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Abstract. New types of artificial intelligence (AI), from cognitive assis-
tants to social robots, are challenging meaningful comparison with other
kinds of intelligence. How can such intelligent systems be catalogued,
evaluated, and contrasted, with representations and projections that of-
fer meaningful insights? To catalyse the research in AI and the future
of cognition, we present the motivation, requirements and possibilities
for an atlas of intelligence: an integrated framework and collaborative
open repository for collecting and exhibiting information of all kinds of
intelligence, including humans, non-human animals, AI systems, hybrids
and collectives thereof. After presenting this initiative, we review related
efforts and present the requirements of such a framework. We survey
existing visualisations and representations, and discuss which criteria of
inclusion should be used to configure an atlas of intelligence.

1 Introduction

Despite significant AI progress, its pace and direction are largely unassessed and
hard to extrapolate. The main reason for this is that we lack the tools to properly
evaluate, compare and classify AI systems, and thus determine the future of the
field. The comparison of AI systems with human and non-human intelligence is
typically performed in an informal and subjective way, often leading to contra-
dicting assessments, especially in hindsight (Hayles, 1996; Brooks, 1997; Pfeifer,
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2001; Shah et al., 2016). The comparison between non-human animals and AI
ranges from setting the goal of designing artificial agents with the behaviour
of an earwig (Kirsh, 1991) to the intelligence of a rat (Cadman, 2014; Shead,
2017), without further specification of what these capabilities or dimensions for
comparison should be. The comparison with humans is not much more precise.
For instance, two decades ago it was cognitive functions related to perception
and action that seemed unattainable – “the gardeners, receptionists, and cooks
are secure in the decades to come” said Steven Pinker in 1994. Now, these are
the functions that look easier to be automated (Frey & Osborne 2017) – “if a
typical person can do a mental task with less than one second of thought, we
can probably automate it using AI either now or in the near future” (Ng, 2016).
Today, it is higher-level cognition (causal reasoning, compositionality, theory of
mind, meta-cognition, etc.) that seems more out of reach (Marcus, 2018).

The assessment is especially difficult as academia and industry in AI are rush-
ing to achieve breakthroughs for specific problems, which often require massive
data, computation power, embedded heuristics, strong bias, etc., undermining
generality, autonomy and efficiency. For instance, AI can now play most video
games (Hessel et al., 2017) and board games (Silver et al., 2017) better than
humans, but the immediate training data and computational power that are
needed are – as for today – orders of magnitude higher than those used by a
human. As a result, it is difficult for policy makers to assess what AI systems
will be able to do in the near future, and how the field may get there. There is no
common framework to determine which kinds of AI systems are even desirable.

This contrasts with empirical science, where measurements, comparisons,
representations and taxonomies are widespread. These characterisations can be
theory-driven, such that a prior conceptual framework is used to categorise sys-
tem features, or can be data-driven, which is increasingly important in many
scientific disciplines (Marx, 2013; Landhuis, 2017; Einav & Levin, 2014). Con-
ceptual progress partly relies on finding and testing hypotheses through the
computational analysis of large amounts of shared data (Gewin, 2002), using
open data science tools (Lowndes et al., 2017). In AI, we would like to analyse
the state and progress of artificial systems based on data-grounded investiga-
tions. Research priorities and safety concerns depend on this analysis. We need
to assess whether new AI systems and techniques are simply an incremental
improvement for a narrow collection of applications or a real breakthrough rep-
resenting a more general cognitive ability, which can be established in relation
to comparable abilities in humans and other animals.

This wider view of AI, in the context of all kinds of intelligence, dates back
to Sloman’s “space of possible minds” (Sloman, 1984). Figure 1 compares (a)
a figurative plot (Shanahan, 2016), covering a wide range of systems (also see
(Yampolskiy, 2014, Fig. 3b), (Arsiwalla et al., 2017, Fig. 3c), and (Solé, 2017,
Fig. 3d)), with (b) a plot depicting precise experimental results for several ape
species on a battery of tests (Herrmann et al., 2007). The figure illustrates a
visible trade-off between completeness and empirical grounding. What we need is
to leverage the best of both worlds: a data-based representation of very different
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(a) Human-likeness vs Conscious-
ness.
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(b) Social vs physical dimensions
for three ape species.

