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Abstract 

In  this paper we demonstrate two new approaches to deriving three- 

dimensional surface orientation information (“shape”) from two-dimensional 

image cues. The two approaches are the method of affine-transformable pat- 

terns and the shape-from-texture paradigm. They are introduced by a specific 

application common to both: the concept of skewed symmetry. Skewed sym- 

nietry is shown to constrain the relationship of observed distortions in a known 

object regularity to ;I sniall subset of possible underlying surface orientations. 

Iksidcs this constraint. valuable in its own right, the two methods are shown to 

generate other surface constraints as well. Some applications are presented of 

skewed symmetry to line drawing analysis, to the use of gravity in shape under- 

\tdnding. and t o  glotxil h i p c  recovery. 

I .  Introduction 

Ccrfain iriiasc propcrtic>. such as parallelisnis. synirnetries, and repeated 

p;rttcrns. providc cucs for prceiving 3-D shape from a 2-D picture. This paper 

demonstrates how we can map these image properties into 3-D shape constraints 

by associating appropriate assumptions with them and by using appropriate 
computational and representational tools. 

tk
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We begin with the exploration of how one specific image property, 

“skewed syninietry.” can be defined and formulated to serve as a cue to the 

determination of surface orientations. Then we will distuss the issue from two 

new, broader viewpoints. One is the class of affine-transformable patterns. I t  

has various interesting properties, and includes skewed symmetry as a special 

case. The other is the computational paradigm of shape-from-texture. Skewed 

symmetry is derived in a second, independent way, as an instance of the appli- 

cation of the paradigm. Also, it is proven that the same skewed-symmetry con- 

straint can arise from greatly different image conditions. 

This paper further claims that the ideas and techniques presented here are 

applicable to many other properties under a general framework of the shape- 

from-texture paradigm with the underlying meta-heuristic of non-accidental 

image properties. 

.- 

2. Skewed Symmetry 

to image, and a knowledge of the gradient space (see Mackworth, 1973). 

In this section we assume the standard orthographic projection from scene 

2.1. Definition, Assumption and Constraints 

Symmetry in a 2-D picture has an axis for which the opposite sides are 

reflective; in other words, the symmetrical properties are found along the 

transverse lines perpendicular to the symmetry axis. The concept skeumi sjm- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mefry was introduced by Kanade (1979) by relaxing this condition a little. It 

means a class of 2-D shapes in which the symmetry is found along lines not 

necessarily perpendicular to the axis, but at a fixed angle to i t .  Fornially, such 

shapes can be defined as 2-D affine transforms of real symmetries. Figures la- 

c show a few exaniples.’ 

Stevens ( 1980) presents a number of psychological experiments which 

suggest that hunian observers can perceive surface orientations from figures 

\+,ith this propen!.. This is probably because such qualitative ~ y i i i i i w [ I ! ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin thc 

image is often due to real symmetry in the scene. Thus let us associate thc fol- 

lowing assumption with this image property: 

A skewed symmetry depicts a real symmetry viewed f‘roiii soiiic 

unknown view angle. 

Notc that thc con\ crse of this assumption is always true undcr o i 1 h o ~ r i q d ~ i ~ ~  pIo- 

jection. 

We can transform this assumption into constraints in tlic gi-adicnt spacc. 

As shown in Figure 1 ,  a skewed symmetry defines two directions: Ict 11s call 

them the skewed-symmetry axis and the skewed-transverse axis, and dcnotc 

‘The mouse hole example of Figure I C  is due to K. Stevens (1980). 



\ 

, 

Figure 1. Skewed symmetry. 

their directional angles in the picture by a and p, respectively (Figure Id). Let 

C = ( 1 1 . 4 )  be the gradient of the plane which includes the skewed symmetry. 

The 3-11 vectors on the plane corresponding to the directions a and p are 

(cosa,sina, -p cosa-9 sina) and (cosp,sinp,-p cosp-9 sinp). 

The ahsunipt ion demands that these two vectors be perpendicular; their inner 

prcduc-1 vmishcs: 

c o s ( a - ~ ) + @ c o s a + 9 s i n a ) ( p c o s ~ + 9 s i n ~ )  = 0. (1) 

By rotating the p -9 coordinates into the p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' - 4 ' coordinates so that the new p '- 
q .I\c\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.uc the bisectors of the an& nude by the skewed symmetry and 

Acud- t rmhvcrse  axes, it  is easy to show that 

p '  = pcosAXqs inX 

q '  = -psinX+ycosh 

h = ( a + p ) / 2 .  

