wave is extending to 64 

developing, mature, and aged human organs(32, 33), identifying previously undocumented 65 

human cell types(34-36) and providing a quantitative framework to classify human cell subtypes 66 

and other states(37, 38). A major technical goal is to integrate(39, 40) all possible feature 67 

detection methods (RNA, DNA, chromatin state, lineage, etc.) performed independently or in 68 

combination in single cells, and render these measurements into three-dimensional spatial 69 

volumes with subcellular and temporal resolution (Figure 1). By measuring cell heterogeneity 70 

with such high information content techniques, emergent phenotypes at the tissue or biosystem 71 

level (system phenotype) such as composition, regulatory states, cell interactions, spatial 72 

constructions, and differentiation trajectories can be compared across environmental and 73 

genetic conditions. Because human development is not deterministic, it will be interesting to see 74 

how variable organ reconstructions are across different humans. Similar to the Human Genome 75 

Project, the Human Cell Atlas (HCA) consortium will confront the challenge of how to generate a 76 

reference organ map when the organ may look different in every person. The process of 77 

assessing such variations using integrated multi-modal measurements, as is being proposed in 78 

HCA projects over the next few years, will help to create common coordinated frameworks for 79 

sampling tissues, processing samples and data, and computational comparisons between 80 

methods and individuals.  81 

 82 

Disease associated cell phenotypes 83 

 84 

 As each human and mouse organ is mapped at single-cell resolution across space and 85 

time, a next phase of inquiry is to understand how genetic changes impact human phenotypes. 86 

Disease association studies have used naturally occuring mutations to identify disease-causing 87 
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genes; these genes are Mendelian, have strong-effect coding mutations, or have been 88 

experimentally validated. Disease-causing genes can be mapped to cell types by identifying the 89 

cell population where the gene is expressed (multi-organ(41), kidney(42), cortex(43); Figure 2a). 90 

A notable example was shown recently when researchers mapped out the cell types within the 91 

adult human lung, and identified a new human cell type (“ionocyte”), which was the only type 92 

that expressed CFTR at high levels and therefore likely mediates the lung pathology observed 93 

in cystic fibrosis (35, 36). However, most disease associated mutations identified through 94 

GWAS are likely regulatory, and the genes they regulate are currently unknown. Multimodel 95 

measures combining single-cell DNA, RNA, and chromatin can locate portions of the genome 96 

that are active in a certain cell type or state providing a link from the regulatory genome to the 97 

cell and even tissue phenotype. Future exploration into population measures of cell and tissue 98 

phenotypes at the single-cell level(44, 45), similar to what has been done using bulk RNAseq of 99 

adult human organs from the GTEx project(46), will be critical to identify the mechanism of 100 

action of most GWAS variants. 101 

 In addition, researchers have started to phenotype human diseased tissues (Figure 2b), 102 

thereby elucidating spatial glial neuron interactions in Amyotrophic Lateral Sclerosis(47), 103 

identifying disease associated microglia in Alzheimers disease(48) and fibroblasts in Arthritis 104 

(49), profiling pancreatic islets in health and type 2 diabetes(50), and identifying cellular rewiring 105 

during colitis(51). These types of analyses promise to bring about a new phase of molecular 106 

disease classification and diagnosis, and guide the development of therapies that can target the 107 

specific cell types impacted by a given disease. This is already happening for various 108 

cancers(52), however, there are major challenges requiring innovation to bring single-cell 109 

sequencing technologies to patients with other disorders on a clinical scale. Protocols to 110 

minimize cell loss during experiments could make it feasible to work with minute amounts of 111 

input material (53). Apart from cancer, it is difficult to acquire tissue from most diseased 112 

microenvironments in patients, and miniaturzied biopsies from healthy and diseased regions of 113 

a tissue could open up disorders that lack clear molecular phenotypes. Industrialization of the 114 

single-cell –omics pipeline from sample preparation and sequencing, to data analysis is also 115 

required. This could include protocol optimizations to reduce cost of cell throughput while 116 

retaining sensitivity(25, 54, 55), to increase sample multiplexing based on reference 117 

polymorphisms(45) or tagging(56, 57), and to compress phenotyping by experimentally 118 

enriching for diagnostic features or select against non-diagnostic features(58). In situ 119 

sequencing approaches may be another route to increased throughput once methods have 120 

been industrialized. Finally, robust software pipelines will be needed that can rapidly analyze the 121 

high-dimensional data and output perturbation landscapes that are able to diagnose disease.  122 

