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Abstract: Reliable techniques to generate accurate data sets of human built-up areas at national, regional,

and global scales are a key factor to monitor the implementation progress of the Sustainable Development

Goals as defined by the United Nations. However, the scarce availability of accurate and up-to-date

human settlement data remains a major challenge, e.g., for humanitarian organizations. In this paper, we

investigated the complementary value of crowdsourcing and deep learning to fill the data gaps of existing

earth observation-based (EO) products. To this end, we propose a novel workflow to combine deep

learning (DeepVGI) and crowdsourcing (MapSwipe). Our strategy for allocating classification tasks to

deep learning or crowdsourcing is based on confidence of the derived binary classification. We conducted

case studies in three different sites located in Guatemala, Laos, and Malawi to evaluate the proposed

workflow. Our study reveals that crowdsourcing and deep learning outperform existing EO-based

approaches and products such as the Global Urban Footprint. Compared to a crowdsourcing-only

approach, the combination increased the quality (measured by Matthew’s correlation coefficient) of the

generated human settlement maps by 3 to 5 percentage points. At the same time, it reduced the volunteer

efforts needed by at least 80 percentage points for all study sites. The study suggests that for the efficient

creation of human settlement maps, we should rely on human skills when needed and rely on automated

approaches when possible.

Keywords: volunteered geographic information; human settlements; deep learning; humanitarian

mapping; building detection; crowdsourcing

1. Introduction

Currently, 55% of the world’s population reside in urban areas, and especially in low-income and

lower-middle-income countries rapid urbanization is expected between now and 2050 [1]. The Sustainable

Development Goals (SDGs) [2] and the Sendai Framework for Disaster Risk Reduction (SFDRR) [3] both

highlight the relevance and increasing need for up-to-date information on the spatial distribution of

human settlements. For instance, humanitarian organizations cannot help people if they cannot find them.

Consequently, reliable techniques to generate accurate data sets of human settlements at national, regional,

and global scales are crucial in manifold domains such as disaster management, habitat and ecological

system conservation, and public health monitoring.

Earth observation (EO) using satellites already provides data for a broad range of purposes such as

disaster assessment, forestry or crop land monitoring, and land-use/land-cover classification. Recently,
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remote sensing technologies have been successfully employed to derive information on human settlements

at regional to global scales. Accuracy and completeness of EO derived human settlement data sets have

improved a lot in the last 15 years. Current data sets, which have been made available recently, include

the Global Human Settlement Layer (GHSL) [4], the Global Urban Footprint (GUF) data set [5], and the

High-Resolution Settlement Layer (HRSL) [6]. However, these data sets still show great variations for

different regions and geographic settings [7]. Especially rural areas and non-solid building structures are

still disregarded or under-represented in these data sets.

Several researchers highlight the potential of crowdsourcing to collect information on human

settlements and to complement the data that is produced using satellite imagery [8–10]. Additionally,

humanitarian organizations start using new methods from Citizen Science and Volunteered Geographic

Information (VGI), to gather information on the spatial distribution of human settlements [11]. However,

the quality and the reliability of those methods and resulting data sets remain major concerns, which are

extensively discussed in current research [12]. Spatial varying data quality and the lack of reference data

with sufficient quality still constitute barriers in using VGI data in general and for humanitarian purposes

or in disaster management in particular [13].

The mapping of human settlements tends to be done either from an earth observation perspective

or from a citizen science position. However, a tighter integration of both approaches has the potential to

derive improved data sets that presumably outperform existing one [8].

In this article, we present a novel workflow to overcome the scarce availability of accurate and

up-to-date human settlement data sets (see Figure 1). Our proposed workflow combines two methods:

(1) object detection and classification using deep learning algorithms (DeepVGI [14]) and (2) crowdsourced

mapping of human settlements by volunteers (MapSwipe [15]). To combine both methods we propose a

task allocation strategy (3) that choses classification labels either from DeepVGI or MapSwipe. Moreover,

we investigate whether our proposed methodology helps to produce better maps faster with respect to the

following research questions.

Figure 1. Proposed workflow to combine deep learning and crowdsourcing methods: Combined labels

are obtained, by choosing labels either from DeepVGI or MapSwipe based on the confidence of the

DeepVGI labels.
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• RQ1: How good are crowdsourcing (MapSwipe) and deep learning (DeepVGI) with respect to

generating human settlement maps in comparison to existing EO-based approaches?

• RQ2: Which spatial and non-spatial characteristics of misclassifications are accompanied by applying

the DeepVGI approach?

• RQ3: What is the added value of the proposed task allocation strategy with respect to performance

and effort?

The remainder of this paper is organized as follows: Section 2 provides background information on

techniques for deriving information on human settlements using either deep learning or crowdsourcing.

The study areas and data sets are described in Section 3. We present our overall methodology in Section 4

and show results in Section 5. Section 6 discusses our findings and makes suggestions for future work,

whereas Section 7 draws conclusions.

2. Background: Mapping Human Settlements Using Crowdsourcing or Deep Neural Networks

Previous research shows the strengths and shortcomings of existing global settlement data products

such as the Global Human Settlement Layer or the Global Urban Footprint data set [7,16]. In this section

we review to what degree VGI and citizen science approaches and techniques based on deep learning have

been applied to tackle the known challenges.

Citizen science projects and VGI tools are widely used to collect information on human settlements.

The OpenStreetMap (OSM) platform played a central role in generating map data during several

international disasters, e.g., after the 2010 Haiti earthquake [17] and after the 2015 Nepal earthquake [18].