Thus, the (I,, 4) ' s  are on the hyperbola shown in Figure 2. That is, the skewed 

symmetry defined by a and p in the picture can be a projection of a real sym- 

metry if and only if the gradient is on this hyperbola. The skewed symmetry 
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thus imposes a one-dimensional family of constraints on the underlying surface 

orientation ( p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we will see in  Section 5. other constraints can be 

exploited for the unique determination of surface orientation. 

The tips or vertices GT and GT of the hyperbola represent special orienta- 

tions with interesting properties. First, since they are closest to the origin of 

the gradient space, and since the distance from the origin to a gradient 

represents the magnitude of the surface slant, GT and GT correspond to the least 

slanted orientations that can produce the skewed symmetry in  the picture from a 

real symmetry in the scene. 

Second, since they are on the line (the axis of the hyperbola) which 

bisects the obtuse angle made by OL and p, they correspond to the orientations 

for which the rates of depth change along the directions of OL and p in the pic- 

ture are the same. In other words, the apparent ratio of length to width of the 

object in the picture represents the real ratio in the scene (see Kanade [ 19791 

for the proof.) 

, 

2.2. Rationale and Justification 

Skewed symmetry has straightforward applications to scenes containing 

objects that have been manufactured, whether naturally or artificially. Many 

constructed items exhibit symmetry, occasionally about many axes. 

Some symmetries are introduced due to economies of the manufacturing 

process: an object is often composed of identically formed component parts 

(fibers, cells, bricks, etc.). The symmetries result from the three-dimensional 

tessellation of the components into the whole. Often the tessellation is effec- 

tively two-dimensional, in laminae (cloth, honeycombs, walls, etc.), and the 

application of  the s k c n d  symmetry method is straightforward. Further, the 

requirement for a close symmetric packing of the coniponents occasionally 

imposes a local symmetry on the individual components, too. The method can 

then be applied to individual parts (such as the bricks themselves). Notice the 

method does no( a s s u m  3-L) symmetry of the whole object; what is assumed is 

loc.nl 2-D symmetry. 

A further source of symmetry is the bilateral symriictry that results from 

biological manufacture (growth). It not only contributes symmetric objects to 

the environment: i t  may also be responsible for an imitative esthetic bias in 

huriian riianut‘acturc. 11. thc extent of a bilaterally s!fniriictric patrc‘rii i n t o  thc 

third dimcnsion is n o t  too great (a face, a leaf, an airplane), the skewed sym- 

nietry method can be approximately applied also. 

. 

3. Affine-Transformable Patterns 

In texture analysis we often consider small patterns (texels= texture ele- 

ments) whose repetition constitutes “texture.” Suppose we have a pair of texel 
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Figure 2. The hyperbola dctcrmincd by a skewed symn1ctt-y Jctincd by a and (3 

patterns in which one is a 2-[I affine transform of‘ the otlicr; ive call them a pair 

of affine - transforniablc pattern\. Lct us iixsumc: 

A pair of affine-transformable patterns in the picture arc projections 

of similar patterns in the 3-11 space ( i .c . .  the! can bc overlapped by 

scale change, r o t a t i c u r .  and ( r i i i i d i i t i o i i ) .  

Note that, as in the case of‘ skewed symmct?. thc convcrsc o f  this assumption 

is always true under onhographic projection. Thc iibtlvc a\\uriiption can be 

schematized by Figure 3. Consider t\vo texel pattcrnh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI’ I and P z  in the picture, 

and place the origins of the . r - \  coordinates at thcir  center\. respectively. The 

transform from P to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ’  , i . i n  hc i i t n i  c \prc*N\c - t i  h\ .i rc-gul;ir  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 7 i i iatris 

A = ( a j j ) .  P and P arc prqcc t iom ot. pattcrr\\ I’ , : i d  I ’ :  \vhich  arc dra\vn 

on the 3-D surfaces. W e  ~ w r i i c  th:rt f’ I anti f ’ :  ;ire w i a l l  cnouyh SO that \vc 

can regard them as being dranm on small planex. I.ct I I ~  dcnotc thc gradients of 

those small planes by G I  = ( p l . 4 , )  and G 2  = ( . J 1 2 . q 2 ) .  respectively; i .e. ,  P I  is 

d r a w n o n a p l a n e  -z  = p l - r + q l ! ~  a n d P S  on -: = p l - v + y L v .  

