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Abstract

Common genetic variants modulate the cellular response to viruses and are implicated in

a range of immune pathologies, including infectious and autoimmune diseases. The

transcriptional antiviral response is known to vary between infected cells from a single

individual, yet how genetic variants across individuals modulate the antiviral response

(and its cell-to-cell variability) is not well understood. Here, we triggered the antiviral

response in human fibroblasts from 68 healthy donors, and profiled tens of thousands of

cells using single-cell RNA-seq. We developed GASPACHO (GAuSsian Processes for

Association mapping leveraging Cell HeterOgeneity), the first statistical approach

designed to identify dynamic eQTLs across a transcriptional trajectory of cell

populations, without aggregating single-cell data into pseudo-bulk. This allows us to

uncover the underlying architecture and variability of antiviral response across

responding cells, and to identify more than two thousands eQTLs modulating the

dynamic changes during this response. Many of these eQTLs colocalise with risk loci

identified in GWAS of infectious and autoimmune diseases. As a case study, we focus on a

COVID-19 susceptibility locus, colocalised with the antiviral OAS1 splicing QTL. We

validated it in blood cells from a patient cohort and in the infected nasal cells of a patient

with the risk allele, demonstrating the utility of GASPACHO to fine-map and functionally

characterise a genetic locus. In summary, our novel analytical approach provides a new

framework for delineation of the genetic variants that shape a wide spectrum of

transcriptional responses at single-cell resolution.
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Introduction

The innate immune response is a cell-autonomous program that induces an antiviral

state in infected and nearby cells, and alerts the immune system of the invading

pathogen1. Dysregulation of this response can affect a wide range of inflammatory and

autoimmune diseases and determine the outcome of infection2–6. Common genetic

variants have been shown to modulate transcriptional responses to various viral and

bacterial stimuli, and to contribute to disease onset and progression7–11. Most past gene

expression-focused studies of this program are based on bulk RNA-sequencing

technologies, which do not fully elucidate the continuous dynamics of transcriptional

changes during the innate immune response. Single-cell genomic technologies are

powerful approaches to study cell heterogeneity and transcriptional variability across

cells12. Furthermore, by utilising single-cell RNA-seq (scRNA-seq) profiling of tissues

composed of several cell lineages, previous studies have successfully performed genetic

association mapping of cell-type specific expression13–16.

We here use full-length scRNA-seq of dermal fibroblasts from different human

individuals, challenged with immune stimuli. Based on the pseudo-temporal

reconstruction of this data, we map the transcriptional variation of the innate immune

response at single-cell resolution. This provides the foundation for superimposing

human genetic variation onto the transcriptional dynamics of this response. To this end,

we develop a novel statistical approach based on a Gaussian process latent variable

model17,18 called GASPACHO (GAuSsian Processes for Association mapping leveraging Cell

HeterOgeneity). This allows us to identify expression quantitative trait loci (eQTL) that

manifest at different stages of the response to stimuli.

We find several thousand eQTLs, hundreds of which colocalise with known risk loci of

diverse autoimmune and infectious diseases. We perform fine-mapping of the OAS locus,

associated with COVID-19, to reveal the imbalanced expression of OAS1 and OAS3 genes

during the antiviral innate immune response. We further integrate this data with eQTLs

from a COVID-19 patient cohort dataset of Peripheral Blood Mononuclear Cell scRNA-seq,

as well as with scRNA-seq data of infected nasal epithelial cells from a COVID-19 patient.

Overall, our study illustrates how coupling single-cell transcriptomics with a cutting-edge

statistical approach can identify dynamic effects of human trait-associated genetic

variants in different contexts of activation of antiviral innate immunity and, in general,

in diverse cellular dynamic processes.
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Results

Dermal immune stimulation to study antiviral response across cells and individuals

To study the innate immune expression program that is triggered upon viral infection,

we exposed primary dermal fibroblasts from 68 donors from the HipSci19 to two

stimulants: (1) poly(I:C) - a synthetic dsRNA that is rapidly recognized by viral sensors

and elicits primary antiviral and inflammatory responses, and (2) Interferon-beta (IFNB),

a cytokine that upregulates a secondary wave of response in both infected and bystander

cells, and shifts the cells into an antiviral mode, where hundreds of Interferon

Stimulated Genes (ISGs) are upregulated in order to contain the infection.

We collected cells exposed to each of the two stimuli after 2 and 6 hours of stimulation

(Fig 1a). Following this, single-cell RNA sequencing (scRNA-seq) profiling was performed

using a plate-based full-length transcript approach (Online Methods). After QC, 22,188

high-quality cells were obtained across 128 plates, with each plate containing cells from

three donors. The donor identity for each cell was inferred from scRNA-seq read data

using known genotypes made available by the HipSci consortium (Extended Data Fig.
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1a; Online Methods). Preliminary analysis showed that our data displays high cell-to-cell

variability in gene expression both within and across donors, as observed in previous

studies by us and others20–22. In fact, our data was confounded by various technical and

biological factors, including library preparation in different batches, and cell cycle effects

(Extended Data Fig. 1b). The complex nature of this data, along with its confounders,

motivated us to develop a new approach that reveals the genetic and

physiologically-relevant variation, while computationally masking confounding factors.