 Comparing human with mouse and other species can reveal the power and limitations of 123 

model organisms for understanding human genotype to phenotype relationships. In many 124 

cases, the same broad cell classes are found in mammalian tissues, and cell states can be 125 

integrated across species(39). For example, recent single-cell analysis of the mouse kidney 126 

suggested that most known kidney disease-associated genes in humans map to the mouse cell 127 

counterparts(59). However there are cases in which the human and mouse tissues have 128 

diverged significantly in terms of cell composition and gene expression. For example, humans 129 

and other primates have a specialized area of the retina called the fovea, which can be 130 

distinguished based on the particular proportion and types of retinal neurons that have distinct 131 
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expression signatures from other areas of the retina(60). Mice on the other hand lack a fovea 132 

altogether, making it a poor model system for many blindness disorders. It may be possible to 133 

leverage such differences to understand the underlying genetic mechanisms that control human 134 

cell phenotypes. Altogether, comparisons between species, between human individuals, and 135 

between healthy and disease conditions can illuminate variety of human cell phenotypes, and 136 

help to link the genome to specific cell states. Now we need creative strategies to move past 137 

correlation and establish the functional relevance of the observations from these highly-resolved 138 

maps. 139 

 140 

Stem cell and genetic manipulation tools 141 

 142 

There has been an exciting revolution in the stem cell biology field, which has made it possible 143 

to generate diverse human cell types in controlled 2D cultures(61), and to generate complex 3D 144 

tissues that resemble the primary tissue/organ counterparts (termed organoids)(62, 63). 145 

Organoid protocols have been developed for various parts of the brain, liver, intestine, lung, 146 

kidney, stomach, etc., and the protocols are being optimized for stereotyped morphology(64) 147 

and inter-organoid reproducibility(65, 66). Many of these systems have been analyzed by 148 

single-cell genomics and the data compared with their primary tissue counterparts to quantitate 149 

how accurately cells states are recapitulated(67). The power of these in vitro systems is that 150 

they are specific to an individual, enable replicate measurements over a time course, are 151 

amenable to genetic manipulation and lineage recording in diverse environmental conditions, 152 

could be used for high-throughput screening, and can recapitulate certain disease phenotypes 153 

(Figure 3). For example, recent work showed that cerebral organoids recapitulate neuronal 154 

migration defects observed in patients with periventricular nodular heterotopia, and single-cell 155 

transcriptomics identified a perturbed differentiation trajectory (68). In addition, cerebral 156 

organoids were used to identify specific cell states that were sensitive to hypoxia conditions that 157 

occur in premature births, and organoids were used to screen for small molecules that 158 

prevented loss of of these cell states(69). As detailed above, integrating multiple single-cell 159 

genomic measurements together with cell history recorders and 3D spatial reconstructions will 160 

soon provide very exciting high-resolution phenotyping strategies in these personalized models 161 

of disease.  162 

Culture systems that can recapitulate human development and physiology in vitro enable 163 

researchers to use RNA-guided CRISPR-associated (Cas) nucleases to interrogate these 164 

systems and link genotype to phenotype. CRISPR–Cas nucleases come in various natural as 165 

well as synthetically engineered flavors enabling diverse genome and epigenome 166 

modifications(70). These tools were originally established based on the Cas9 protein for gene 167 

editing in immortalized mammalian cell lines(71-73) and then harnessed to link phenotype to 168 

genotype using both a forward and reverse genetics approach (Figure 4). Reverse genetic 169 

approaches based on CRISPR, generally termed pooled CRISPR screens, involve the: i) 170 

production of genome-scale or sub-genomic gRNA libraries; ii) low multiplicity of infection 171 

delivery to cells such that single cells receive single perturbations; iii) enrichment or depletion of 172 

cells based on a cellular phenotype of interest (e.g. proliferation, death, or presence/absence of 173 

selectable marker or reporter); and iv) identification and analysis of genes corresponding to 174 