Additionally, OpenStreetMap is used also in disaster preparedness and disaster risk reduction activities,

for instance, by the organizations of the Missing Maps project [11]. Regarding urban planning, Crooks et al.

(2015) [19] show how various user-generated data sets (GPS trajectories, social media data) enrich our

understanding of urban form and function from a bottom up perspective.

The increased usage of VGI has been accompanied by discussions on the quality of data sets,

which have not been produced by experts [20,21]. The research on VGI data quality reveals that

spatial heterogeneity, e.g., regarding completeness of building footprints, remains a major challenge

on different geographic scales [13]. Fan et al. (2014) [22] confirm a high completeness for building footprint

features in an urban area in Munich, Germany. For crowdsourced classification of human settlements in

Madagascar and South Sudan Herfort et al. (2017) [15] conclude that disagreement between users is not

randomly distributed in space but rather clustered, indicating that reliability of information varies spatially.

Additionally, Comber et al. (2016) [23] show for land cover mapping that the quality of VGI data sets is

influenced by differences between user groups, which are a potential source of error and uncertainty.

In addition to the above VGI-related work, several authors have investigated the potential of deep

learning technology in various satellite image processing tasks including human settlement mapping

(see [24] for a comprehensive overview). In Jean et al. (2016) [25] a convolutional neural network is used

to distinguish urban areas, non-urban area, roads, and water in optical satellite imagery for predicting

poverty in Nigeria, Tanzania, Uganda, Malawi, and Rwanda. In Li et al. (2019) [26], a pre-trained neural

network is employed to estimate large scale OSM missing built-up areas in Tanzania. Regarding land

cover mapping, several authors propose workflows based on deep neural networks with a focus on urban

areas [27,28]. Furthermore, building footprint extraction based on deep learning has been a central research

topic in recent years [29,30].

Although deep learning shows promising results with respect to object detection in images in

general, analyzing data quality of geographic approaches (e.g., using geographic data sets such as satellite

imagery and building footprints) remains a huge challenge. The transferability of deep learning models

constitutes a key challenge towards global scale data products, e.g., for human settlements. For instance,
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Yuan et al. (2018) [30] highlight difficulties in extracting footprints for buildings in rural areas which

differed significantly from the footprints presented in the training set. Missing benchmark data sets tailored

to remote sensing tasks make it difficult to compare the growing number of deep learning algorithms [24].

Similar to the factors contributing to spatial heterogeneity of VGI data sets, deep learning approaches are

vulnerable to changes in input factors such as atmospheric scattering conditions, intraclass variability,

culture-dependent characteristics and a limited number of training samples [24].

In addition to studies focusing either on deep learning or on VGI approaches in isolation to generate

information on human settlements, some studies have successfully combined both approaches. A study

by Gueguen et al. (2017) [8] produces regional- and country-scale population distribution maps from

very high-resolution satellite imagery based on the detection of village boundaries by a deep neural

network and a crowdsourced validation of the results. The study reports benefits from combining

the high recall of automated methods with the high precision of human validators. By combining

data from multiple crowdsourcing projects in an active learning framework for convolutional neural

networks Chen et al. (2018) [31] address incompleteness and spatial heterogeneity of input training

samples regarding road and building mapping. Their results show a promising avenue how deep learning

can be used to improve VGI data. However, the small sample size used for validation hinders conclusions

on the transferability of their findings. Vargas-Munoz et al. (2019) [32] investigate the quality of OSM data

in study sites in Zimbabwe and Tanzania using a deep learning approach. Their approach can detect

missing building footprints and misalignment in the OSM data, but the validation data sets contain only

1000 buildings per site, which again casts doubts on the transferability of the proposed approach.

Previous work has shown how citizen science, VGI, and deep learning can contribute to improve large

scale geographic data sets on human settlements. Those methods help to produce data sets desperately

needed for monitoring urban growth, sustainable development, disaster risk reduction, and many other

applications. Nevertheless, researchers have also revealed that spatial heterogeneity is a key issue,

which needs to be addressed to understand and enhance data quality. Regarding VGI data sets, spatial

heterogeneity is expressed by regional difference in data completeness and varying data quality due to

diverging user experience. Considering deep learning approaches, spatial heterogeneity can be interpreted

as the difficulty to transfer models from one region to another and to provide training samples which

incorporate the geographic properties for all object structures or characteristics and regions.

We propose a workflow to combine the strengths of recent machine learning algorithms and

crowdsourced data production by means of a confidence-based task allocation strategy. Our work is

guided by the common hypothesis that humans rarely identify something as a building which is not a

building, but tend to miss some objects. Furthermore, deep learning approaches will miss fewer buildings

at the cost of detecting also several objects which are not buildings. By bringing together those two research

streams we aim at producing human settlement data sets which are both more complete and precise.

3. Description of the Study Areas and Data Sets

3.1. Study Areas

We investigated our combined mapping workflow at three study sites: (a) Guatemala, (b) Laos

and (c) Malawi. The study sites covered an area between 675 to 2700 square kilometers (see Table 1).

For Guatemala and Laos training regions were slightly bigger than testing regions, whereas for Malawi

the opposite was the case. Regarding the testing sites, all case studies showed an imbalanced proportion

of “no building” and “building” tiles. This imbalance was very strong towards “no building” tiles for

Guatemala and Laos (87%), and less marked for Malawi (56%).
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All study regions have been mapped by OpenStreetMap users in response to requests by the

Humanitarian OpenStreetMap Team (HOT), The Netherlands Red Cross, and the Clinton Health Initiative.

Our analysis was based on the tile level. In this study a tile corresponded to the definition applied by tile

map services (TMS) at zoom level 18 [33]. Hence, each study region was made of several thousand tiles.