GASPACHO: A novel approach for uncovering cell-state dynamics using a Gaussian Processes

Single-cell transcriptomics (as compared to bulk) enables us to uncover hidden states of

complex biological processes, while also requiring regression of technical effects and

biological variation that is not of interest (e.g. proliferation). We developed GASPACHO

(GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), which

utilises a Gaussian Process latent variable model (GPLVM) to uncover the dynamic cell

states of interest, while adjusting periodic cell cycle variation and both known and

unknown technical variations simultaneously (Fig. 1b; Methods). The use of GPLVM

allows us to capture smooth and continuous non-linear trends in gene expression along

the latent variables, for which other methods such as the standard linear PCA will not

work well.

Although there are other models that utilise GPLVM to study single-cell dynamics23,24, the

novel aspect of our GPLVM approach is that it explicitly takes into account the donor

variation as well as other known confounding effects (such as technical batches) as

additional random effect terms (Fig. 1b; Methods). These confounders are known to

inflate type-I error in downstream analyses, such as in differential expression25, leading

to false discovery of differentially expressed genes. As detailed below, the model output

not only enabled us to look at the architecture of the antiviral response in the cell-state

space, but also provided a rigorous statistical framework of (1) spatial differential

expression (DE) analysis and (2) genetic association mapping using genotype data

obtained from the donor of origin for each cell.

Specifically, the gene expression variation in the target cell-state space was inferred by a

Gaussian Process (GP) mixture model in which an additional GP component is

introduced into the model to capture hidden spatial DE patterns 26 of gene expression in

the latent space (Fig. 1b; Methods).

The genetic association mapping was also carried out by using a GP regression model in

which the effect size of a quantitative trait locus (QTL) was modeled as a GP in the target
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cell-state space. Here, the additional GP was multiplied by the genotype dosage (the

number of alternative alleles for each donor) to capture the gene-environment

interaction27 (Fig. 1b; Methods). Importantly, the eQTL effect is obtained at single-cell

resolution, and the model does not require aggregation of single-cell data into

pseudo-bulk data, which is a common eQTL mapping strategy. Thus, we can study the

effect of genetic variants without losing the continuum of transcriptional dynamics and

its spectrum across individual cells. We have implemented the software in R, which is

available from github (https://github.com/natsuhiko/GASPACHO).

Primary and secondary responses of innate immunity

We first applied the GPLVM to adjust for the cell cycle and unknown batch effects in our

data (Extended Data Fig. 1c-d) and successfully extracted the innate immune state

embedded in the data (Fig. 2a). We also confirmed that the extracted immune state was

orthogonal to cell cycle or the unknown batch variations (Extended Data Fig. 1e). We

observed two major cell trajectories: one for response to IFN-b from the naive state

(x-axis) and the other for response to Poly (I:C) (y-axis).
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We then applied the GP mixture model which revealed two independent innate immune

responses, the primary response by virus infection and the secondary response for

bystander cells due to IFN-b secretion by the infected cells or direct IFN-b stimulation

(Fig. 2b; Extended Data Fig. 2a). Those responses were highly overlapping on the UMAP

suggesting those two processes are independently and simultaneously happening in each

cell. Interestingly, the primary response was also correlated with the predicted cell

viability by CEVIChE (Fig. 2c; Online Methods). In total, the GP mixture model discovered

903 and 636 genes upregulated during the primary and secondary responses respectively

(hereafter referred to as primary response genes and secondary response genes), while

1,020 genes were expressed uniformly across all cells in different experimental

conditions (referred to as stationary genes) (Fig. 2d; Extended Data Fig. 2b). Many

cytokine and chemokine genes were upregulated along the primary response, while

interferon stimulated genes (IGSs) were upregulated along the secondary response (Fig.

2e). The GO enrichment analysis for the primary and secondary genes clearly

demonstrated primary response genes are enriched for cell death and inflammatory

response, while secondary response genes are enriched for type I interferon response

(Fig. 2f; Extended Data Fig. 2c).

Dynamic genetic e�ect on transcriptional response to innate immune stimuli

We then mapped expression quantitative trait loci (eQTLs) along innate immune

response using the GP regression model to assess genetic association in single cell

resolution (Online Methods). We discovered 2,662 eQTL genes (local FDR 10%) among

10,748 genes expressed in, at least, 10% of total cells.

In order to demonstrate that we chose a sensible approach, we first compared our GP

approach with pseudo bulk approaches and the standard marginal effect approach to

confirm that our approach provides both the highest sensitivity and specificity for

mapped eQTLs (Extended Data Fig. 3a-b; Online Methods).

Among our eQTLs, we found 16% and 13% are primary and secondary response genes

(Fig. 3a, Extended Data Fig. 3c). Those genes are strongly enriched with the discovered

eQTLs (Fig. 3a, Extended Data Fig. 3d). We also found the primary response eQTLs are

depleted in GTEx fibroblast eQTLs while the stationary eQTLs are enriched (Fig. 3a,

Extended Data Fig. 3e-f; Online Methods), suggesting our eQTLs are highly context

specific.

As an example, the CXCL1 gene is a primary response eQTL mostly expressed in later

time points of Poly (I:C) stimulated cells (Fig. 3b) and the expression level is higher for
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the alternative allele T at rs1358594 compared with the reference allele G (Fig. 3c). This

eQTL signal was discovered more than 100Kb downstream of the gene TSS (transcription

start site) and only present upon cell stimulation by Poly (I:C), but not in the naive

condition as clearly shown in GTEx fibroblast eQTL data (Fig. 3d). Note however that this

eQTL was discovered in eQTLGen data with tens of thousands of blood samples

(Extended Data Fig. 3g). This might suggest that the eQTL signal is present in-vivo,

although the effect size could be too small to discover with only hundreds of GTEx

samples.