enriched and/or depleted gRNAs. Pooled CRISPR screens were originally demonstrated in 175 
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human cancer cell lines (74, 75) but were recently extended and optimized in human iPSC 176 

culture systems to identify genes that regulate pluripotency(76). Moving beyond gene knockout, 177 

catalytically inactivated Cas proteins fused to effector domains enable diverse perturbations, 178 

including transcriptional activation (CRISPRa) or inhibition (CRISPRi)(77), DNA methylation or 179 

demethylation(78), histone acetylation(79), DNA (80) or RNA(81) base editing, as well as 180 

others(82). Many of these RNA-guided Cas effector proteins have successfully been used in 181 

pooled CRISPR screens further expanding our capacity to link diverse genetic and epigenetic 182 

features to phenotypes(77, 83-85). Researchers have started to bring these technologies to 183 

human iPSC cells by establishing stable cell lines that have inducible expression of the different 184 

Cas effectors, and these lines can then be used to explore phenotype-genotype relationships in 185 

a diversity of human cellular and tissue contexts.(5, 86, 87) 186 

More recently, exciting work has merged CRISPR screening with single-cell genomic 187 

readouts(88-91). In these methods pools of gRNAs are introduced into cells along with a Cas 188 

protein such that cells express different gRNAs. Transcriptomes can be sequenced in single-189 

cells and the gRNA that is expressed per cell can be determined based on an associated 190 

barcode, or through direct sequencing of the gRNA. In this way, the effect of many different 191 

gene perturbations can be examined in the same experiment with single-cell resolution. There 192 

are several considerations when designing single-cell perturbation screens in organoids, and 193 

optimizations on the initial protocols to reduce barcode recombination will enable more sensitive 194 

and accurate readouts(92). One needs to determine how many genes can be targeted based on 195 

a power analysis taking into account cell heterogeneity of the system (# cells), proportion of 196 

mutant and wild-type cells, depth of sequencing, # reads per cell, effect size of perturbation, and 197 

cost. Clonal selection within a stem cell culture or within an organoid can have an impact on the 198 

results, especially if the organoid system is initiated from a composite of many different stem 199 

cell clones (e.g. cerebral organoids). Cas protein can be constitutively or transiently expressed, 200 

or induced through multiple strategies (e.g. Tet/On, Cre) and gRNAs can be introduced into the 201 

cells or organoid through different delivery methods (AAV, lentivirus, transposon). Currently the 202 

gRNA or barcode needs to be the read-out rather than the genomic lesion making the readout 203 

correlative. If the proportion of mutant cells is too high, then the organoid may not develop 204 

properly and the presence of a sufficient proportion of wild type cells could buffer mutant effects. 205 

It is important to incorporate a selection feature of the cells receiving the gRNA (e.g. 206 

Fluorescence). Finally, genetic perturbations might be cell autonomous or non-autonomous and 207 

this can be difficult to distinguish in pooled screens with mosaic organoids, making arrayed 208 

screening important alternatives. CRISPR/Cas9 screening based on single-cell sequencing in 209 

iPSC-derived organoids has a rich future in the exploration of human cell phenotype to 210 

genotype relationships. This will be made possible through innovations to increase throughput 211 

to perform combinatorial genetic interaction and massively multiplexed screens, new 212 

technologies to combine screening with molecular recording(7, 93) and lineage tracing, and in 213 

situ readouts(94) based on in situ sequencing technologies to open up exploration into spatial 214 

effects of genetic perturbation.  215 

 216 

Conclusions and outlook: In this review, we aimed to provide a foundational overview of the 217 

current state of single-cell genomic-based phenotyping of human organs and organoids, and 218 

how CRISPR-Cas technologies will enable phenotypes to be functionally linked to regions of the 219 
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human genome. We envision that the descriptive phase of single-cell genomics, where cell 220 

phenotypes are catalogued for each healthy human tissue, will culminate in 4D resolved in silico 221 

simulations that enable researchers to walk into the tissue, point to a cell at a location within the 222 

tissue at a particular time point, and know its molecular features and its interaction with other 223 

cells within the microenvironment. In the short term, the goal is to integrate and render different 224 