Now, our assumption amounts to saying that P I  is transformable from 
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a11 a 1 2  

- 
Affine-Transform 

J I I 

COSQ -sincr 

O R = . (  sincr cosa 

Figure 3. 
transformable patterns. 

A schematic diagram showing the assumption about the affine- 

P 2  by a scalar scale factor u and a rotation matrix: 

> e  

cosa -sinu 

R = ( sina cosa 

(We can omit the translation trom our  conxideration. xiiicc‘ t.or ciicti pattern the 

origin of the coordinates is placed at its g i r v i t >  ccntcr. uhich i \  presewed 

under the affine transform.) Thinking about a pattern cfra\\m o n  ;t sinall plane, 

-z  = p x  + q y  , is equivalent to viewing the pattern froin directly o\*crhcad; that 

is, rotating the x -y -z  coordinates so that the nomial vector of the plane is along 

the new z-axis (line of sight). For this purpose we rotate the coordinates first 

by + around the y-axis and then by 0 around the x’-axis (Figure 4). We have 
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Figure 4. Rotation of the x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- y - z coordinates. 

the following relations among +, 0, p , and q : 

sin4 = I,/\-, cos+ = l/W, 

243 

/1\ 
\ J l  

sin0 = y/dp’+q*+ I ,  cos0 = m/dp’+q’+ I .  

Further, let 1’ denote the angle of slant of the pattern, i.e.. the angle between 

the old and the new : axes. Then 

cosr = i/dp2+y*+ 1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

The plane which was represented as - z  = p x  +y? in the old coordinates is. of 

course. n o w  rcprcsented as -: ‘ = 0 in the new coordinates. 

Let us dcnote the angles of the coordinate rotations t o  obtain P I and 1): 

in Figurc 3 by ( + , , 0 1 )  and (&,e2), respectively. 

( t  -\. pi:inc*) 10 P ,  (.v -! plane) can be conveniently 

2 x 2 niatris T, tvhich is actually a submatrix of  the 

I ,  

cos4 -sind)sinO 

cos0 

The 2-D mapping from Pi 
represented by thc follou.in9 

usual 3-L) rotation iiiatrix: 

P I - P We obtain 

AT2 = T l a R  
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That is, 

I 

a I Icos+2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= u(cosaco~+~ -sinusin+,sinOl) 

a 12cos02-a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Isin+2sine, = -o(sinacos+, +cosasin+,sinO,) 

, 

a21cos+2 = asinacose, ( 5 )  < 

a 22cose2-a2,sin+2sine2 = u c o s a c o s ~ ,  . 

By eliminating u and a and substituting for sin+,, cos+,, sinO,, and * ’  

cosei from (3), we have the following equations in p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 2 .  and y: 

We thus find that the assumption of affine-transformable patterns yields 

the constraint represented by (6) on surface orientations. The constraint is 

determined solely by the matrix A = (aij), which is determined by the relation 

between P2 and P I  observable in the picture without knowing either the origi- 

nal patterns ( P  

In order to have an idea about the degree of the constraint represented by 

(6), if we assume that the orientation of P2 is known (i.e., G I  = (p2.q2) is 

known), then (6) gives two simultaneous equations for G I  = 0) I .y , ) .  The sys- 

tem appears to be of degree 4, but i t  can be shown that there are only tu’o solu- 

tions; they are of the form (po,qo) and ( -po , -qo) ,  which are symmetrical 

around the origin of the gradient space (see the Appendix). 

and P i  ) or their relationships (a and R ) in the 3-D space. 

I 

From ( 5 )  we can also derive the following relationship:’ 

( 7 )  
det(A) - - - - C O S r i  

( T I  d m  cosr2. 

This means that the ratio of cosines of the slant angles of the patterns is equal 

to the ratio dct(A )/(I?. If we assume u = 1 (the original patlcrnr ; I I - ~  01 t h -  

same size) or that (T is known, (7) shows that we can order ttic tcxcl p;it1cr-n\ 

according to the magnitude of slant, Ti or d m ,  usins the \ ~ ; l l u c ~  01. 

det(A ). 