We have also performed fine-mapping using epigenetic data (histone modification
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ChIP-seq of active promoters and enhancers) originating in dsRNA-stimulation of human

dermal fibroblasts22 (Methods). We identified more than 10% of putative causal eQTL

variants which are found in each ChIP-seq peak and enriched for promoter peaks of Poly

(I:C) stimulated cells characterised by H3K4me3 antibody (Fig. 3e). Note that our eQTLs

were also strongly enriched around TSS, thereby the number of eQTLs was reduced by

34% every 100Kb further away from TSS (Fig. 3e).

We next tested whether promoter architecture affects the variability between

individuals. It was previously shown by us and others22,28 that genes containing

TATA-boxes in their promoters tend to vary more in transcription between species,

conditions and between individual cells responding to immune stimulus, whereas

promoters containing CpG-Islands (CGIs) tend to vary less and be transcriptionally more

homogenous. We observe that genes with TATA-containing promoters are 1.4 times more

highly enriched with eQTLs in comparison with genes with CGI-containing promoters

(Fig. 3f).

Using the fine-mapped eQTL variants using ChIP-seq annotations, we finally examined

which transcription factor motifs were disrupted by the lead eQTL variants (Methods).

We found interferon regulatory factor 1 and 4 (IRF1 and IRF4) as well as REL and ATF4

were significantly enriched (Fig. 3g). An example of putative TF binding disruption was

discovered in RTP4 eQTL, where the alternative allele of a promoter flanking eQTL

variant (rs62292793T>A) may disrupt an IRF1 motif that significantly reduces putative TF

binding affinity, which subsequently downregulates the RTP4 expression (Extended

Data Fig. 3e). Furthermore, the TATA-motif is also found to be disrupted by eQTL

variants, further suggesting the importance of TATA-regulation in modulating the

response and its variability among individuals. [mention TATA and Landry’s Science 2008

in Discussion]

Innate immune response eQTLs are colocalised with autoimmune and infectious diseases

One of the advantages of eQTL mapping is to uncover the target genes and related cell

states at each genetic locus implicated by genome-wide association studies (GWAS) of

common complex traits. We here tested for colocalization of our eQTLs with risk loci

from 701 GWAS with 5 or more genome-wide significant loci, of which 112 were broadly

immune related, including autoimmune and chronic inflammatory diseases such as

Crohn’s disease and infectious diseases such as COVID-19 (Online Methods). We

discovered 3,132 unique gene-trait combinations with the posterior probability of a

single shared causal variant between an eQTL and a GWAS locus greater than 0.5. The

combinations consisted of 495 different GWAS traits and 823 unique genes. We observed
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an excess of colocalised eQTLs for immune related traits over non-immune traits (Fig. 4a;

P=2.0×10-5; Online Methods), likely reflecting the known involvement of innate immunity

in each of the disease pathologies.
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We discovered 36 primary and secondary response eQTLs that were specifically

colocalised with 41 autoimmune and infectious diseases, some of which were colocalised

with multiple traits (Fig. 4b). For example, we detected an eQTL for the ETV7 gene which

produces a transcription factor in the ETS family and plays a key role in hematopoiesis 29.

The eQTL was colocalised with rheumatoid arthritis and hayfever, allergic rhinitis or

eczema (Fig. 4c). The gene is an ISG and the expression is upregulated during secondary

response (Fig. 4d). The lead eQTL variant (rs1998266T>C) is shared with the GWAS traits,

whose alternative allele C upregulates gene expression in stimulated conditions and also

increases the risks of those GWAS traits (Fig. 4d). The alternative allele C also modifies

the binding motif of the transcription factor ATF6 putatively bound at the promoter

region of ETV7, thereby potentially increasing the expression level (Extended Data Fig.

4).

Fine-mapping OAS1 eQTL associated with SARS-CoV-2 infection

In conjunction with the fibroblast system, we used two additional in vivo systems (Fig.

5a) to further finemap the 12q24.13 (OAS) locus which was reported in a genome-wide

association study of reported SARS-CoV-2 positive-infected individuals against population

controls30 (index SNP: rs10774671G>A). The locus is colocalised with the OAS1 eQTL in

fibroblasts with a posterior probability of 0.89 (Fig. 4b, Fig. 5b). OAS1 is a secondary

response gene, and is highly expressed upon IFN-b (at 2h and later) and Poly (I:C)

stimulation (at 6h) (Fig. 5c). The alternative allele A of rs10774671 down-regulates the

expression level (Fig. 5d).

We investigated our recently published PBMC scRNA-seq data31 obtained from 112

donors, including 84 COVID-19 positive individuals, as an independent in vivo validation

of OAS1 colocalisation with COVID-19 GWAS (Online Methods). There are 18 major blood

cell types annotated in this data set (Extended Data Fig. 5a), of which myeloid cells and

certain T cell subtypes show higher expression of the secondary response genes where

the secondary innate immune response is inferred from our fibroblast data (Extended

Data Fig. 5b; Online Methods). As expected, OAS1 is highly expressed as a secondary

response gene in PBMCs (Fig. 5e) and we confirmed that OAS1 is also a strong eQTL in

PBMCs and colocalises well with the COVID-19 GWAS locus with the posterior probability

of 0.99 (Fig. 5b). The GWAS index variant rs10774671G>A is the lead eQTL variant in

PBMCs whose alternative allele A is strongly negatively correlated with OAS1 expression.