Fig. 1: Different kinds of minds represented according to several dimensions. Left: Fig-
urative human-likeness vs consciousness (from Shanahan 2016). Right: Two dimensions
of cognitive skills (social vs physical domain) according to the results of a test battery
on three different groups of apes (adapted from Herrmann et al. 2007).

cognitive systems, including humans, non-human animals, AI systems, hybrids
and collectives, where actual measurements can be aggregated and combined.

This requires a novel platform, an ‘atlas of intelligence’, that integrates an
extensive inventory of cognitive systems, a behavioural test catalogue (with test
batteries that could be aggregated into dimensions) and an experimentation
repository (results from measurements). The platform would be populated col-
lectively, facilitating cross-comparison and reproducibility (Aarts et al., 2015;
Vanschoren et al., 2015). The atlas would represent a new cartographical en-
deavour for a better understanding of the geography of the space of intelligence.

This paper explores the motivations, the requirements and the possibilities
of such an atlas. Section 2 explores in more depth why the atlas is needed in
terms of four lists of items specifying the motivations, applications, dimension
manipulations and entities to be covered in the atlas. Section 3 focuses on the
idea of an atlas as a set of maps, and configures a partial specification in terms of
the maps we would like it to have. This section includes a collection of maps and
graphical representations, some of them already proposed in the literature (but
most without real data) and some desired representations. We close the paper
with a discussion about future work. Finally, appendix A gives a short overview
of similar initiatives in other areas, and how these relate to the atlas.

2 Motivations, applications, dimensions and kinds

This section presents a series of lists of items covering the motivations and ap-
plications of the atlas (why, and for what, an atlas is needed), and the potential
dimensions and kinds of systems to be included (what the contents should be).
The lists are not meant to be exhaustive and free from overlaps (some ideas are
represented by several items with different perspectives), but rather to serve as
initial items for discussion and refinement.
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Motivations

The motivations are meant to highlight the needs for an atlas of intelligence.
We identify them following scientific, technological and societal needs that are
recognised at present or in the near future. Most of them focus on better un-
derstanding, representing and cataloguing what we know about different kinds
of intelligence. Still, we do not exclude the needs for anticipation, so we also
cover those motivations that are related to having better predictions about the
existing and future changes of human and artificial intelligence.

– Milestones and Pathways: Unlike most non-human biological cognition,
human cognition is changing: the average IQ in many countries is increasing
(the Flynn effect), our memory (Sparrow et al., 2011) is changing due to the
Google effect (digital amnesia), navigation abilities (McKinlay, 2016; Milner,
2016) atrophied because satnavs, cognitive rewards mechanisms are changing
because of gamification, etc. This is a process that is accelerated by technol-
ogy, and will be magnified by the use of cognitive assistants and cognitive
prosthetics, especially for the elderly. AI itself and human-machine hybrids
(either as individual cyborgs or as mixed collectives) are progressing in direc-
tions that we are not able to compare with the past or extrapolate, in order
to understand where all this is leading, and the associated opportunities and
risks (research priorities and safety concerns).

– Laypeople Understanding: In those cases where comparisons can be made
by looking at a set of traits, it is usually too complex for non-experts to under-
stand what the key differences are between two cognitive systems, especially
when one is natural and the other is artificial. Visual representations are ap-
propriate, as humans are good at understanding geographical analogies (e.g.,
the 1948 book “the map that came to life” helped children understand the
countryside where a trajectory and a story were accompanied by maps).

– Crossover Measuring: Data-driven comparison is usually based on mea-
surement instruments, reporting a series of measured values that can be rep-
resented. But we do not have many test batteries that can be applied across
species or even AI systems. The generalisation of representations where differ-
ent natural species and AI technologies are put together would encourage the
adoption and definition of more universal tests having better measurement
invariance across different entities.