A tile covered around 0.02 square kilometers (0.15 × 0.15 kilometers) with slight variations depending on

geographic latitude. Table 1 summarizes the details about the training and testing areas for each study site.

Table 1. Study Sites Characteristics.

Guatemala Laos Malawi

Training Area 929.0 km2 1556.3 km2 265.7 km2

Tiles 42,833 72,360 12,408
Testing Area 745.5 km2 1136.6 km2 410.3 km2

Tiles 34,181 52,796 19,272
No Building Tiles 87% 87% 56%

The Guatemala region was made up of several different rather contrary regions. The northern and

western areas were slopes of volcanic mountains covered with dense forests, whereas urbanized areas

and agricultural land covered the valleys. Most settlements were part of a compact city with only a few

buildings lying within farmland. The Laos region was characterized by dense forested areas covering

more than 90% of the total area and by a few smaller settlements along the road network. Besides those

villages, many buildings were distributed sparsely over the entire area accompanied by smaller patches of

agricultural land. For Malawi larger cities were missing. The region was characterized by many smaller

villages and intensive agricultural land use. Only a very small fraction of the area was covered by forests.

3.2. Data Sets

This section describes the four datasets we used to evaluate the performance of our workflow.

The reference data set was derived from OpenStreetMap and depicts the presence of human settlements

in a satellite imagery tile. Building footprint geometries were directly obtained from the OpenStreetMap

database using the Overpass API by filtering for all OSM ways tagged with the key “building” for each

study site. To ensure the validity of the OSM data, we intentionally selected study areas for which

the mapping was organized through the HOT Tasking Manager tool and a validation had taken place.

This validation procedure ensured the precision of the OSM data set. More important, humanitarian

mapping experts carefully validated all tiles for which no human settlements have been mapped in OSM,

but a positive result was given either in MapSwipe or predicted by the deep neural network. Following

this additional manual validation approach ensured the completeness of the reference data set.

MapSwipe yielded results on the tile level. In MapSwipe a tile was also called a task. For each

individual tile at least three different users contributed a binary label (“building”, “no building”). These

results have been aggregated using majority voting. Furthermore, for each task the proportion of building

labels (MapSwipe score) on the total number of labels has been generated. For example, if two out of

three volunteers classified a tile as “building”, the aggregated label would be considered to be “building”

(MapSwipe score: 0.66). Further details on the MapSwipe data model can be found in [15].

The Global Urban Footprint has been derived fully automatically from TanDEM-X and TerraSAR-X

radar images with 3 m ground resolution by the German Aerospace Center (DLR) [5]. The imagery has

been collected between 2011 and 2012. In this paper, we used the binary GUF settlement mask with a

spatial resolution of 0.4”, which corresponds to a ground resolution of around 12 m at the equator.
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The High-Resolution Settlement Layer maps human settlements derived from high-resolution satellite

imagery (0.5 m) by the Connectivity Lab at Facebook. The data has been produced for 18 countries using

deep neural networks [6].

4. Methodology

The workflow we propose in this paper addresses the challenge of combining deep learning and

crowdsourcing to generate high-quality human settlement maps. Section 4.1 explains the DeepVGI method

to automatically classify satellite imagery tiles into “building” and “no building”. Section 4.2 explains

the data quality evaluation procedure. In Section 4.3 we present the procedure to analyze spatial and

non-spatial characteristics of misclassifications of the DeepVGI method. Finally, Section 4.4 investigates

the proposed task allocation strategy and how the combined use of MapSwipe and DeepVGI affects

performance and volunteer efforts.

4.1. Data Preparation

We employed the DeepVGI method presented in Figure 2 for classifying satellite imagery tiles into

“no building” and “building” classes. The DeepVGI building detection model consisted of three parts:

feature extraction, object detection and binary classification.

Figure 2. DeepVGI Workflow: The DeepVGI model is trained using building footprint sample from

OpenStreetMap and satellite imagery tiles from Bing. For each tile in the testing area the model generates

label, probability and confidence score.

Based on Single Shot Detection (SSD) networks [34] the model extracted heterogeneous features from

either the base network or from extra layers. This enables SSD networks to better handle complex objects

(such as buildings) of diverse scale and shape. For doing so, SSD networks apply the concept of tiling into

default boxes so that specific feature maps learn to be responsive to particular scales of the objects [34].

The object detection generated a set of predicted building bounding boxes together with the

corresponding probability scores. The implementation of the SSD network was based on the programming

language Python 3.6 and the deep learning library Tensorflow [35]. For the initialization of the SSD

parameters, a pre-trained network based on the Microsoft COCO data set [36] has been employed, which

reported a mAP−1 (mean average precision) of 24. The maximum training epochs has been set to 60,000,

and the initial learning rate is set to 0.0004 with a momentum of 0.9. The pre-trained network is available

at the Tensorflow detection model zoo [37].



Remote Sens. 2019, 11, 1799 7 of 21

The object detection generated up to 50 bounding boxes per tile; however, the majority of those

bounding boxes did not represent buildings and were associated with very low probabilities. Since we

were interested in a binary classification of a tile t into “no building” and “building” we only selected

the highest bounding box score Pmax(t) for each tile. From the training data set derived a classification

threshold θ. Tiles with Pmax(t) below θ were most probable to belong to the “no building” class. Vice-versa

tiles with Pmax(t) above θ were most probable to belong to the “building” class“. Based on θ we generated

the label (“no building” and “building”) for each tile in the testing data set.