This is especially clear in CD16+ monocytes, among other immune cell types (Fig. 5f,

Extended Data Fig 5a).
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The index SNP rs10774671 is known to be a splicing QTL32 that disrupts the splicing motif

right next to the last exon of OAS1 gene (Fig. 5g). In our fibroblast data, this variant also

increased the intron expression between the last two exons and created the three

different isoforms, all of which are known to cause impaired OAS1 protein expression32.

These alternative isoforms are also observed in nasal epithelial cells in the nasal

brushing sample of a COVID-19 positive patient with the alternative homozygous

genotype (Fig. 5a, h). The cells from this patient contain SARS-CoV2 viral reads, although

the same cells express OAS1 and SARS-CoV2 at relatively low levels33 . Since the

alternative allele A of rs10774671 is also the risk allele in COVID-19 GWAS, this implies
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that impaired OAS1 RNA, and hence, protein expression may cause dysregulation of

SARS-CoV-2 virus RNA degradation and clearance in host cells.

Discussion

In this work we developed GASPACHO - a novel statistical framework that allows for the

first time, to infer how genetic variants affect the trajectory of gene expression over a

dynamic process such as a stimulation time course across individual cells.

Using GASPACHO, we integrated scRNA-seq data from fibroblasts from 68 donors

stimulated by innate immune stimuli, and obtained a low dimensional gene expression

space representing the response dynamics across stimulated cells. This procedure also

provides us with a map of interindividual transcriptional variation at single-cell

resolution, which were also enriched for regulatory regions (such as TF binding sites)

profiled during fibroblast stimulation22. This approach discovered 2,662 eQTL loci, of

which 823 were colocalised with one or more GWAS associated loci of autoimmune and

infectious diseases including COVID-19 at the OAS locus.

In conjunction with the OAS1 eQTL, OAS3 eQTL in fibroblasts was also colocalised with

COVID-19 GWAS (PP=0.53) (Fig. 4b, Extended Data Fig. 6a). Because OAS1 and OAS3 are

both interferon stimulated genes, the expression patterns of OAS1 and OAS3 along the

innate immune response trajectory are very similar (Fig. 5c, Extended Data Fig. 6b).

However the eQTL effect direction was opposite for the two genes (Fig. 5d, Extended

Data Fig. 6c): OAS1 gene expression is downregulated by the alternative allele of the

index SNP rs10774671G>A, whereas the expression level of OAS3 is upregulated by the

alternative allele. According to the risk allele of COVID-19 GWAS, OAS1 is more likely to

be the putative causal gene for SARS-CoV-2 infection because the COVID-19 risk allele

matches the impaired protein expression of OAS1 (Extended Data Fig. 6d).

Fibroblasts are not the primary cellular target of SARS-CoV-2 infection in most tissues

(excepting certain decidua fibroblasts), as they do not express ACE2 (only 8 cells among

22,188 cells express ACE2 in our dermal fibroblast dataset). However, our findings

suggest that OAS1 expression can be modulated by a common splicing variant, which

occurs in viral target cell types, such as nasal epithelial cells. In these cells, the splicing

variant will likely directly influence the efficacy of viral RNA clearance and degradation

in the host.

The GPLVM implemented in GASPACHO was applicable for more than 20K cells, the

current implementation in R is not scalable for hundreds of thousands of cells. In order
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to overcome this issue, we need a cutting-edge Bayesian inference technique, such as the

stochastic variational inference implemented on modern GPU machines.

In summary, our study demonstrates how an in vitro system combined with single-cell

RNA transcriptomics, allows us to chart the transcriptional landscape of complex innate

immune responses. Our single-cell datasets combined with the Gaussian process based

approach shed light on the common genetic basis of autoimmune and infectious diseases

during this challenging period of the COVID-19 pandemic.
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Figure legends
Figure. 1 Schematics of experiment and statistical analysis. a. Experimental design. b. GASPACHO (GAuSsian

Processes for Association mapping leveraging Cell HeterOgeneity) framework. Expression data and relevant

metadata (know confounding factors) as well as donor (cell line) structure is used to construct a Gaussian

Process Latent Variable Model (GPLVM) to extract the target cell state, while dissecting cell cycle effect and

other know and unknown technical variability including donor-donor variation. The result of GPLVM is then

utilised to the subsequent analyses of spatial differential expression analysis using a GP mixture model and

the genetic association mapping using a GP regression model (Online Methods).

Figure 2. Innate immunity captured by GPLVM and GP mixture model. a. UMAP of latent variables capturing

innate immune variation between cells. Cells are coloured by the five experimental time points (gray: naive

state; pink: IFN-beta 2 hours; brown: IFN-beta 6 hours; blue: poly(I:C) 2 hours; naivy: poly(I:C) 6 hours). b.

Estimated pseudo time for primary and secondary responses using the GP mixture model. c. Barplot shows

the numbers of response and stationary genes. d. Heatmaps show dynamic gene expression changes along

primary or secondary response pseudo time. The pseudo time colour scale corresponds to panel b. The

expression colour (navy to yellow) shows the magnitude of scaled expression for each gene (Z-score). e.

UMAP shows a predicted Achilles cell viability using CEVIChE (CEll VIability Calculator from gene

Expression) tool (Online Methods). f. Barplot shows the enrichment of GO terms for primary and secondary

genes.