– Behavioral Taxonomies: If we go beyond life in our comparisons, espe-
cially if they are based on similarity, the dominant genotypic approach cannot
be used broadly. Taxonomies and models must be mostly informed by be-
havioural analyses, in contrast to phenotypic, ethological, genotypic or neuro-
logical approaches (Cattell & Coulter, 1966; Miller, 1967). But we contemplate
cladistic principles (using hierarchies or dendrograms) and we consider mor-
phological or functional similarities as far as they affect behaviour.

– Testing New Intelligence: The progress in AI suggests that task-oriented
evaluation (i.e., the performance of an AI system for a particular task) may be
insufficient. Other ways of characterising and measuring AI are needed. While
some capabilities and tests can be inherited or extended from psychometrics
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or animal cognition, there may be some other capabilities or skills that are
completely new, especially when we analyse the cognitive profile of human-
machine hybrids or collectives.

– Critical Perspective: There is an urgent need for better understanding the
way the intelligence landscape is changing, for both humans and AI systems,
in areas such as automation, education and ethics. It is hard to regulate or in-
centivise some actions not knowing how they affect the intelligence landscape.

– Beyond Anthropocentrism: While it is generally accepted that intelligence
is the product of evolution, it is still hard to recognise intelligence in other
species or in AI systems, and compare it without using humans as a yardstick.

– Grand Goals: While interdisciplinarity in the study of intelligence has in-
creased, there are still many attributes and behaviours that are not properly
mapped between disciplines, and there is no wide recognition of a shared space.
The geographical analogy of an intelligence landscape as an opportunity for
exploration and discovery can help inspire the next generation of researchers
in areas such as comparative cognition, psychology, philosophy and artificial
intelligence, and, most especially, in multidisciplinary domains.

– Replicability and Reuse: New research procedures and visualisations for
the analysis of cognitive systems are difficult to apply to other systems or
in other contexts. This limitation is more blatant when we see similar ideas,
representations or experimental protocols appear in different disciplines.

– Data-driven and Hypothesis-driven: When cognition is analysed in one
species or a particular AI technology, there is a lack of a sufficiently wide
sample to infer and reject hypotheses. The recent trend of a more collaborative
data science approach should encourage initiatives where data from different
disciplines can be put together to test hypotheses about cognition.

Some of the motivations above have deep roots in cognitive science, comparative
psychology, philosophy and AI (Macphail, 1987; Thagard, 2009; Gentner, 2010),
but others are more specific to some particular areas or emphasise the need of
better representations and comparisons.

Applications

Moving from what is needed to the things an atlas will make possible leads
us to the identification of new possibilities and transformations. The criteria
for inclusion are such that the list covers potential applications for scientists,
philosophers, educators, policy-makers and the general public, directly using the
platform or as an indirect result of its use:

– (Re-)Education: Traditionally, children and adults used animals as models
of different personalities and capabilities, interacting with them regularly. To-
day, in urban societies with less contact with animals, it is becoming easier
to portray and transmit some concepts using robots as models, as cinema
and advertising (especially when targeting children) have already understood.
An atlas covering animals and robots could be used in museums, schools and
universities as a way of articulating over this intelligence landscape.
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– Effective Navigation: An atlas, with different representations, would help
us locate where we are (humans and AI), the trajectories taken in the past
years and the destinations we are heading to, helping to visualise whether
some targets or trajectories can take us to dangerous areas.

– Ethical Assessments: Visual representations make some ethical dilemmas
about moral agency and patiency more explicit, as we can see whether the way
we look at animals and artificial agents is different from the way measured
traits put them on some representations. This will make some ethical issues
more conspicuous (animal, robot or human suffering, uncanny valleys, etc.).

– Consequences: Not only the locations but also the distributions and densities
would help us analyse (especially in advance) the population of creatures
affected by research, law, environment, technology, etc., in a critical way. In
other words, the maps could also be used to represent the areas and entities
(and how many) would be affected by a phenomenon.

– De/Re-Centre Humans: Humans, as a species, groups and individuals
could be located at different locations depending on the representation, mak-
ing more explicit that there is a Copernican revolution in the way intelligence
is seen today, sustained in the progress of comparative cognition, evolutionary
psychology and, increasingly, artificial intelligence.