Finally, we derived a confidence score δt for each tile by computing the absolute difference between

the binary threshold θ and (deep learning) probability Pmax(t). This was used as a proxy for how confident

we can be in binary classification into either “building” or “no building”. Taking the absolute value eased

the visual interpretation. However, situations where the highest bounding box score was lower than

the threshold (potential false negatives) could not be distinguished from those where the bounding box

score was higher than the threshold (potential false positives) from δt alone. Hence, the analysis of the

confidence score provided insights into accuracy of the DeepVGI approach, but not towards its specificity

or sensitivity.

To train the DeepVGI model, building footprint samples from OpenStreetMap and satellite imagery

tiles from Microsoft Bing were employed. In our experiment, satellite imagery tiles were collected by

requesting a tile map service (TMS) from Microsoft Bing at zoom level 18. This corresponded to a spatial

resolution of the displayed image of roughly 0.6 m per pixel, as measured at the equator. The size of all

image tiles was 256 × 256 pixels.

4.2. Overall Performance Evaluation

We evaluated our method by investigating the quality of the produced results against the reference

data (see Section 3.2). Initially we derived the proportions of false negatives (FN), false positives (FP),

true negatives (TN), and true positives (TP). To address the imbalance of building and no building labels

in our study areas, we used the following metrics: specificity (TNR), sensitivity (TPR), and Matthews

correlation coefficient (MCC). We further derive the accuracy (ACC). The statistics were computed as

shown in Equation (1) through Equation (4). TNR, TPR and ACC are restricted between 0 and 1. MCC is

in essence a correlation coefficient between the observed and predicted binary classification. It is bound

between −1 and 1. For all statistics higher values indicate a better model fit [38].

TNR =
TN

TN + FP
(1)

TPR =
TP

TP + FN
(2)

ACC =
TP + TN

TP + FP + TN + FN
(3)

MCC =
(TP × TN)− (FP × FN)

√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(4)

Whereas ACC was mainly used to compare the results with works of other authors, MCC gives a

more reliable indicator on quality for imbalanced data sets [38]. TNR and TPR were used to investigate

how well the analyzed methods identify positives (“building” class) and negatives (“no building” class).

This provided insights on the strengths and weaknesses of each method. Other metrics commonly applied

for machine learning performance assessment such as F1 score or precision were not considered since they

are highly biased for imbalanced data sets [38].
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Additionally, we generated a map representation of the confusion matrix for each method and study

site to spot spatial pattern in the false negatives and false positives.

4.3. Spatial and Non-Spatial Characteristics of Misclassifications

After investigating the overall performance of all methods, we conducted a detailed analysis of spatial

and non-spatial characteristics of misclassifications of the DeepVGI approach. For doing so, we generated

kernel density distribution plots of the confidence scores δt for (a) all tiles, (b) “building” tiles and (c)

“no building” tiles. The implementation of the kernel density functions was based on the programming

language Python, version 3.6 and the scipy library, version 1.1.0 [39]. The kernel bandwidth was set by

applying Scott’s rule [40]. We generated a map representation of the distribution of δt to analyze the spatial

characteristics of the confidence in the presence of buildings. This map should be interpreted together

with the maps showing the distribution of false negatives and false positives.

Furthermore, we generated conditional density plots to visualize the conditional distribution of

accuracy ACC in respect to δt and to compare the performance of the DeepVGI and MapSwipe approaches.

We tested if tasks with lower δt had a higher probability of being wrong by using a logistic regression

model for the DeepVGI and MapSwipe approaches, using δt as the predictor and Y as the response. Y

was defined as “0” for wrong classifications (e.g., DeepVGI label and reference label were not the same)

and “1” for correct classifications (e.g., DeepVGI label and reference label were the same). For the

logistic regression we report on regression coefficient, standard error, significance, and McFadden’s

pseudo-r-squared values [41]. Those were computed based on the programming language Python 3.6 and

the statsmodels library, version 0.9.0 [42].

4.4. Performance of Task Allocation Strategy

Finally, we proposed a task allocation strategy based on δt and compared the approach to a random

allocation of tiles between DeepVGI and MapSwipe. The task allocation strategy defines for which tasks

it is better to rely on results being produced by crowdsourcing and for which it is preferable to use the

DeepVGI workflow. First, tiles were sorted ascending by δt. We generated the labels based on the fusion of

both approaches by choosing a proportion α of tiles which should be labeled by the crowd (we will refer to

this as crowd proportion). For the remaining tiles we assigned the label of the DeepVGI method. Due to

this design tiles with the lowest confidence were allocated to the crowd first.

We generated 100 set of the combined labels for each study site by choosing a crowd proportion α

between [0,1] and adopting a step size of 0.01. For each α we further derived 250 random combinations of

MapSwipe and DeepVGI. For each α we investigated the performance of both task allocation strategies

in terms of accuracy ACC, Matthews correlation coefficient MCC, specificity TNR and sensitivity TPR

(described in Section 4.2). The results were visualized in a graph depicting performance in relation to the

crowd proportion α.

5. Results

5.1. Overall Performance Evaluation

This part of the results section describes the performance of different methods to create human

settlement data sets. For all study sites we analyzed data from crowdsourcing (MapSwipe), deep neural

networks (DeepVGI) and existing EO products (GUF). The HRSL data set was only available for the

Guatemala and Malawi study sites.
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For all three case studies MapSwipe performed best with respect to accuracy ACC (91–96%) and

Matthews correlation coefficient MCC (80–83%) (see Table 2). The MapSwipe approach was characterized

by high specificity TNR (99% for all study sites) and intermediate sensitivity TPR (75–82%). The spatial

representation of the confusion matrices indicated that MapSwipe was able to correctly depict most

“no building” tiles. Nevertheless, for the MapSwipe approach clusters of false negatives were observed,

e.g., in the north-western part of the Guatemala study site (Figure 3) or in the south-eastern part of the

Malawi study site (Figure 5). Thus, MapSwipe users were more likely to miss buildings (false negatives),

than to map something as a building, which actually is not a building (false positives).