%his indicates that det(A ) should be positive. But if i t  is negative, then u’c can assume that  f 1’ 

and P2 are mirrored patterns, and put R = (sina -,,,,). 
cosa sina 



3.1. Skewed Symmetry from Affine-transformable Patterns 

The affine transform from P to P I  is more Intuitively u,ndcrhttx)d by how 

a pair of perpendicular unit-length vectors (typically along the s and ~9 coordi- 

nate axes) are mapped into their transformed vectors. As shown in  Figure 5 ,  

two angles (a and p) and two lengths (7 and p) can characterize the transform. 

The components of the transformation matrix A = (a;,) are represented by 

a I = TCOSOL a 12 = pcosp 

= Tsincu a22 = psinp. 

Suppose, for simplicity, the orientation of P 2 in  Figure 3 is known to be 

(p2,q2) = (0,O). This simplifies equation (6) to 

all(p:+l)+a*1PI91 = a 2 2 m  (9) 

- a 1 2 ( P ? + l ) - a 2 @ I q l  = a 2 1 m .  

If we assume that a ,  p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  and p are known, then ( p 1 , y I )  has two 

possible solutions. This is essentially the case which Ikeuchi ( 1  980b) investi- 

gated in his shape recovery method by assuming a known standard pattern, even 

though he used the constraint only partially. 

Let us consider the case where (Y and p are known, but T and p are not. 

One can substitute ujj  in (9) by (8), and eliminate T and p. Then we obtain 

(plcosa+qIsina)(plcosp+qIsin~)+cos(a-~)  = 0 

which reduces to the same as the hyperbola ( 1 ) .  This can be interpreted as fol- 

lows. 

As was noted in the previous subsection, a pair of affinc.-rransforrnable 

patterns impose the constraints (6) between their surface orientations, in  which, 

if one is fixed, the other has only two possible orientations. Hotvcvcr. i f  we 

loosen the transform in such a way that the angular (rotational) corrcspondence 

(a and p) is known while the length relationship is not known ( o r  arbitraq). 

then the one-dimensional constraint of the skewed-symmetry hyperbola is 

obtained. 

'L 0 1 

L 
A = (a,,) 

Figure 5.  An affine transform (without translation) as characterized by two 
angles and two lengths. 
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4. The Shape-from-texture Paradigm 

This section derives the same skewed-synlilletry copstraints from a second 

theory, different from that of the affine-transformable patterns. The shape- 

from-texture paradigm is a method of relating image texture properties to scene 

object properties, by explicitly incorporating assumptions about the imaging 

phenomenon into a computational framework. The paradigm is briefly 

presented here, but a fuller discussion can be found in (Kender, 1980). 

The paradigm has two major portions. In the first, a given image textural 

property is “normalized” to give a general class of surface orientation con- 

straints. In the second, the normalized values are used in conjunction with 

assumed scene relations to refine the constraints. If there are sufficiently many 

textural elements (“texels”) in the image to be normalized, and if enough 

assumptions are made about their scene counterparts, then the underlying 

surface’s orientation can be specified uniquely. Somewhat more weakly, only 

two tcxels are required, and only one assumption (equality of scene textural 

objects, or some other simple relation), to generate a well-behaved one- 

dimensional family of possible surface orientations. The method of skewed 

symmetry - the use of qualitative symmetries in the image to create a perspec- 

tively distorted right angle - is an example of such a weak method. 

The first step i n  the paradigm is the normalization of a given texel pro- 

perty. The goal is to create a normalized texture property map (NTPM), which 
is a representational and computational tool relating image properties to scene 

properties. The NTPM summarizes the many different conditions that may 

have occurred in the scene leading to the formation of the given textural ele- 

ment. In  general, the NTPM of a certain property is a scalar-valued function of 

two variables. The two input variables describe the postulated surface orienta- 

tion in the scene (top-bottom and left-right slants: 0, , 4 )  when we use the gra- 

dient space). The NTPM for a horizontal unit line length in the image summar- 

izes the lengths of lines that would have been necessary in 3-D space under 

\*;triou\ oricntations: at surface oricntation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  . (1 ). i t  would have to be m. 
hlorc specifically, the NTPM is formed by selecting a texel and a texel 

property. hack-projecting the texel through the known imaging geometry onto 

all conccitrahle surface orientations. and nieasuring the texel property there. 

The representation chosen for the two-dimensional space of orientations is 

irnportlrnt; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu’c w i l l .  houcvcr. o n l y  use the sradicnt space here. 