– Metaphors and Narratives: An atlas would build upon the perception
we have about animal behaviour. This would help us better understand and
locate where we are in AI, in a more meaningful way than just saying AI is at
the level of the rat. Instead we would like to align the cognitive profile of a rat
with the cognitive profile of a particular AI system, and see the differences in
a less monolithic way.

– Archival Exploration: An atlas of intelligence would also help to see a
history of intelligence, where we would go from extinct animals and past com-
puter/AI systems to the present day, seeing the directions their evolution has
taken according to different dimensions.

– Morgan’s Canon: C. Lloyd Morgan stated: “In no case is an animal activity
to be interpreted in terms of higher psychological processes if it can be fairly
interpreted in terms of processes which stand lower in the scale of psychological
evolution and development” (Morgan 1903). An atlas would help interpret,
extend or overhaul this canon for artificial systems, hybrids or collectives.

– Unification: An atlas would require and hence would encourage the definition
of more general tests and metrics, embracing natural and artificial systems,
and would aim at more unified theories of cognition, going beyond human
psychology and evolution to consider every possible cognitive system, espe-
cially looking at those places in the maps where there are gaps, whether it is
possible to have entities there and how they would be interpreted.

Some of the applications clearly derive from the motivations (e.g., beyond an-
thropocentrism and de/re-centre humans) but others represent possibilities that
perhaps were not even recognised as a necessity, such as the use of the atlas
for archival exploration, which may lead to unforeseen purposes. Concerning the
needs and possibilities introduced above, represented by the motivations and
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applications, we add the dimensions and the kinds of systems we want to cover,
which specify the atlas in general terms.

Dimensions

We are aware of the lack of consensus about the most relevant attributes for
the analysis of cognition – not to mention general theories. Because of this dis-
agreement, we want the atlas to be able to integrate different perspectives and
attributes of the interest. Consequently, rather than enumerating the specific
dimensions of representation that could be used, which could ultimately be cre-
ated and refined by the users, we clarify how these dimensions operate in general
terms.

– Observation-Based: the dimensions of representation should be agnostic to
particular hypotheses, so that the users could do their theories from the values
observed. Of course, there are always some underlying assumptions (and the
influence of underlying theories) whenever an observation or measurement is
made, but this should be as explicit as possible.

– Multiple Interface: the atlas should allow users to project or aggregate the
data and derive some maps and other representations from these transforma-
tions, as usual in other visualisation frameworks.

– Interactive Querying: the atlas could be interrogated through queries, in-
cluding filters and joins across different data sources, in an interactive way, as
in tools of analytical processing.

– Creative and Constructive: the atlas should allow users to combine ele-
ments, creating new features (and hence new spaces) and creating new entities,
such as populations or individuals, combining their cognitive entities under
some specified models.

– Populational / Theoretical: the elements to represent could correspond to
actual populations or subgroups but also to theoretical elements and groups.

– Bottom-Up / Top-Down: the dimensions could correspond to basic psy-
chological mechanisms or to more abstract, integrated skills. The atlas should
allow users to aggregate and disaggregate these dimensions.

– Transversal Connections: the atlas would allow users to combine behavioural
traits (skills, functions, capabilities) with non-behavioural traits (physical
traits, computational effort, evolutionary traits, etc.).

– Topographical/Geographical Visualisation: the atlas should combine as
many elements of visualisation and representation (colours, contours, textures)
as may be found useful to show the information in insightful ways.

Despite the intended flexibility, some of these dimensional operations give a more
precise account at the specification level for the atlas on how data, hypotheses
and visualisations must be connected. For instance, the multiple interface, the
interactive querying and the topographical and geographical representations very
much resemble some common retrieval and representational systems powered by
data visualisation tools. On the other hand, the other dimensional characteristics
are more aligned with the management of conceptual ontologies and taxonomies.
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Kinds of systems

Finally, regarding the kinds of cognitive systems to be represented, we want to
cover all possible ranges, according to several criteria: integration, nature, time,
distribution and existence. This comprehensive view of cognitive systems would
ultimately allow us to put very different types of entities into comparison.