Regarding accuracy ACC the DeepVGI approach reached similar results to MapSwipe (91–96%);

however the differences between those approaches became slightly more distinct when considering the less

biased MCC (74–84%). The DeepVGI approach achieved lower specificity TNR compared to MapSwipe

and GUF (95–97%), but higher sensitivity TPR (81–89%). Hence, false positives were expectedly the major

concern for the DeepVGI approach. The visual interpretation of the confusion matrix maps confirmed

higher spatial concentrations of false positives. For instance, clusters of false positives were present in the

central and southern part of the Guatemala study site (Figure 3) or in the north-western part of the Malawi

study site (Figure 5).

GUF was characterized by lower ACC (58–92%) and MCC (18–60%) compared to MapSwipe or

DeepVGI. Regardless the very high specificity TNR (>99% for all study sites), the data set mapped only

parts of the buildings as described by low sensitivity TPR (6–44%). The huge number of false negatives

was the major drawback of the GUF approach. The map representation of the results for Guatemala

(Figure 3) indicates that only major settlements were captured. For the rural study sites in Laos (Figure 4)

and Malawi (Figure 5) the GUF approach generated many false negatives and thus missed most buildings.

The HRSL approach ranked below MapSwipe and DeepVGI in terms of accuracy ACC (86–90%) and

MCC (69–73%). This approach reached the best results regarding sensitivity TPR (94–96%), but achieved

only moderate specificity TNR (80–89%). Similar to the DeepVGI approach, the HRSL suffered from a

high number of false positives. This is also depicted in the maps for Guatemala (Figure 3) and Malawi

(Figure 5). It seems that false positives were located at the edges of correctly identified building tiles and

along the road network.

Table 2. Performance of different methods to generate human settlement data sets.

Guatemala Laos Malawi

TNR MapSwipe 0.99 0.99 0.99
DeepVGI 0.96 0.97 0.95

GUF 0.99 0.99 0.99
HRSL 0.89 - 0.80

TPR MapSwipe 0.74 0.79 0.82
DeepVGI 0.81 0.89 0.85

GUF 0.44 0.06 0.07
HRSL 0.96 - 0.94

ACC MapSwipe 0.96 0.97 0.91
DeepVGI 0.94 0.96 0.91

GUF 0.92 0.87 0.58
HRSL 0.90 - 0.86

MCC MapSwipe 0.80 0.85 0.83
DeepVGI 0.74 0.84 0.81

GUF 0.60 0.22 0.18
HRSL 0.69 - 0.73



Remote Sens. 2019, 11, 1799 10 of 21

Figure 3. Map representation of the confusion matrix for Guatemala: Each map shows the spatial

distribution of correct “building” (TP) and “no building” (TN) classifications for a specific method in the

testing area. Incorrect classifications are split into false positives (FP) and false negatives (FN). Each pixel

corresponds to a single task/satellite imagery tile.

5.2. Spatial and Non-Spatial Characteristics of Misclassifications

This section focuses on the analysis of the characteristics of misclassified tiles of the

DeepVGI approach.

For all study sites, the distribution density of “no building” tiles showed a clear peak, whereas the

distribution of “building” tiles was much flatter. For instance for the Guatemala study site, Figure 6 (center)

depicts that the distribution density of “no building” tiles peaked for a confidence score of around 0.25.

“Building” tiles distributed equally between confidence scores of 0.0 and 0.45. Very high confidence scores

(>0.3) are observed only for “building” tiles. At the same time, for very low confidence scores (<0.15) both

“no building” and “building” tiles were present.
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Figure 4. Map representation of the confusion matrix for Laos: Each map shows the spatial distribution

of correct “building” (TP) and “no building” (TN) classifications for a specific method in the testing area.

Incorrect classifications are split into false positives (FP) and false negatives (FN). Each pixel corresponds to

a single task/satellite imagery tile.

The conditional density plots (Figure 6, blue axis) revealed the tendency that the accuracy of the

DeepVGI approach increased with higher confidence scores. For all three study sites, accuracy increased

steadily from around 50–60% to more than 95% when raising the confidence score from 0.0 to around 0.35.

There was no such clear trend for the conditional density of the accuracy for the MapSwipe approach.

MapSwipe’s accuracy ranged between 80% and 95% and indicated no dependency from the confidence

score. Additionally, the comparison of the conditional density plots from DeepVGI and MapSwipe

underlined that tiles that were relatively easy for DeepVGI (high confidence scores) were on average

not easy for MapSwipe users. Vice versa, tiles that were difficult for the DeepVGI approach (lower

confidence scores), were on average not particularly more difficult for MapSwipe users. For example for

the Guatemala study site, the DeepVGI approach provided more accurate results than MapSwipe for tiles

with a confidence score higher than 0.25. For tiles with a confidence score below 0.2 MapSwipe reached

higher accuracy.
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Figure 5. Map representation of the confusion matrix for Malawi: Each map shows the spatial distribution

of correct “building” (TP) and “no building” (TN) classifications for a specific method in the testing area.