In the scccinci phase ot thc paradigm. the NTPM is refined in the follow- 

ing w . 3 ~ .  7’csc.I~ usually hat-1) various orientations in the image, and there are 

Illany diffcrcnt tcscl types. Each texel gencrxtcs its own image-scene relation- 

ships, suniniarizcd in its NTPM. If ,  however, assumptions can be made to 

relate one texel to another, then their NTPMs can also be related; in most cases 

only  a few scene surface orientations can satisfy both texels’ requirements. 
Some examples of the assumptions that relate texels are: both lie in the same 

+ -  
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plane, both are equal in textural measure (length, area, etc.), one is k times the 

other in measure, etc. Relating texels in  the manner forces more stringent 

demands on the scene. If enough relations are invoked, the‘orientation of the 

local surface supporting two or more related texels can be very precisely deter- 

mined. 

4.1. Skewed Symmetry from the Paradigm Applied to Slope 

What we now show is that the skewed symmetry method is a special case 

of the shape-from-texture paradigm; it can be derived from considerations of 

texel slope. 

To normalize the slope of a texel, i t  is back-projected onto a plane with 

the postulated orientation. The back-projected texel now has a new shape on 

this new surface. Its exact value, however, depends upon the coordinate system 

on this surface plane. Many coordinate systems are possible; we chose here a 

coordinate system whose x-axis lies along the gradient direction. Thc normal- 

ized slope is then the angle that the back-projected texel makes with respect to 

the surface coordinate system x-axis. The calculation is a bit involved, espe- 

cially under perspective, which requires a knowledge of both the location of the 

center of focus and the length of the focal distance. 

Using the construction in Figure 6, together with several lemmas relating 

surfaces in perspective to their local vanishing lines, slope is normalized as fol- 

lows. Assume a slope is parallel to the p-axis; the image and gradient space 

can always be rotated into such a position. (If rotation is necessary, the result- 

ing NTPM can be de-rotated into the original position using the standard two- 

by-two orthonormal matrix.) Also assume that the slope is somewhere along the 

line y = y , ,  where the unit of measurement i n  the image is equal to one focal 

length. The normalized value of the slope is equal to the tangent o f  the 3-D 

space angle -q, whose base (of length R )  is parallel to the surface plane, and is 

in the direction of the gradient. R is determined from the focal distance, and 

from the point of the nearest approach o f  the v a n i h i n g  linc 0 1  [tic plane. This 

line has equation px +qy = I (or G . P = I )  and its nearest approach is 

GAlG 1 1 2 .  The distance d is given by the intersection of the linc \ ’  = J, with 

the vanishing line. Then, the nomiali7cd slope value - thc NoniiaIi/cd Texture 

Property Map - is given by 

This normalized value can be exploited in w\.eral ways. Most iriiportant is the 

result that is obtained when one has t i i . 0  s10pc.s in the innage that  iirc a~sumed to 

arise from equal slopes in the scene. Under this assumption, their normalized 

property maps can be equated. The resulting constraint, surprisingly. is a sim- 

ple straight line in the gradient space. It is intimately related to the vanishing 
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Figure 6 .  Back-projecting an image slope onto a plane with gradient (p , 4 ) .  

point formed by the intersection of the extensions of the two image slopes 

(Kender, 1980). 

The constraint equations resulting from assuming that the two slopes arose 

from perpendicular lines in the scene is, however, enormously complex. It 

unfortunately does not appear to have many tractable forms or special cases. 

of a texel becomes 

Under orthography, nearly everything simplifies. The normalized slope 

a 

I t  is independent of F . ~ ;  in effect, all slopes are at the focal point. 

Considering two image slopes to have arisen from parallel lines in the 

scene has a trivial solution. If the image slopes are parallel, the entire gradient 

spacc is a solution. If they are not, there is no solution at all. This 

corrcyxmds to the projective geometry theorem that under orthography, paral- 

lels are taken into parallels regardless of surface orientation. 

In the case where the scene slopes are assumed to be perpendicular, we 

again get a simplification, but this time a useful one. Not only is the solution 

tractable, i t  is the skewed symmetry method of Section 2. We derive i t  as fol- 
lo\\ \ 

Consider Figure 7. Note that under orthography, texels can be translated 

arbitrarily, sincc the focal length is infinite and the focal point is effectively 

everywhere; there is no information in image position. Given the angle that the 

two texels forni, rotate the gradient space so that the positive p-axis bisects the 

angle. Call this adjustment angle A; we will use it to de-adjust our results into 

the original position after they have been computed. 