– General and Narrow: specific systems aiming at a single task or species
in a narrow environment could be covered, as well as those systems that are
flexible in a broad range of environments.

– Individual and Collective: individual entities could be located as well as
collectives (along with their components).

– Biological and Artificial: living beings, including plants and animals, and
artificial systems, including autonomous agents, robots, corporations, etc.

– Hybrid (Extended/Enhanced Minds): humans improved by technology,
either internally (enhanced, as cyborgs or through nootropics) or externally
(extended by assistants), as well as AI systems using human computation.

– Novel and Old: covering current living beings and AI systems, but also
extinct species and AI systems of the past.

– Distributed and Centralised: systems that are identified by a single body,
but also natural and artificial swarms as well as distributed intelligence, in-
cluding societies.

– Alien and Fictional: even for speculation or theorisation, the atlas could
also show some imaginary entities.

Apart from the scientific questions needed to build such a platform, its success
depends on the engagement of the (research) community and other stakeholders.
It is crucial then to identify whether the needs, dimensions and elements repre-
sented are well aligned with the potential users and contributors. Consequently,
we conducted a preliminary survey to get feedback from researchers and other
potential users in many different areas, using the items described in this sec-
tion. We targeted different communities: artificial intelligence, animal cognition,
psychology, philosophy, design and some others. The results of the questionnaire
were positive in general. This was not taken as a justification or validation of
the categories presented here but, more on the contrary, as a way of recognising
omissions, duplications or desiderata nobody is asking for. We focused especially
on the open comments from some respondents who were more critical14.

We considered the previous motivations, intended applications, dimensions to
consider, and entities to cover to be a sufficient reason for starting the construc-
tion of an atlas, with the necessary caution about potential pitfalls and the need
of selecting pieces of the atlas that could be chosen as more low-hanging fruits
of the whole project. The previous lists are preliminary, and the priorities for
selecting which categories are most important to start with — e.g., prototypes
or first cornerstones of the project – are still subject to debate.

Next, we refine this first conception of the atlas by considering existing rep-
resentations and maps.

14A detailed analysis of the questionnaire can be found in (Bhatnagar et al., 2017).
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3 Collections of maps: representational possibilities

As an atlas is a set of maps, in this section we collect and recreate some of the
maps that have been proposed in the past, most of them at a figurative level,
and discuss representations that we would like to include in the future. Figure 1
contained examples of a classical multidimensional representation (although two
dimensions are especially fitted for paper and screens). The axes represent di-
mensions of interest and the points represent the entities (the cognitive systems)
we want to compare. We will see many others of these, being different because
of the dimensions that are chosen or the elements that are represented. In other
cases, the representations detach from this multidimensional view but still re-
main meaningful in geographical or topological terms.

Skinnerian

Darwinian

Gregorian

Popperian

Scientific

Humean

Darwinian

Camapian
Skinnerian

Popperian

Perlian

Tolmanian

Mimetic

Fig. 2: Left : Scala naturae, as depicted in the 16th century (de Valadés, 1579). Mid-
dle: a representation of Dennett’s Tower of Generate and Test, which depicts creatures
according to when and how they adapt (Dennett, 1995), Right : Godfrey-Smiths re-
finement of the bottom part of Dennett’s tower (the part corresponding to cognitive
evolution) in the form of a tree (Godfrey-Smith, 2015, Fig. 2).

We start with the oldest and simplest representations, those inspired in the
scala naturae, which are monolithic, or at most, arboreal (see Figure 2), where
membership to a species is replaced by other criteria for classification. At some
point the categorical representations (monolithic or hierarchical) led to more
quantitative and multidimensional representations, as we see in Figure 3.

Moravec was not the first one to compare animals and computers according
to several dimensions, but some of his plots had an important effect on the
narratives about how far AI had come in the 1990s. For instance, Figure 3a
compares computational power (speed and storage capacity) for a wide range of
entities.