Figure 3. Characteristics of dynamic eQTLs mapped using GP regression. a. Barplot shows the numbers of

eQTLs (local FDR < 10%) that are primary and secondary response genes or stationary genes. Forest plots

show the enrichment of discovered eQTLs for the DE categories and GTEx fibroblast eQTLs. b. UMAPs show

CXCL1 expression levels stratified by different genotype groups at rs1358594G>T. c. UMAP shows the

distribution of eQTL effect size (β) at rs1358594. The alternative allele (T) is assessed. d. Locus zoom plot of

CXCL1 eQTL association Bayes factors around CXCL1 gene (top: in-house data; bottom: GTEx fibroblast eQTL).

e. Enrichment eQTLs for regulatory regions characterised by ChIP-seq for the two histone modifications

(H3K27ac and H3K4me3) under two different conditions (UNST: unstimulated; PIC4h: Poly (I:C) 4 hour

stimulation). f. eQTL enrichment for genes with TATA box or CpG island between TSS and 100bp upstream.

g. Enrichment of lead eQTL variants for various transcription factor motifs.

Figure 4. GWAS colocalisation. a. Scatter plot shows the number of colocalised eQTLs with posterior

probability greater than 0.5 (y-axis) against the number of independent loci where GWAS and eQTL do not
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share the putative causal variant (Online Method). b. Heatmap shows the posterior probability of

colocalisation between eQTLs and GWAS loci. Only primary (coloured by navy) and secondary (coloured by

red) response genes were shown. c. Locus zoom plots show the association of rheumatoid arthritis and

hayfever, allergic rhinitis or eczema around ETV7 gene. Points are coloured by the LD index (r2) with the

GWAS index variant rs1008266T>C. d. UMAPs show the scaled ETV7 expression and the eQTL effect size (β) at

the lead eQTL variant rs1998266T>C. Locus zoom plot shows the eQTL association for ETV7.

Figure 5. Fine-mapping OAS locus using three different systems. a. Schematic of in vivo system, COVID-19

study of PBMCs and a nasal brushing to confirm the splicing QTL association in OAS1 gene. b. Locus zoom

plots show the COVID-19 GWAS (COVID-19 vs population) association Bayes factors as well as eQTL

associations of OAS1 gene in fibroblasts and PBMCs. c. UMAP shows the expression levels of OAS1 gene in

fibroblast. d. UMAP shows the eQTL effect size of OAS1 gene at rs10774671G>A. e. UMAP shows OAS1

expression level in PBMCs. f. UMAP shows the eQTL effect size of OAS1 gene at rs10774671G>A in PBMCs. g.

Sequencing coverage depth around the splicing variant rs10774671G>A which creates three different

isoforms, two of which are not annotated in Ensembl 90. Single cell RNA-seq reads in fibroblasts were

aggregated and stratified by the three different genotype groups (GG: reference homozygote; GA:

heterozygote; AA: alternative homozygote). h. The sequencing coverage depth of epithelial cells for one

COVID-19 positive patient with alternative homozygote AA at rs10774671 (Online Methods).

Methods

Cell culture and stimulation

Primary dermal fibroblast cells from the Human Induced Pluripotent Stem Cell Initiative

(HipSci; http://www.hipsci.org/) were used. The cells were derived from healthy

individuals spanning a range of ages and both genders. Following a similar protocol used

in our previous work22, cells were cultured in DMEM (high glucose, pyruvate - Life

Technologies), with 10% FBS, GlutaMAX and 1% penicillin-streptomycin. In each

experimental batch, we cultured in parallel cells from three different individuals. Cells

were split the day before the experiment into separate wells and on the day of

experiment were stimulated with either dsRNA (0.5 µg/ml rhodamine-conjugated

poly(I:C), transfected with 1 µl/mL lipofectamine 2000, for 2 or 6 hours), 1000 U/ml

human recombinant IFN-B, for 2 or 6 hours,  or left untreated.

After the relevant period of time, cells were trypsinised and resuspended in PBS.

Samples from the three individuals with the same treatment were mixed (for example,

’unstimulated’ cells from the three donors would be pooled together). The primary aim

of this mixing step was to reduce downstream experimental variability between donors,

while simultaneously streamlining the collection stage.

Sorting and single-cell library preparation

Cells were sorted on a Becton Dickinson Influx into 96-well plates containing 2 µl/well
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lysis buffer. Single cells were sorted individually (using FSC-W vs FSC-H), and apoptotic

cells were excluded using DAPI. Rhodamine positive cells were selected in the poly(I:C)

treatments. Reverse transcription and cDNA amplification were performed according to

the SmartSeq2 protocol (Picelli et al., 2014), and library preparation was performed using

an Illumina Nextera kit. Samples were sequenced using paired-end 75bp reads on an

Illumina HiSeq 2500 machine.

Cell viability prediction

The cell viability was predicted by the web based tool called CEVIChE (CEll VIability

Calculator from gene Expression; https://saezlab.shinyapps.io/ceviche/). Because the tool

is designed for bulk RNA-seq data, we aggregated gene expression levels for

neighbouring cells based on the UMAP in Fig. 2a. We constructed 30 × 30 equispaced

grids and took geometric means of log CPM values within each grid.

Smart-seq2 data preprocessing and quality control

We preprocessed the Smart-seq2 data exactly the same as in Kumasaka et al.(REF). We

used demuxlet (https://github.com/statgen/demuxlet) to identify the genetic origin of

each cell as well as to remove doublets using the genotype data from HIPSCI (see below).

Genotype data

We obtained the SNP genotype data from HipSci19. We converted the genome coordinate

from hg19 to GRCh38 using CrossMap (version 0.5.2; http://crossmap.sourceforge.net/).