Figure 7. Two image texels assumed to be perpendicular in the scene. 

Let the angle that is bisected be 26. The normalized value of either slope 

is obtained directly from the standard normalized slope formula, corrected for 

the displacement of +S and -6 respectively. That is, for the slope at the posi- 

tive 6 orientation, instead of formula (l l) ,  we use the formula under the substi- 

tution pcosS+qsinS for p , -psinS+qcosS for We proceed similarly for 

transformation (it is the length of the normal vector of the surface). 

The fact that the normalized slopes are assumed to be perpendicular in the 

scene allows us to set one of the normalized values equal to the negative 

reciprocal of the other. The resultant equation becomes 

(12) 

the slope at -6. Note that the factor q+ l+p + q  is invariant under this 

p2cos26-q2sin26 = sin2S-cos2S = - C O S ~ S .  

This is exactly the hyperbola in Section 2 with 26 = I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - p  I . 

4.2. Skewed Symmetry from the Paradigm Applied to Length and Angle 

The paradigm is similarly applicable to other texture measures. Using 

texel length as the property to be normalized, we find that under perspective, 

lengths must lic on thc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs m w  line in order for the resultant equations to be 

simpler than the fourth order. If they are collinear, again the resultant gradient 

space constraint is a simple straight line. 

Under orthography and the assumption that image lengths have arisen 

from equal scene lengths. the constraint equation is again a hyperbola - the 

skewed-symmetn hypcrhola. somewhat offset. In fact, the geometric construc- 

t i o n  in Figurc 8 shoir.5 that the assumption of equal length can be madc 

cq u i va 1 en t to skewed s y ni m c t ry . 

First, a triangle is f'ormed by translating one or the other of the lengths so 

that they meet at a common endpoint. Under orthography, such translations do 

not affect the resulting constraints. Connecting the remaining endpoints creates 

a triangle which must be isosceles in the scene. Further, under orthography, 
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Figure 8. Assuming lengths are equal generates the skewed symmetry constraint. 

midpoints of lines are preserved (the midpoint of the base of the scene triangle 

is imaged as the midpoint of the base of the image triangle). The line connect- 

ing the vertex and this midpoint has the property that, in the scene, it must 

form a right angle with the base. Its distortion to something other than a right 

angle in the image - the induced angle 26 - is precisely the distortion which 

characterizes skewed symmetry. Therefore, the same methods apply. 

One other case is worth mentioning. Supposc the image has two angles 

such that one leg of the first is parallel to one leg of the second. See Figure 9. 
In this case, again the constraint is equivalent to skewed symmetry, as the con- 

struction shows. Choosing one of the angles, extend its non-parallel leg until i t  

intersects both legs of the other angle. (If  i t  cannot do so, then first translate 

the angle before extending.) The resulting triangle must be isosceles in  the 

scene, since the angles are assumed equal in the scene. However, this is the 

same situation encountered above with the construction involving lengths. 

Therefore, the altitude from the midpoint of the base (here, the midpoint of the 

parallel side) to the vertex must form a right angle. Again, the distortion 

observed in the image is thc skewed s y n m c t ~ '  distortion. 

5. Applications of Skcwcd Symmetry and An?nc.-transformabIc Patterns 

5.1. Quantitative Shape Kccowry from Line Ilrawings 

G1tc.n rhc line draBing 01 Figure. 10.1. u c  uw;illy pcrccive a right-angled 

parallelepipcd. The Huffman-Clowcs-~~'a1!/ labcling scheme for the trihedral 

I 

Figure 9. Assuming angles are equal generates the skewed symmetry constraint. 



2.5 I 

Figure 10. (a) A line drawing of a block; (b) Huffman-Clowes-Waltz labeling; 
(c) constraints in the gradient space. 

world gives the labeling shown in  Figure lob, which signifies that the three 

edges meeting at the central FORK vertex are all convex, i.e., the object is a 

convex comer of a block. However, i t  does riot specify a particular quantitative 

shape. In  fact, the labeling indicates only that the gradients of the three sur- 

faces should be placed in the gradient space so as to form the triangle shown in 

Figure IOc. The edges of the triangle should be perpendicular to the picture 

edges separating the corresponding regions, but the location and size of the tri- 

angle are arbitrary in  the gradient space. Therefore, the object is not neces- 

sarily right-angled. 