Some other representations have tried to compare animals and artificial sys-
tems for other dimensions. For instance, computational efficiency can be replaced
by an estimation of energy consumption (Winfield, 2014), which is a physical
property that can be used as a dimension alongside some other more behavioural
traits. One common representation is based on Venn diagrams, where the sizes
and locations are completely arbitrary, and the only purpose is to show a diver-
sity and inclusions/overlaps between sets, such as Figure 3b from Yampolskiy
(2014). Some other plots are more speculative, especially when the goal is to rep-
resent consciousness, such as the one from Arsiwalla et al. (2017) in Figure 3c.
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(a) Comparison of hardware be-
tween several living and inanimate
objects (Moravec, 1998, Fig. 1)

(b) Figurative space of minds (Yam-
polskiy, 2014, Fig. 1)

(c) “Morphospace of consciousness”
from (Arsiwalla et al., 2017, Fig. 3)

(d) “Biological computational mor-
phospace” (Solé & Macia, 2011, Fig.
7)

(e) Cognitive space of human-robot
interactions (Solé, 2017, Fig. 2)

(f) Illustration of Hans Moravec’s
“landscape of human competence”
(Tegmark, 2017, Fig. 2.2)

Fig. 3: A collection of figurative maps of intelligence.

Other comparisons are at a much more physical (or implementational) level,
such as the one from Solé (2017), representing the “morphospace” in terms of
“embedding”, “diversity” and “parallelism”, shown in Figure 3d, or represent
some aspects of human-robot interaction, again figurative (Figure 3e). An in-
teresting twist is given when the space represents the tasks or abilities (without
any clear criterion for proximity), but the Z-dimension (height) is represented
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by time (or progress in AI). According to this, we have a figurative plot like
Tegmark’s representation (Fig. 3f) of Moravec’s landscape (Tegmark, 2017).

A more thoughtful analysis of dimensions may lead to more than three ele-
ments, whose representation (if all of them are quantitative) is more cumbersome.
Star (cobweb) plots are a practical option here, although they can get too messy
if too many individuals are shown. Also, trajectories are more difficult to repre-
sent in these plots. Figure 4 shows how four dimensions are used to compare the
intelligence of several organisms.

Fig. 4: Comparison of different systems on a space of four dimensions, using star plots
(Winfield, 2017, Figs. 2 and 3).

Fig. 5: Collective diversity in terms of psychometric profiles for two figurative groups
of five agents, shown with circles. For each plot, the x dimension represents IQ score
and the y dimension represents social sensitivity. The mean point is shown with the
cross and the maximum and minimum envelopes are represented with a triangle and a
square respectively (Hernández-Orallo, 2017, Fig. 15.3).

Following the comments of some of the respondents of the questionnaire, we
are also interested in representations of ‘collective intelligence’, even if figurative.
For instance, Fig. 5 represents a profile of members of a team and tries to derive
aggregate values (minima, maxima and means) for the group.

So far, all the previous representations were figurative, in the sense that there
was no measured data or observations from which the maps were represented,
but just some general knowledge and intuitions of these magnitudes. In what
follows, we include some representations that are using real data. For instance,
the easiest way of comparing two systems or species is by comparing their results
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(a) Comparison between average
humans and AI on CIFAR (Ecker-
sley et al., 2017)

(b) Comparison between crows and
monkeys for working memory (Bal-
akhonov & Rose, 2017)

(c) Learning curves by frames seen
on the ALE benchmark (Hessel et
al., 2017, Fig. 1)
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(d) Progress (average performance)
by year on ALE benchmark (Ecker-
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(e) Comparing inductive reason-
ing and numeric ability over time
(Schaie, 1996)
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(f) Comparing inductive reasoning
and numeric ability directly (Schaie,
1996)

Fig. 6: A collection of existing empirically-grounded maps.

for the same task, as in Figure 6a and 6b. But we can also compare abstract
or aggregated traits or skills, as we showed in Figure 1. A representation that
is becoming very common in AI is to show the results normalised by human
performance (Figures 6c and 6d), even in cases where many tasks are aggregated.
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While these representations are common and useful, they do not fit the ge-
ographical representation of the atlas well. In other words, these plots are not
meant to compare AI systems and humans. They are just meant to compare AI
systems, where human data is just used to make the results for several games
somewhat commensurate when aggregated. This means that the space is anthro-
pocentric, where humans would always be at 100% – a Ptolemaic model. Indeed,
for both plots one of the dimensions does not apply to humans. For instance, in
Figure 6c, human accuracy is achieved with a number of frames that is at most
in the small millions, and also in Figure 6d we cannot properly compare the year
humans were introduced with the year a ML technique was introduced.

