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Abstract

Interstellar dust corrupts nearly every stellar observation, and accounting for it is crucial to
measuring physical properties of stars. We model the dust distribution as a spatially varying
latent field with a Gaussian process (GP) and develop a likelihood model and inference method
that scales to millions of astronomical observations. Modeling interstellar dust is complicated
by two factors. The first is integrated observations. The data come from a vantage point on
Earth and each observation is an integral of the unobserved function along our line of sight,
resulting in a complex likelihood and a more difficult inference problem than in classical GP
inference. The second complication is scale; stellar catalogs have millions of observations. To
address these challengeswedevelop ziggy, a scalable approach toGP inferencewith integrated
observations based on stochastic variational inference. We study ziggy on synthetic data and
the Ananke dataset, a high-fidelity mechanistic model of the MilkyWay with millions of stars.
ziggy reliably infers the spatial dust map with well-calibrated posterior uncertainties.

Keywords: Large-scale astronomical data, Gaussian processes, kernel methods, scalable Bayesian
inference, variational methods, machine learning

1 Introduction

The Milky Way galaxy is primarily comprised of dark matter, stars, and gas. Within the gas, in its
densest and coldest regions, dust particles form. The stars of the Milky Way are embedded in this
field of dust.

Back on Earth, astronomers try to map the stars, measuring the location, apparent brightness,
and color of each. But the dust between Earth and a star obscures the light, corrupting the as-
tronomers’ observation. Relative to the star’s true brightness and color, the dust dims the brightness
and reddens the color. This corruption is called extinction, and it complicates inferences about a
star’s true distance and other true properties. Stellar extinction has hindered many studies of stars
in the Milky Way disk, which is where most dust lies, and therefore the largest extinctions (Mathis,
1990).

∗Work done while at the Data Science Institute at Columbia University.
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To cope with these corruptions, astronomers need a map of interstellar dust, an estimate of the
density of dust at each location in the Galaxy. An accurate dust map could be used to correct our
astronomical measurements and sharpen our knowledge of the Galaxy’s stars. Moreover, a dust
map may be of independent scientific interest—for example, it may reveal macroscopic properties
of the shape of the Milky Way, such as spiral arms.1

But constructing such a map is difficult. We are embedded in our own dust field, and so we
cannot directly observe it. Rather, we can only observe a noisy integral of the field along the line
of sight between Earth and a star — the starlight extinction. (Here, the line of sight is the straight
line through space between the star and the earth.) Thus the inference problem is to calculate a
single, coherent spatial field of dust that can explain the observed extinction of millions of spatially
distributed stars. In this paper, we use a large data set of astronomical measurements to infer a
three-dimensional map of interstellar dust.

The data comes from standard practice in astronomy, which is to estimate the extinction of an
individual star from its observed color and brightness using a physical model of star formation and
evolution.2 This procedure results in an estimate of the extinction and an approximate variance of
the estimate about the true extinction value. However, this estimate is derived from a single star’s
color and brightness—it ignores information about the spatial structure of the Milky Way and the
fact that all stars are observed through the same three-dimensional density of dust.

The dust map is a spatial distribution of dust—an unobserved spatial function—that can help
refine these noisy measurements. Each measurement is modeled conditional on the function and
the three-dimensional location of the star.3 Such a model shrinks estimates toward their true
values and reduces uncertainty about them. More formally, the unknown dust map is a function
ρ : RD 7→ R from a three-dimensional location in the universe x to the density of dust at that
location. Our goal is to estimate this function from data.

We take a Bayesian nonparametric approach. We place a Gaussian process (GP) prior on the
dust map and posit a likelihood function for how astronomical observations arise from it. We
develop a scalable approximate posterior inference algorithm to estimate the posterior dust map
from large-scale astronomical data. In addition to the scale of the data, the main challenge is
the likelihood function. Typical spatial analysis involves data that are noisy evaluations of an
unobserved function, and the likelihood is simple. Astronomical data, however, comes from a
limited vantage point—we only observe the latent dust map as an integrated process along a line
of site to a star, and this integral is baked into the likelihood of the observation.