Gaussian Process Latent Variable Model

The GASPACHO framework incorporated a GPLVM as a core model to estimate the latent

variables and model parameters subsequently used in the differential expression

analysis and eQTL mapping. We assumed the gene expression vector 𝑦𝑗 = (𝑦𝑖𝑗; 𝑖 = 1, ..., 𝑁)𝑇
for the gene across cells is independently drawn from𝑗 𝑁

𝑦𝑗 ∼ 𝑁(α𝑗 + 𝑍γ𝑗, σ𝑗2Ω)
α𝑗 ∼ 𝑁(0, σ𝑗2𝐾θ𝐾𝐵𝐾𝑋)
γ𝑗 ∼ 𝑁(ζ, σ𝑗2∆)

where is a baseline GP governed by three different kernel matrices, periodic kernelα𝑗
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matrix for the cell cycle state ( ) and two other squared exponential kernel matrices𝐾θ θ 𝐾𝐵
and for unknown batch effects (B) and the target cell state (X), respectively. Here is a𝐾𝑋 𝑍
design matrix for the known covariates, such as donor and sequencing plates (Fig. 1b),

and is a random effect to adjust the known confounding effects whose mean andγ𝑗
variance were defined by and the diagonal matrix shared across all genes .ζ ∆ 𝑗 = 1, ..., 𝐽
The residual expression was determined by the gene specific residual variance andσ𝑗2
the cell specific residual variance . Note that the variances of theΩ = 𝑑𝑖𝑎𝑔(ω𝑖; 𝑖 = 1, ..., 𝑁)
GP and the random effect were properly scaled by multiplying the gene specific residual

variance .σ𝑗2
The model parameters and the latent variables were inferred by{∆, Ω, Σ, ζ} {θ, 𝐵, 𝑋}
maximising the marginal likelihood

𝐿(θ, 𝐵, 𝑋, ∆, Ω, Σ, ζ) = 𝑗=1
𝐽∏ ∫ 𝑝(𝑦𝑗|α𝑗, γ𝑗)𝑝(α𝑗)𝑝(γ𝑗)𝑑α𝑗𝑑γ𝑗,

where . We used the L-BFGS algorithm with the analytic gradientΣ = 𝑑𝑖𝑎𝑔(σ𝑗2; 𝑗 = 1, ..., 𝐽)
of the likelihood function with respect to the parameters and the latent variables. In

reality, the kernel matrices are not tractable for large , we computed the Titsias bound𝑁
using the sparse GP 18 to approximate the above likelihood. See Supplementary Note for

more details.

Gaussian Process mixture model for spatial di�erential expression analysis

We employed a GP mixture model to perform differential expression analysis in the

target cell state space defined by which was estimated by the GPLVM. Specifically, we𝑋
introduced one extra GP for the th differential expression group ( ) to whichβ𝑘 𝑘 𝑘 = 1, ..., 𝐾
a gene j belongs:

𝑦𝑗 ∼ 𝑁(α𝑗 + δ𝑗𝑘β𝑘 + 𝑍γ𝑗, σ𝑗2Ω)
α𝑗 ∼ 𝑁(0, σ𝑗2𝐾θ𝐾𝐵)
β𝑘 ∼ 𝑁(0, σ𝑗2𝐾𝑋)
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γ𝑗 ∼ 𝑁(ζ, σ𝑗2∆)
δ𝑗𝑘 ∼ 𝑁(0, 1)

Here the effect size of the GP was properly scaled by a coefficient to allow the GP to beδ𝑗𝑘
both positively or negatively correlated with the gene expression. The model parameters

and the latent variables were replaced by the estimated values by the{∆, Ω, Σ, ζ} {θ, 𝐵, 𝑋}
GPLVM. Then we maximised the likelihood of a finite mixture of GPs:

𝐿(π1, ..., π𝐾, β1, ..., β𝐾) = 𝑗=1
𝐽∏ 𝑘=1

𝐾∑ ∫ π𝑘𝑝(𝑦𝑗|α𝑗, β𝑘, γ𝑗, δ𝑗𝑘)𝑝(α𝑗)𝑝(β𝑗)𝑝(γ𝑗)𝑝(δ𝑗𝑘)𝑑α𝑗𝑑γ𝑗𝑑δ𝑗𝑘
with respect to and for . Note that the number of total mixtureπ𝑘 β𝑘 𝑘 = 1, ..., 𝐾
components is fixed in the current implementation and K=3 in the fibroblast data.𝐾
Again we used the sparse approximation to make the likelihood tractable (see

Supplementary Note for more details).

For the pseudotime analysis, we computed the posterior mean E of the GP for the kth[β𝑘]
component, which provided the underlying cell state regarding the primary and

secondary innate immune responses.

Gaussian Process regression for association mapping

We employed a GP regression model to map eQTLs in the target cell state space defined

by which was estimated by the GPLVM. Specifically, we introduced one extra GP for𝑋 β𝑗𝑙
the gene multiplied by the th genetic variant whose th element are𝑗 𝑙 𝑔𝑙 = (𝑔𝑙1, ..., 𝑔𝑙𝑁)𝑇 𝑖 𝑔𝑙𝑖
alternative allele dosages for the individual as a gene environment interaction:𝑖

𝑦𝑗 ∼ 𝑁(α𝑗 + β𝑗𝑙 ⊙ 𝑔𝑙 + 𝑍γ𝑗, σ𝑗2Ω)
α𝑗 ∼ 𝑁(0, σ𝑗2𝐾θ𝐾𝐵𝐾𝑋)
β𝑗𝑙 ∼ 𝑁(0, δ𝑔2σ𝑗2(11𝑇 + 𝐾𝑋))
γ𝑗 ∼ 𝑁(ζ, σ𝑗2∆)