Incorrect classifications are split into false positives (FP) and false negatives (FN). Each pixel corresponds to

a single task/satellite imagery tile

The spatial distribution of the confidence score revealed highest confidence scores for major

settlements for all study sites. The most uncertain results were located in the areas with a mixed land-use,

e.g., agricultural land and settlements. Furthermore, uncertain results seemed to be clustered, e.g., for the

Laos study site (Figure 6) in most of the southern part of the study area and in a smaller area in the

northern part.
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Figure 6. Spatial and Non-Spatial Distribution of the Confidence Score and Conditional Density of Accuracy

for Laos, Guatemala and Malawi. The figure provides insights on the kernel density distributions of the

confidence scores of “all” (red line), “no building” (light gray) and “building” (dark gray) tiles for the

different study regions (red axis). The same plot shows the conditional distribution of accuracy (blue axis)

for DeepVGI (solid blue line) and MapSwipe (dashed blue line). The map depicts the spatial distribution of

the confidence scores.
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The indications from the conditional density plot were confirmed by the results of the logistic

regression analysis (Table 3): as depicted by the regression coefficient and the corresponding standard

error and significance with increasing confidence score, probability of correct classifications increased

significantly. However, as indicated by the low pseudo-r-squared values of (0.109–0.210) the confidence

score explained only a fraction of all misclassified tiles. The results further confirmed that the confidence

score had no explanatory power with respect to the accuracy of the MapSwipe approach (McFadden’s

Pseudo-r-squared of −0.211 to −0.130).

Table 3. Logistic Regression analysis.

Guatemala Laos Malawi

DeepVGI Coefficient 16.262 11.164 16.291
Standard Error 0.165 0.086 0.210

Significance 0.0 *** 0.0 *** 0.0 ***
McFadden’s Pseudo-r-squared 0.235 0.109 0.194

MapSwipe Coefficient 15.224 10.454 11.676
Standard Error 0.149 0.078 0.149

Significance 0.0 *** 0.0 *** 0.0 ***
McFadden’s Pseudo-r-squared −0.13 −0.154 −0.211

5.3. Combination of Crowdsourcing and Deep Learning

Figure 7 shows performance and effort in respect to crowd proportion. For all study sites allocating

10% to 20% of the tiles to MapSwipe (raising the crowd proportion from 0.0 to around 0.1–0.2) resulted

in an overall performance increase in respect to accuracy ACC and Matthew’s correlation coefficient

MCC. Reducing the volunteer efforts to one fifth (labor reduction of 80 percentage points) resulted

in a performance gain of 3–5 percentage points measured as MCC in all regions. For all study

sites, this was caused mainly due to an increase in TNR (compared to the DeepVGI-only approach).

For Guatemala and Laos, TPR remained stable, whereas for Malawi TPR increased as well (compared to

the DeepVGI-only approach).

Vice versa, allocating 10% to 30% of the tiles to DeepVGI (decreasing the crowd proportion from 1.0 to

around 0.7–0.9) also resulted in an overall performance gain. For all study sites, a gain in TPR (compared to

the MapSwipe-only approach) was observed the more tiles have been allocated to DeepVGI. For Guatemala

TNR remained stable, whereas for Laos and Malawi TNR decreased slightly at the same time.

The performance of the combined approach did not change, when allocating 20% to 70% of the sorted

tiles to MapSwipe. For crowd proportions between 0.2 and 0.7 ACC, MCC, TNR and TPR remained

mainly stable at a higher level compared to DeepVGI-only or MapSwipe-only approaches. For instance

for the Guatemala study site, MCC gained around 10 percentage points (75% to 85%) compared to the

performance of the DeepVGI-only approach by allocating 30% of the tiles to MapSwipe and 70% to

DeepVGI. At the same time this resulted in an increase in MCC of around 5 percentage points (80% to

85%) and labor reduction of 70 percentage points compared to the performance of the MapSwipe-only

approach. The MCC for a crowd proportion of 0.7 varied only slightly and reached around 84%.

When investigating the results of the random task allocation (see Figure 7) no such effects were

observed. An increase in crowd proportion resulted in an improved TNR and decreased TPR with a

uniform gradient for all study sites. Overall, ACC and MCC improved slightly with a homogeneous

slope when allocation tasks from DeepVGI to MapSwipe. However, no performance gain was observed

compared to the MapSwipe-only approach.
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Figure 7. Data quality and effort in respect to crowd proportion and task allocation strategy for a combined

MapSwipe-DeepVGI methods. The upper side of the figure represents the performance of the confidence

score-based task allocation strategy, whereas on the bottom side the mean and standard deviation of the

performance of 250 random allocations between DeepVGI and MapSwipe are shown. Performance is

measured by accuracy (ACC), Matthew’s correlation coefficient (MCC), sensitivity (TPR) and specificity

(TNR). The x-axis of the plot shows the crowd proportion. A crowd proportion of 0.0 (left) refers to

DeepVGI. Consequently, the performance for a crowd proportion of 1.0 (right) refers to the performance of

MapSwipe. For a crowd proportion of 0.3, 30% of the results are obtained from MapSwipe (these tiles refer

to the DeepVGI tiles with the lowest confidence) and 70% from DeepVGI.

6. Discussion

6.1. Overall Performance Evaluation

The crowdsourcing approach by MapSwipe generated the most accurate human settlement maps

for all case study sites with Matthew’s correlation coefficient between 80% to 85%. As expressed by the

differences in specificity TNR and sensitivity TPR between the MapSwipe approach and the DeepVGI

approach, our results supported the common hypothesis that humans rarely identify something as a

building which is not a building, but tend to miss buildings. In contrast, our results indicate that deep

learning approaches tend to miss fewer buildings at the cost of also falsely detecting a range of objects

which are not buildings. In comparison to GUF, crowdsourcing and deep learning-based approaches

demonstrated an improvement in data quality for our case study sites.
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The performance of MapSwipe seemed to be consistent with previous findings from Albuquerque et al.