We can use skewed symmetry here to provide additional constraints. The 

three regions are skewed-symmetrical with the axes shown in Figure 1 la.  The 

hyperbolas corresponding to thcsc regions are shown in  Figure 1 Ib. Thus the 

problem is now how to place the triangle of Figure 1Oc in Figure 1 Ib so that 

each vertex is on the corrcspondiny hyperbola. Kanadc (1979) proves that the 

combination of locations sh0js.n in Figure 1 Ib  is the only possibility. and that 

the resultant shape is a right-angled block. 

I t  i h  intcrchting to notc tti . it  1 1  t ic  apply the same proccdurc IO the line 

drawing of Figure 12. wc find that there is no way for all the three regions to 

satisfy the skewed symmetry  assumptions. That is. at least one of them has to 

be non-symmetrical ( s k e ~ . c d )  i n  thc 3-LI space; in other words. the object can- 

not be right angled. but should be rhomboid (a prism). Remember that Figure 

I O a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc'nri be either right-anslcti or  rtiomhoid. but i t  is usually perceived :is right- 

Figure 13 dcmon>tratc> tiow the ahove procedure results in the interpreta- 

anglcd. 

t ion  o f  the drawing as a trapezoidal block in this case. 

5.2. Skewed Symmetry under Gravity 

tural necessity to oppose the gravitational field. 

One principal influence toward symmetry seems to be an object's struc- 

Objects that must support 
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Figure 11. (a) Axes of the skcwcd symmctry of the reyions of  Figurc 10a; (b) 
corresponding hyperbolas and allocations of the gradients. 

themselves tend to have structural nieniDcrs alignea parallel l o  ttie directLon ot 
force, that is, vertically. Such members are niutually parallel - a typc of sym- 

metry. The base of such an object is often perpendicular to gravity to distribute 

weight and provide balance. Together, then. the hase and structural niembers 

provide a local symmetry franie that can also bc cxploitcd by the skewed- 

symmetry method. One can sliou that in thi\ la\( c-;i\c i t  I \  u\uul ly  possible t o  

specify surface orientation uniquely. 

We will assume that the direction of the p v i t y  ficld is knokvn, say the 

top-to-bottom lines in [tic iinagc lr;cillc Jrc . I \ ~ U I I I T J  l o  bc ~ruc projcc'tions o f  ;I 

line of gravity force. The gradient space i h  al\o con\idcrcd t o  be aligned in the 

direction of the gravity field; - q  i s  also "doun. 
.. 

Under such conditions. supposc u c  d o  tind ;1 portion of thc iiiirigc that is 

assumed to be a vertical, symmetric surface: say. a building face as in Figure 

Figure 12. A line drawing of a rhomboid: this cumoi be a right-angled block. 
Notice that Figure IOa can be a rhomboid. 
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Figure 13. Shapc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArccovery of a trapezoid block: (a) axes; (b) gradient alloca- 

tions. 

14. Using skewed symmetry (or even direct observation), i t  is not hard to 

obtain an angle in the image that corresponds to a right angle in  the scene. 

Suppose one of the legs of the angle is parallel to the known gravity field as in 

Figure 14. The skewed-symmetry method generates the following constraint 

hyperbola: 

p = - (q  + l/q)coty. (13) 

This constraint is somewhat interesting: i t  expresses p (left-right slant) as 

I f  gravity points in the - 4 direction, the ground plane must  have as its 

Since all 

a f r c r i c f i o r i  o f  4 (top-bottom slant). The value o f  q itself is easil!. obtained. 

orientation ( O . Y , ~ ) ,  for a value of qg deterniinable through sensing. 

Figure 14. Assumptions about gravity can uniquely specify surface orientations. 



vertical planes are perpendicular to the ground plane, all vertical planes must 

have the orientation (p,, .- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ), for variable p,.  . (A  quick check shows that 

the dot product of the corresponding homials is zero: 

(O,q ,  ,I).@,, ,- l/4, , I )  = 0.) Note that the value of 4 for m y  vertical plane is 

fixed at - l /qg .  Thus, in our example, p is also determined: i t  is ,c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-(4g + l/q,)coty. Since qR is a constant, p vanes simply with y .  Figure 14 

shows the constraints graphically. 