 

Fig. 7: Different cognitive systems according to the perception by people (from a sur-
vey, where the dimensions have been reduced to two dimensions by PCA). (Gray et
al., 2007; Wegner & Gray, 2017)

Trajectories can also be compared over time, as shown in Figure 6e. Here,
time is applied to the same entity, so we see how the entity (a population in this
case) changes with time. But a trajectory is better seen when the dimensions of
the plot are not time – time is not usually represented in a static map. Instead,
one can see how an individual or group moves in a space of dimensions chrono-
logically (learning episodes, cognitive decline or enhancement, etc.), illustrated
in Figure 6f.

Actual data can also be obtained and processed from subjective perception.
For instance, Gray et al. (2007) extract two principal components: agency and
experience (what we could also refer to as ‘patiency’) in order to quantify how
much mind people ascribe to different kinds of cognitive systems, from robots
to dead people, as illustrated in Figure 7.

After all these graphical representations, the question is how these can help
us configure a set of relevant maps we would like the atlas to have. First, we
can look at the elements: many are multidimensional and it is just the dimen-
sions and the elements portrayed which make them really distinctive. This is an
advantage, as many of these plots could be generated with a standard tool and
interface if we had the data and we could choose the dimensions and elements.
An interactive interface could be used as in other exploration tools (e.g., ana-
lytical processing or visualisation tools). Second, it is appropriate to look at the
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purpose of each of these representations and see whether they correspond to the
needs and applications we identified in previous sections. For instance, Figures
1, 2, 3b, 3c, 3d, 3e, 4, 6b, 6c, 6e, and 6f are mostly explanatory or differential in
purpose, while Figures 3a, 3d, 3f, 5, 6a and 6d seem to have a more forecasting
intention. Some have a broader coverage of kinds of intelligence (Figures 3a, 3b,
3c, 4 and especially 7) and others are more specific.

4 Conclusions

This paper has presented the first steps of an atlas of intelligence, which at this
stage must focus on the elicitation of needs (in terms of motivations and re-
quirements) and possibilities (applications, representations and kinds of entities
covered). After this analysis, we now have a much better account of how wide
the initiative is. The next steps should focus on recognising the applications that
might have more impact and are more feasible in the short term. This assessment
would allow us to establish the specification of the atlas in a progressive way, so
that an essential part of it can be designed and enriched over time. For such an
ambitious approach, it is important to think big, as we have done here, while
starting small, and grow incrementally.

Apart from the instrumental purpose of this paper as a first step in the devel-
opment of an atlas of intelligence, this work (independently of how far the atlas
develops in the future) brings attention to methodological issues (and related
philosophical and theoretical) issues in all disciplines related to intelligence and
cognition. Scientists in these disciplines usually see themselves as explorers, but
exploration involves much more than discovering and inventing. Scientists also
need (to be) cartographers, curators and taxonomists in order to structure, facil-
itate and disseminate what is known, and assess their unknowns, prioritise their
goals and see their progress in perspective. In the same way Linnaeus changed
the way living beings were described, catalogued and named, motivating new
lines of research, this initiative will help to establish the parameters and the
instruments to properly handle and understand the space of existing and future
cognitive systems, and exploit its research possibilities.
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Shah, H., Warwick, K., Vallverdú, J., & Wu, D. (2016). Can machines talk?
comparison of eliza with modern dialogue systems. Computers in Human
Behavior , 58 , 278–295.

Shanahan, M. (2016). Conscious exotica. from algorithms to aliens, could hu-
mans ever understand minds that are radically unlike our own? Aeon. Re-
trieved from https://aeon.co/essays/beyond-humans-what-other-kinds

-of-minds-might-be-out-there

Shead, S. (2017). Facebook’s AI boss: In terms of general intelli-
gence, we’re not even close to a rat. Business Insider . Retrieved
from http://uk.businessinsider.com/facebooks-ai-boss-in-terms-of

-general-intelligence-were-not-even-close-to-a-rat-2017-10

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., . . .
others (2017). Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv preprint arXiv:1712.01815 .