(2016) [9], where an accuracy of 89%, a sensitivity of 73% and a precision of 89% are achieved for a very

similar crowdsourced classification task for a study site in South Kivu (Democratic Republic of the Congo).

For the case of automated village boundary detection Gueguen et al. (2017) [8] report an average precision

of around 70% and a sensitivity of around 84%. Yuan et al. (2018) [30] compare a deep learning-based

approach against GUF and GHSL for Kano city (Nigeria) and reach similar results. Their building

extraction algorithm performs with a precision of 72% and a sensitivity of 70%. Their approach slightly

improves the GUF, but significantly outperforms the Global Human Settlement Layer. Klotz et al. (2016) [7]

show that GUF and GHSL significantly increased the completeness and precision of global build-area maps

in comparison to previous low-resolution products such as MOD500 or GLOBC. Nevertheless, the authors

also point out quantifiable weaknesses in rural areas, which could be confirmed by our study results as

well. Whereas the GUF was of moderate quality for the sub-urban Guatemala study site, its weakness for

the rural study sites in Laos and Malawi was immense.

Nevertheless, our results also suffered from limitations in our data sets and methods applied. Due

to the imbalance of “no building” and “building” tiles, the accuracy ACC reported was biased towards

identifying “no building” tiles correctly. This imbalance was strong for Guatemala and Laos, but less

pronounced for Malawi. Whereas TNR and TPR show no bias, Matthew’s correlation coefficient is biased

as well (but not as strong as accuracy) [38]. This reduces the comparability of our results with the findings

from other studies with less imbalanced data.

In this study, we did not investigate the effects of the imbalance on the training procedure of the

DeepVGI approach. Furthermore, we decided to use a very specific network architecture and pre-trained

model (SSD based on COCO data set, see Section 4.1). Our two-step approach (object detection first, then

binary classification) also introduced further uncertainties. Whereas our results seemed to be consistent

with the findings from other studies, further research is necessary to fully understand the impact of the

data preparation on performance. For instance, Tiecke et al. (2017) [6] present a computer vision method

to create population maps from satellite imagery with a very high resolution and provide further insights

on potential systematic errors. The authors highlight the problem related to repetitive errors, such as the

misinterpretation of large rocks, boats, or mountain ridges as buildings. Analyzing the potential sources of

systematic errors would be of great benefit for our study to understand spatial clusters of false positives.

New advances in machine learning research might produce architectures and training data sets which suit

better to the specific use case of mapping human settlements. To reduce uncertainties in our approach,

future studies should compare different architectures and training data set characteristics also regarding

imbalanced classes.

Uncertainties were also present for the results of the MapSwipe approach. Using majority aggregation

to generate binary labels from the individual user classifications favored higher specificity TNR, whereas

choosing another method might have promoted higher TPR. The drawbacks of majority agreement are

well described by Salk et al. (2016) [43]. The confusion matrix maps showed that wrong classifications were

not randomly distributed, but revealed spatial pattern. For MapSwipe this has already been confirmed

in Herfort et al. (2017) [15]. For our study, this implies that individual user behavior, geographical

characteristics of the surrounding of building features might be major causes of wrong classifications

limiting the transferability of this approach. A more detailed analysis is necessary to understand the

factors which drive the quality of crowdsourcing and its implications for human settlement maps.

Satellite imagery quality is another major concern for both crowdsourcing and deep learning

approaches. Better satellite imagery (e.g., in terms of resolution), might strongly influence the performance

of MapSwipe and DeepVGI. Our current study was limited to satellite imagery tiles at zoom level 18.

For the regions analyzed in this study, satellite imagery tiles with a higher image resolution at zoom level

19 were not available from Bing Maps. Nevertheless, new earth observation satellites such as WorldView3
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would potentially provide sufficient imagery data for this zoom level. The scarce availability of up-to-date

satellite imagery, emphasizes another drawback of MapSwipe and DeepVGI: the quality of the human

settlement maps is closely tied to the structures visible in the satellite images. In situations where

settlement patterns change rapidly, e.g., due to forced displacement, on the ground data is irreplaceable

unless up-to-date satellite data becomes available.

6.2. Spatial and Non-Spatial Characteristics of Misclassifications

Our analysis provided insights into the spatial and non-spatial characteristics of misclassified tiles of

the DeepVGI method. For all study sites the conditional density plots and logistic regression analyses

revealed a significant correlation between confidence score and accuracy. Additionally, the results showed

no such correlation for the MapSwipe data set. This indicates that DeepVGI and MapSwipe tended to

detect different tiles with different characteristics at varying accuracy. We interpreted this as potential

complementary value of both approaches.

However, the limited explanatory power of accuracy for imbalanced data sets needs to be considered

for our study (especially for Guatemala and Laos). Hence, the increase in accuracy mainly depicted the

correlation between specificity TNR and confidence score. The design of the confidence score (using

absolute values, see Section 4.3) hampered the differentiation of false positives and false negatives.

Whereas this simplification turned out to be beneficial for the logistic regression analysis, using a more

sophisticated method, e.g., relying on a quadratic function, would have reduced the bias introduced due

to class imbalance. Furthermore, higher confidence scores might be also related to the number of detected

buildings per tile. In our approach, the confidence score was based only on the most probable building

detection and did not consider multiple detections per tile. This approach increased uncertainties for tiles,

for which only a few buildings were located, e.g., in rural areas.