5.3. Shape Recovery of an Object with Many Patterns Stamped 

Consider the problem of recovering the shape from a picture of a ball 

with a number of patterns stamped on it (see Figure 15). For each pair of texel 

patterns, if they are affine-transformable, we compute a transformation matrix 

A .  Thus we obtain many constraints on the gradients of texels. From these, 

however, we cannot uniquely determine the surface orientation of each texel. 

We need more assumptions or data. We will suppose we know the gra- 

dients of some particular texels, and assume that the surface is smooth 

(together, maybe, with an assumption of global concavity or convexity). Then 

a relaxation or cooperative technique similar to the one for shape-from shading 

(Woodham, 1977; Ikeuchi, 1980a) will allow us to determine consistent assign- 

ments of gradients to the texels which satisfy those many constraints. Notice 

that we need not assume that the original pattern is known, nor that the patterns 

are stamped in a particular manner. Even other pattcrns can be mixcd together 

with them. 

One of the plausible methods of determining the gradient of one particular 

texel is to use equation (7). Assuming u = 1 .  we order the texels by the 

magnitude of d m ,  and assign ( p . q )  = (0.0) (the orientation that is 

directly facing the viewer) to the least slanted tcscl. This is arialogous to a 

similar hypothesis in shape from shading. That is. we tend to assign to the 

brightest point the orientation directly facing the light source. even though 

under the assumptions of parallel light3 ;mtl ;I nu t t c  wrf:icc. onc c<:in on ly  say 

that the brightest pixels have the minimum incident angle o f  light. not neces- 

sarily 0". 

6. Conclusion 

The assumptions we used for skckvcd s!mnictr!.. at't'inc-tr;~n~l'c~rni;~hlc. pat- 

Properties observable in the picture arc not xcidcntal .  t>u( ;ire p r o -  

jections of some preferred Corresponding 3-11 propcflics. 

This provides a useful meta-heuristic for exploiting iniagc propcrticb: wc can 

call it the meta-heuristic of nort-accidental image propc.r-tic..s. It  can  bc regarded 

as a generalization of general view directions, often used in  the blocks world, 

to exclude the cases of accidental line alignments. 

terns, and texture analysis can be scncrali/cJ i t > .  
8 
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Figure 15. A picture of a ball with a number of &? s stamped. 

Instances that can fall within this meta-heuristic includc: parallel lines in 

the picture 1’s. parallel linch in  the scene, texture gradients due to distance. and 
sets of lines convergent to a vanishing point. 

The rnost essential po in t  of our technique is that we relate certain image 

propertics IO certain -3-LI space properties, and that we map the r s la t ionhip~ 

into convenient representations of shape constraints. We explicitly incorporate 

assumptions based eithcr 011 the nieta-heuristic or on n priori knowledge of the 

nvrld. l’hc shape-froni-texturc paradigm provides a computational frarne\vurk 

for our technique. In  most of our discussion we assumed orthography. Similar 

( t 1 i o u ~ l i  iiiore invoI\.cd and I C \ \  intuitive) results can be obtaincd under pcrspec- 

11\ c pro~lcc’t lc~n 
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Appendix 

Proof that (6) has two symmetrical solutions: 

We will try to solve (6) for p1 and q l ,  assuming that p2,42, and 

A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a i j )  are known. We assume det(A) > 0. Let us put y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd m .  
Then (6) can be rewritten as 

where 

We can derive a quadratic equation on y from (14): 

f ( y )  = DI5y2-(D2+E2+F2)y+DE = 0, 

The discriminant of ( I  5) is 

disc = (D2+E2+F2)2-4(DE)2 

= F3+2F3(D2+E2)+(D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- E ) 2  

r. 

4 

b 

Thus, f (y) has real roots. Now, notice that y 3 1 and thus we are interested 

in the root greater than or equal to 1.  Let us check the sign o f f  ( I )  multiplied 

by the coefficient of y2: 
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f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1)DE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (2DE - ( D 2 + E 2 + P ) ) D E  

= - ( P + ( D  - E ) 2 ) D E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 0. 

This means that one and only root o f f  (y) is greater than or equal to 1 .  Let us 

denote this root by yo. By substituting yo into (14), we can solve i t  as a simul- 

taneous quadratic equation on p and 4 1, and know that (p I ,9 I )  has two solu- 

tions in the form of (p0,40) and ( - p O , - ~ o ) ,  which are symnietrical to the gra- 

dient space origin. 
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