More formally, let en be the true extinction of starlight for star n at location xn, let an be
the noisily measured extinction with uncertainty σn. Given the unknown dust map, we model the
noisy measurement as a Gaussian whose mean is an integral from Earth to xn (Rezaei Kh. et al.,
2017). With covariance function kθ(·, ·), the full model is

ρ(·) ∼ GP (0, kθ(·, ·)) (1)

1Though hints of spiral structures have been inferred from other observations (Georgelin and Georgelin, 1976; Chen
et al., 2019), whether theMilkyWay galaxy is a grand design spiral or if the spiral structures are more flocculent remains
an open question. An accurate dust map will shed light on the recent dynamical history of the Milky Way.

2The observed color and brightness are directly derived from telescope images (e.g. photometry). Extinction
measurements are backed out from a theoretical distribution of dust-free star colors and luminosities, where luminosity
is the intrinsic brightness of a star. This distribution can be based on isochrones or empirically derived from a region of
the sky known to have no dust (e.g. the Milky Way halo). The extinction corresponds to how far the observed color and
brightness are from the set of theoretically plausible colors and luminosities. The extinction uncertainty incorporates
both noise in the photometric measurement and prior uncertainty over the range of plausible colors and luminosities.

3The spatial locations of stars can be derived from parallax measurements. In this work we consider them fixed, but
in future work will additionally consider their uncertainty.
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an ∼ N
(
en, σ

2
n

)
, where en ,

∫

x∈Rn

ρ(x)dx. (2)

Here Rn is the set of points (i.e. the ray) from Earth to xn; the extinction en is in an integral of
the latent dust map ρ(·), and it is through this integral that the map enters the likelihood. Figure 1
graphically depicts the distinction between pointwise and integrated observations.

The data areN locations, extinctions, and measurement errors, denotedD = {an, xn, σ2n}Nn=1.
Conditional on the data, we want to calculate the posterior dust map π(ρ | D). This posterior can
estimate different properties of the latent dust, e.g., the density of dust ρ(·) at a new location, the
integral of dust ρ(·) over new sets, and posterior uncertainty about these values. Such inferences
can aid many stellar studies.

But the posterior is difficult to compute, complicated by both the integrated likelihood and the
large scale of the data. (Modern catalogs of astronomical data contain observations of millions
of stars (Brown et al., 2018; Aguado et al., 2019).) In theory the scale is helpful—each star
provides information about the unobserved dust map. But scaling a Gaussian process to millions
of observations is a significant computational challenge.

We overcome these challenges with a scalable algorithm for Gaussian process inference with
integrated observations, which we call ziggy.4 In particular, ziggy is a stochastic variational
inference algorithm, one that uses stochastic optimization, inducing points, and variational infer-
ence to approximate the posterior. It handles general covariance functions and scales to millions
of data points. We study ziggy on both synthetic data and the Ananke data, which comes from a
high-fidelity mechanistic model of the Milky Way. We find that ziggy accurately reconstructs the
dust map and accuracy continues to improve as the number of observations grows above a million.

In our applied setting, the integrated observations introduce technical challenges. ziggy
builds upon an existing scalable Bayesian inference framework (Hoffman et al., 2013; Hensman
et al., 2013), and introduces additional approximations and computational techniques to address
the challenges created by integrated observations.

The paper is organized as follows. Section 2 describes related work for estimating interstellar
dust. Section 3.1 formally sets up the problem and describes exact inference in GP models with
integrated observations. Section 4 develops a stochastic variational inference algorithm that scales
to millions of stellar observations. Appendix F studies ziggy on a synthetic two-dimensional
example, comparing various settings of the algorithm that trade computation for accuracy and
flexibility. Section 5 studies ziggy with the Ananke data set, showing that it recovers a well-
calibrated three-dimensional dust map that accurately predicts extinctions and global dust structure.
Section 6 concludes the paper and discusses directions for future research.

2 Related research

This work builds on a foundation of research in both astronomy and statistics.
Estimating the latent dust map. The seminal work of Schlegel et al. (1998) estimates the

two-dimensional map of dust across the full sky using dust emission (rather than dust absorption,
which we use here). Emission is a more direct estimate of the dust, but doesn’t allow for direct
inferences of 3D structure. Stars within the Milky Way, however, are embedded in the three-
dimensional dust field. Estimating per-star extinctions requires characterizing the dust field as a
function of distance, motivating the construction of three-dimensional dust maps.