feature (RNA, DNA, chromatin state, lineage) measurements into three-dimensional spatial 225 

volumes with subcellular and temporal resolution. It will be exciting to incorporate single-cell 226 

molecular measurements with in toto imaging of developing or cleared human organs/organoids 227 

with cellular and subcellular resolution(95-98). Innovations in virtual-reality microscopy are 228 

starting to bring together immersive visualization and simulation of imaged-based data with 229 

hand gesture control, and the first virtual reality platform for the visualisation and analysis of 230 

single-cell gene expression data has been developed(99).  231 

 Perturbation screens in human cells could be integrated with 4D spatiotemporal models 232 

to weigh the functional relevance of genes and regulatory regions for establishing molecular, 233 

cellular and systems-level phenotypes. However, there are still many limitations that require 234 

innovations in the stem cell and organoid field that will enhance the biological insight that can be 235 

attained from these efforts. Specifically, organoid morphology may not be stereotyped, there are 236 

missing or off-target lineages, organoids are not integrated with other relevant organ systems, 237 

and iPSC-derived organoids follow development and may not reflect processes in adults. It will 238 

be important to continue to use single-cell genomics to assess the precision of novel organoid 239 

protocols, and compare lineage and fate maps with other mammalian counterparts. 240 

Establishment of stem cell resources from different populations(100) or the same individuals 241 

from whom there are reference atlases will be useful for establishing a foundation for 242 

quantitative comparisons across protocols. Furthermore, well characterized iPSC lines that 243 

contain various flavors of CRISPR/Cas systems for genetic purturbation screens and cell fate 244 

recording, together with a suite of diverse fluorescent reporters(101), will push the field forward.  245 

 Finally, a drive toward industrialization of single-cell sequencing pipelines on diseased 246 

tissues and organoid models could bring exciting prospects for disease classification and 247 

personalized medicine. This will require close collaborations between basic and clinical 248 

researchers, as well as industry partners, to identify the unmet medical needs where single-cell 249 

sequencing could have the most immediate effect. There are many disorders where multiple 250 

genetic drivers are known, however it is increasingly clear that the different causative genes are 251 

expressed in very different cell types(102). This is a major conundrum where molecular 252 

dissection of the dissorder in primary tissues and/or organoid models could enable a refined 253 

classification of the disorder, and also identify mechanisms that underly particular disease 254 

presentations. Optimization of organoid protocols together with increased single-cell genomic 255 

throughput would also enable testing disease-associated environmental conditions and potential 256 

pharmacological-, gene- and cell-based therapies. There are many obstacles that remain, 257 

however the field is moving forward at an extraordinary pace and it will be exciting to see where 258 

it goes from here. 259 

 260 

 261 

  262 
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Figures 263 

 264 

 265 
Figure 1: Human phenotyping in the single-cell genomics era. (a) Many different single-cell 266 

genomic methods have been developed to profile cell heterogeneity in human organs across 267 

space and time. (b-c) These measurements can be integrated to build phenotypic maps that 268 

cross sub-cellular, cellular, and tissue/system scales.  269 

 270 
 271 

Figure 2: Human organ maps can resolve disease phenotypes. (a) Single-cell resolved 272 

human organ phenotypic maps can be used to identify cell states that are likely most impacted 273 

by human disease. (b) In the future, diseases can be grouped into molecularly defined 274 

subclasses based on single-cell genomic (SCG) phenotyping. Many obstacles remain for 275 

bringing SCG phenotyping directly to patients in a clinical setting. 276 

  277 

 278 

  279 
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 280 
Figure 3: Human organoids to recapitulate human phenotypes in vitro. (a) Human 281 

organoids derived from induced pluripotent or adult stem cells are genetically tractable and can 282 

recapitulate complex tissue level phenotypes in controlled culture environments.  283 

 284 

 285 

 286 
Figure 4: Genetic manipulation toolkit to link phenotype to genotype using stem cells. A 287 

diverse array of genetic manipulation tools based on the CRISPR/Cas system can be deployed 288 

in organoids to test predictions from single-cell genomic surveys of organs and organoids and 289 

link genotype to phenotype. Shown are examples of potential CRISPR/Cas toolkit applications 290 

in human organoids. 291 

 292 

 293 
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