Here the eQTL effect size was properly scaled by a coefficient to allow for controllingδ𝑔
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the genetic contribution on the expression level. Here the model parameters {∆, Ω, Σ, ζ}
and the latent variables were replaced by the estimated values by the GPLVM.{θ, 𝐵, 𝑋}
The Bayes factor of genetic association can be obtained by:

𝐵𝐹 = ∫𝑝(𝑦𝑗|α𝑗,β𝑗𝑙,γ𝑗)𝑝(α𝑗)𝑝(β𝑗𝑙)𝑝(γ𝑗)𝑑α𝑗𝑑β𝑗𝑙𝑑γ𝑗∫𝑝(𝑦𝑗|α𝑗,β𝑗𝑙=0,γ𝑗)𝑝(α𝑗)𝑝(γ𝑗)𝑑α𝑗𝑑γ𝑗
where we set (see Supplementary Note for more details).δ𝑔 = 0. 1
Hierarchical model for eQTL discovery and enrichment analysis using genomic annotations

We tested genetic variants whose minor allele frequency is greater than 0.05 in 1Mb cis

regulatory window centred at each gene TSS. In order to control the false discovery rate

in a Bayesian framework, we used the hierarchical model34 to obtain the posterior

probability that a gene is an eQTL as well as the posterior probability that a variant is an

eQTL variant within the cis window.

The model allows incorporating various genomic annotations in the gene-level and

variant-level as demonstrated previously34. We used the ChIP-seq peak annotations

obtained from Hagai et al.22 in conjunction with TSS proximity to estimate the

contribution of epigenetic information to the eQTL variant discovery.

eQTL enrichment in di�erentially expressed genes

Any enrichment analysis was carried out based on posterior probability that the gene j𝑍𝑗
is an eQTL obtained from the hierarchical model. We then computed a 2×2 table using a

corresponding binary annotation (e.g., if the gene j belongs to some annotation, e.g.,𝑋𝑗
TATA gene, then otherwise ) or alternatively the posterior probability𝑋𝑗 = 1 𝑋𝑗 = 0

that the gene j is a DE gene (one of multiple DE gene categories defined above),𝑋𝑗 ∈ [0, 1]
such that

𝑇𝑘𝑙 = 𝑗=1
𝐽∑ (1 − 𝑋𝑗)(1−𝑘)(1 − 𝑍𝑗)(1−𝑙)𝑋𝑗𝑘𝑍𝑗𝑙

for . From the table , we computed the log odds ratio𝑘, 𝑙 = 0, 1 𝑇 𝑟 =  𝑙𝑜𝑔(𝑇00𝑇11/(𝑇01𝑇10))
and its standard error to perform hypothesis𝑉𝑎𝑟(𝑟) = (1/𝑇00 + 1/𝑇01 + 1/𝑇10 + 1/𝑇11)
testing. The confidence interval of the log odds ratio was given by .𝑟 ± 1. 96 𝑉𝑎𝑟(𝑟)
eQTL sharing with GTEx fibroblasts
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We fitted the pairwise hierarchical model between our eQTLs and the GTEx fibroblast

eQTLs35 to compute the colocalisation probability. The hypothesis testing was performed

with

𝑇𝑘𝑙 = 𝑗=1
𝐽∑ (1 − 𝑋𝑗)(1−𝑘)(𝑍𝑗(1) + 𝑍𝑗(3))(1−𝑙)𝑋𝑗𝑘(𝑍𝑗(4))𝑙

for , where denotes the probability that the gene j is differentially expressed𝑘, 𝑙 = 0, 1 𝑋𝑗
(defined above), denotes the probability that the gene j is an eQTL in our data and𝑍𝑗(1)
not in GTEx fibroblasts, denotes the probability that the gene j is eQTLs in our data𝑍𝑗(3)
and GTEx fibroblasts and not sharing the putative causal variant, and denotes the𝑍𝑗(4)
probability that the gene j is eQTLs in our data and GTEx fibroblasts and colocalised.

Colocalisation with GWAS traits

We used the same pairwise hierarchical model35 to perform the GWAS colocalisation,

where the prior probabilities of the hierarchical model were fixed as

, so that we can compare different studies with different{Π1,  Π2,  Ψ12} = {0. 2,  0. 05,  0. 01}
statistical power to detect GWAS associations due to varying sample sizes.

Annotating TATA and CpG genes

We used the TATA motifs from CIS-BP (Data Availability) and the CpG annotation from

UCSC (Data Availability) to annotate genes that have a TATA motif and/or a CpG site

100bp upstream from TSS (we referred to as TATA genes and CpG genes).

eQTL variant enrichment at transcription factor motifs

The hierarchical model provided the posterior probability that each variant l in the cis

regulatory region for the gene j is the eQTL so that where is the number𝑍𝑗𝑙 𝑙=1
𝐿𝑗∑ 𝑍𝑗𝑙 = 1 𝐿𝑗 

of variants in the cis window. We first selected the lead eQTL variant according to the

posterior probability for each gene j. We then used the position weight matrices of

transcription factor motifs in CIS-BP (Data Availability) to call motifs overlapping with

lead eQTL variants as described elsewhere34.

To perform the hypothesis testing that a TF motif is significantly overlapping with eQTL

variants, we set and to be the binary variable whose value is if𝑍𝑗 = 𝑙=1,...,𝐿𝑗max {𝑍𝑗𝑙} 𝑋𝑗 𝑋𝑗 = 1
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the lead eQTL variant l is overlapping with a TF motif; otherwize . We then𝑋𝑗 = 0
computed the 2x2 table to perform the enrichment analysis as described above.