Sloman, A. (1984). The structure and space of possible minds. School of Cogni-
tive Sciences, University of Sussex.
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A Appendix: Why is an atlas needed? Similar initiatives

While identifying the need for an atlas, we look at how it fits in cognitive science as a
whole and also whether there are initiatives in other fields that could be inspirational.

Regarding cognitive science, it is true that its goal is to cover all possible cogni-
tive systems, understand their behaviour and mechanisms, and establish meaningful
comparisons. However, the field has not yet been able to portray a systematic rep-
resentation covering both natural and artificial systems. But if we do not find this
systematic representation in cognitive science, do we find it in related subdisciplines?
The answer is that some similar initiatives in other disciplines do exist15:

– Life forms: Examples are Wikispecies (Leslie, 2005), the All Species Foundation
(Gewin, 2002), the Catalogue of Life and the Encyclopedia of Life (Roskov et al.,
2018; Hayles, 1996; Parr et al., 2014; Stuart et al., 2010).

– Neuroscience: the Cognitive Atlas16 and related repositories for neuroscience17 in-
clude an ontology of human cognitive functions and related tasks, and the pathologies
affected. The Allen brain observatory18 (Allen Institute for Brain Science, 2016) is a
more visually-oriented platform that maps perception and cognition to parts of the
human brain (National Research Council, 2011).

– Psychometrics: There are several initiatives bringing together test batteries and
repositories: the mental Measurement yearbook19, and with a more open character,
the International Personality Item Pool20 and the International Cognitive Ability
Resource21.

– Machine learning and data science research: Kaggle22, OpenML23 (Vanschoren
et al., 2013) and many other platforms (e.g., gitxiv.com) provide benchmarks for
ML. OpenML also includes experimental results that can be compared, aggregated
and represented with powerful analytical packages.

15Some of these initiatives are in genomics and brain imaging (Midford, 2004; Boero
& Bernardi, 2014).

16http://www.cognitiveatlas.org
17https://poldracklab.stanford.edu/
18http://observatory.brain-map.org/visualcoding/
19http://buros.org/mental-measurements-yearbook
20http://ipip.ori.org
21http://icar-project.com
22http://www.kaggle.com
23http://www.openml.org
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– Artificial intelligence: there are many collections of benchmarks and associated
results, such as ALE24 , OpenAI universe/gym25, Microsoft Malmo26, Facebook’s
CommAI-env27, DeepMind Lab 28 (see Hernández-Orallo et al., 2017 for a summary)
and meta-views, such as a recent EFF analysis29 and the AI index report30. This
is a sign that AI is looking in this direction (Castelvecchi, 2016; Hernández-Orallo,
2017). The tasks are rarely arranged into abilities and the data usually compares
specialised AI systems against average humans.

A partially overlapping initiative is the AI Roadmap Institute31, which encourages,
compares and studies various AI and general AI roadmaps. It focuses on the future
and on AI primarily, with representations that are usually flowcharts and pathway
comparisons. Besides identifying where the field of AI stands as a whole, it also aims
to identify dead-ends and open research problems on the path to the development of
general AI systems.

The data and conceptual framing of the above projects can be used to inform
an atlas of intelligence. Still, no repositories or taxonomies exist focusing mostly on
behaviour, encompassing natural and artificial systems, as we are undertaking. Of
course, the fact that something does not exist yet is not a sufficient reason that it
should. The need for an atlas has to be supported by a series of motivations and
applications, which we do in section 2.

24http://www.arcadelearningenvironment.org/
25https://gym.openai.com/
26https://www.microsoft.com/en-us/research/project/project-malmo/
27https://research.fb.com/projects/commai/
28https://deepmind.com/blog/open-sourcing-deepmind-lab/
29http://www.eff.org/ai/metrics
30http://aiindex.org
31http://www.roadmapinstitute.org