The results of the logistic regression analysis highlighted that confidence score contributed to the

probability of tiles being misclassified, but only to a minor fraction. For the case of land cover mapping

with a focus on urban areas Kampffmeyer et al. (2016) [27] provide similar findings and show that pixels

with low uncertainty are more likely to be classified correctly. As in our study, areas of class boundaries

were a cause of wrong classifications. However, our study showed as well that most misclassified tiles

had a different cause not captured by our design. Our methods fell short especially in differentiating the

confidence of “no building” classifications, which however constituted most tasks in our study areas.

Further research is needed to expand our understanding of the systematic errors underlying our

approach. For example, we would investigate to what degree deep learning-based methods are able to

map various building types, e.g., in relation to shape and size or to characteristics related to ethnic or

social groups.

6.3. Combination of Crowdsourcing and Deep Learning

Combining the MapSwipe and DeepVGI methods using the confidence score-based task allocation

strategy increased performance by around 3 - 5 percentage points measured by MCC (compared to the

MapSwipe-only approach). At the same time, the approach reduced the volunteer efforts to one fifth (labor

reduction of 80 percentage points). Our results suggest that the task allocation strategy helped to exploit

the complementary value of a sensitive method (DeepVGI) and a specific method (MapSwipe) and would

improve the existing crowdsourcing approach MapSwipe uses.

For a similar set up but limited geographic scope Chen et al. (2018) [31] show that a combination

of results from machine learning and crowdsourcing can result in a labor reduction of 85 percentage

points and achieves a similar accuracy. Gueguen et al. (2017) [8] report similar findings regarding
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semi-supervised village boundary mapping and are able to improve the precision of automated data

extraction by introducing a crowdsourced validation step.

The combination of crowdsourcing and deep learning showed promising results for our selected case

studies, but limitations of the presented workflow must be considered. First, the individual performance

of both methods might have a great impact on the performance of the combined approach. Our approach

was able to improve results because of the complementary characteristics MapSwipe (high TNR) and

DeepVGI (high TPR) hold. Due to the uncertainties of crowdsourcing and deep learning (discussed in

Section 6.1) these differences between the two methods might be less pronounced or even reversed in

other regions.

Considering the needs of humanitarian organizations (e.g., getting information on human settlements

for which no other data sets exist) our approach could be used in real applications. However, the current

workflow was not able to provide a clear estimation which crowd proportion would generate optimal

results beforehand. Project managers organizing humanitarian mapping campaigns would still need to

adjust the proportion of tasks mapped by the crowd manually, e.g., in respect to the given time frame and

complexity of the mapping task.

We tested the workflow for three rather diverse study sites, nevertheless a more detailed investigation

of the influence of geographic characteristics is necessary. Quantifying the differences between the study

sites (e.g., in respect to land cover) would be a first step towards contextualizing the results. Together

with an analysis of the quality of the satellite imagery and quality of the crowdsourced classifications this

would help to understand for which study site characteristics a combination might result in better data.

7. Conclusions

Human settlement maps produced by crowdsourcing (MapSwipe) or deep learning (DeepVGI)

showed large overlaps and for most areas both methods generated results with a similar accuracy.

In general, both methods outperformed existing EO-based products such as the Global Urban Footprint in

terms of MCC and TPR. The proposed confidence score indicator helped to explain misclassified tiles of

the DeepVGI method and revealed the complementary value of DeepVGI and MapSwipe. Combining

crowdsourcing and deep learning by applying the proposed task allocation strategy facilitated the

complementary values of both methods and provided a promising extension to the existing crowdsourcing

approach MapSwipe incorporates.

Further research needs to validate these findings also for other study regions and various settlement

types and shapes and contextual features such as vegetation and land use. The large amount of finished

MapSwipe projects provides an obvious starting point for such an extended geographical analysis.

Our study focused on the binary classification of satellite imagery tiles to map human settlements.

Due to the structure of the MapSwipe results, the analysis was limited to the tile level. Future research

should overcome this drawback and investigate human settlement classifications at a more fine-grained

resolution and/or move on to investigating automatically generated building footprint geometries. Initial

research in this direction has been conducted by Vargas-Munoz et al. (2019) [32]; however national and

regional investigations are necessary.

Reaching the targets of the sustainable development, planning disaster responses more efficiently and

reducing the vulnerability of people at risk before disasters occur will remain challenges for the upcoming

decades. The proposed combined use of satellite data, deep learning technology and citizen-based

observations showed great potential to contribute to those efforts and future applications should consider

the lessons learned from this research. However, to take fully advantage of the new opportunities there is a

need to further understand the technical and non-technical challenges that come with them. The presented

approach might help to identify data quality issues during or immediately after an object has been mapped
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to provide real-time or near real-time feedback for mappers. However, understanding and communicating

the quality of automatically generated results and ensuring that tools and data are open and accessible are

the very basis for this.

Integrating machine learning techniques into existing crowdsourcing applications will also create an

increased need for technical knowledge for project managers and data users. From the citizen science and

VGI projects perspective, introducing these new techniques might also lead to an increased demand for

experienced validators, which are already few in number, presently. Whereas we envision to use these

new tools to improve overall data quality and availability, they also constitute a new potential source of

bias introduced into data sets such as OpenStreetMap. This bias might also be caused by class imbalances,

which were present also in our study.

Taking all this into account, our results endorsed that for the creation of human settlement maps, we

should rely on automated approaches (e.g., machine learning) when possible, but rely on human skills

(e.g., citizens science and crowdsourcing) when needed.
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