PBMC data analysis and eQTL mapping

We reduced the full GASPACHO approach to accommodate the PBMC single cell data of

over 700K cells in a reasonable time scale. The kernel functions used in the model were

restricted to the linear kernel without the cyclic kernel for the cell cycle effect. The latent

factors were estimated with the covariates of the number of genes expressed, the

number of mapped reads, the sequencing center, sex, age, COVID19 status, COVID19

sevierity, patient ID, and the first 3 genotype principal components. The latent factors

were then used to define the two GPs

α𝑗 ∼ 𝑁(0, σ𝑗2𝑋𝑋𝑇)
β𝑗𝑙 ∼ 𝑁(0, δ𝑔2σ𝑗2(11𝑇 + 𝑋𝑋𝑇))

for the intercept and the eQTL effect size of variant l for gene j.

GWAS summary statistics

GWAS summary statistics were obtained from Open Targets including studies from

GWAS Catalog, FINNGEN and UK Biobank (in total 4,744 traits). The summary statistics

were collected and harmonised as described in

https://github.com/opentargets/genetics-sumstat-data.

Data Availability

The annotation of CpG site was downloaded from the UCSC website

(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpgIslandExt.txt.gz). The

position weight matrices of transcription factor motifs were obtained from CIS-BP

(http://cisbp.ccbr.utoronto.ca/).
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Extended Data Figure
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Extended Data Figure 1. Data and QC. a. Barplot shows the number of cells for each

donor (cell line). b. UMAP calculated from the first XXX principal components from the

data. Points are coloured by unknown batch effect (well correlated with experimental

date), cell cycle phase estimated from known marker genes (Methods) and experimental

conditions. c. Histogram shows the distribution of estimated cell cycle phase by GPLVM

(Methods). d. Scatterplots show scaled expression of known cell cycle genes (UBE2C and

CDC6) and a gene highly expressed in G0/G1 phase (FN1). The red curves show the

posterior mean estimates of expression levels by GPLVM (Methods). e. UMAPs of the

target cell states coloured by unknown batch or cell cycle phase.
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Extended Data Figure 2. Innate immunity in single cell data. Differential expression

result from GPMM. a. Seven different mixture components estimated from the GP

mixture model (Methods). b. The number of genes categorized in each of the seven

components. c. Top GO terms enriched with the genes detected in each of the seven DE

categories.
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Extended Data Figure 3. Response eQTL mapping. a. Table summarises the 5 different

models to map eQTLs (the top two are pseudo bulk based approaches and the bottom

three are single cell based approaches). b. The numbers of eQTLs mapped by the 5

different models at local FDR 10%. The red bars represent the numbers of eQTL genes for

the 5 different methods using the fibroblast data and the gray bars represent the

numbers of eQTL genes using a simulated expression data under the null hypothesis
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(Online Methods). c. The number of eQTL genes stratified by the spatial DE genes

demonstrated in Extended Data Figure 2b. d. Forest plot shows the enrichment of the

2,662 eQTL genes in each DE gene. e. The number of eQTL genes colocalised with GTEx

fibroblast eQTLs in the 7 different DE gene categories. f. Forest plot shows the

enrichment of the eQTL colocalised with GTEx fibroblast eQTLs in the 7 different DE gene

categories. g. Locus zoom plot shows the association Bayes factors of CXCL1 eQTL for our

fibroblast (top) and the eQTLGen blood samples (bottom). h. Locus zoom plot shows the

RTP4 eQTL association Bayes factors. The lead eQTL variant rs62292793T>A disrupts the

putative IRF1 binding motif (M1882_1.02; CIS-BP version 1.02) upstream of RTP4 gene

promoter. i. UMAPs show the expression levels of IRF1 and RTP4. j. UMAP shows the

eQTL effect size of RTP4.
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Extended Data Figure 4. Fine-mapping of ETV7 eQTL. a. ATF6 expression on the UMAP.

b. ATF motif (M6155_1.02; CIS-BP version 1.02). The nucleotide C coloured by red

indicates the location of the eQTL variant rs1998266T>C. c. Locus zoom plots of hayfever,

allergic rhinitis or eczema, rheumatoid arthritis and the ETV7 eQTL.
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Extended Data Figure 5. PBMC single cell data. a. UMAP shows the 18 different cell

types annotated previously. b. UMAP shows the secondary response pseudotime

calculated from the secondary response genes discovered in the fibroblast data.
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Extended Data Figure 6. Association and effect directions of OAS3 eQTL in fibroblasts

and colocalisation with COVID-19 GWAS. a. UMAP shows the OAS3 gene expression. b.

UMAP shows the eQTL effect size at rs10774671. c. Locus zoom plot shows the COVID-19

GWAS, OAS1 and OAS3 eQTL (both in fibroblasts) associations. d. Effect direction of

OAS1/3 eQTLs and the risk allele of COVID-19 GWAS at the lead variant rs10774671.
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Extended Data Figure 7. Interferon receptor gene expression. a. UMAP shows

interferon alpha receptor 1 (IFNAR1) gene expression. b. UMAP shows interferon alpha

receptor 2 (IFNAR2) gene expression. c. UMAP shows interferon gamma receptor 1

(IFNGR1) gene expression. d. UMAP shows interferon gamma receptor 1 (IFNGR1) gene

expression.
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