More recent approaches use hierarchical spatial models of noisy integrated observations to
reconstruct three-dimensional maps. These approaches, however, rely on discretizing space and

4ziggy is named for Ziggy Stardust, David Bowie’s alter ego.
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yn = ρ(xn) + σn · ε

(a) Pointwise

an =
∫
x∈Rn ρ(x) + σn · ε

(b) Integrated

Figure 1: Reconstructing an unobserved function from pointwise (left) and integrated (right)
observations. The latent function governs noisy pointwise observations, yn, and integrated obser-
vations, an. The task is to reconstruct the unobserved function ρ(x), depicted by the grey contours,
everywhere in the domain. Our perspective is limited to the origin (red dot); our observations of
this process are integrated along a compact set (i.e. a ray).

modeling integrated observations as finite sums. Various discretization strategies have been
proposed, each with different computational demands.

One approach models discretized lines of sight to every star (Rezaei Kh. et al., 2017), but
this approach can only accommodate a few thousand stellar observations. Another approach
uses a fine mesh of cubic voxels to describe the dust distribution. This introduces a different
computational trade off — larger voxels introduce unrealistic spatial artifacts (Green et al., 2018,
2019), while smaller voxels significantly increase the computational burden (Leike and Enßlin,
2019). Moreover, the theoretical length scale of the dust distribution is small; discretizing three-
dimensional space with fine enough resolution to capture this small length scale will have to rely
on additional approximations to scale to the entire volume of the Milky Way. The approach we
develop here avoids discretization, works directly with continuous space, and scales to millions of
observations.

Spatial statistics and Gaussian processes. The field of spatial statistics has developed many
tools to estimate unobserved functions from noisy measurements (Cressie, 1992). One ubiquitous
and fundamental method is Gaussian process regression or kriging, which interpolates or smooths
a latent function given noisy observation at nearby locations (Krige, 1951; Matheron, 1963, 1973;
Cressie, 1990; Rasmussen and Williams, 2006). A GP defines a probability distribution over
the unobserved function that encodes prior assumptions about some properties — continuity,
smoothness, and amplitude—while remaining flexible. GPs admit analytically tractable inference
routines in typical settings, making them a useful prior for unobserved functions.

Scaling GPs to massive datasets is a more recent challenge. One approach is to approximate
the GP with inducing point methods (Quiñonero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2006), where process values at specific places in the space, the inducing points, are
learned from the data, and predictions are then produced using the inducing point process values.
Inference using this approximation scales better than exact GP inference. Bolstering their use,
recent theoretical work has characterized the error of inducing point GP approximations (Burt et al.,
2019). However, inducing point methods still require analyzing the entire dataset simultaneously;
this requirement limits their applicability to datasets where the number of observations is in the
millions or billions.
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Another thread of GP research in spatial statistics embeds them in more complicated models
and scales them (Cressie, 1992; Banerjee et al., 2014). For example, nearest-neighbor GP’s are
a scalable approximation for estimating the posterior of a latent spatial field (Datta et al., 2016).
Similarly, the integrated nested Laplace approximations (INLA) framework is an approximate
inference methodology that computes posterior marginal uncertainty in latent Gaussian models,
including Gaussian process models with computationally tractable precision matrices (Rue et al.,
2009). Several scalable Gaussian process approximations are reviewed in Heaton et al. (2019).

Gaussian processes have also been used within astronomy applications beyond building spatial
maps of interstellar dust. Methods to scale one-dimensional GP regression to millions of observa-
tions have been developed and deployed with success (Ambikasaran et al., 2014; Foreman-Mackey
et al., 2017).

Scalable Bayesian inference. We build on methods for scaling Bayesian inference to massive
datasets. Variational methods (Jordan et al., 1999; Wainwright et al., 2008; Blei et al., 2017) are
a computationally efficient alternative to Monte Carlo methods for posterior approximation. Vari-
ational inference treats approximate inference as an optimization problem, fitting a parameterized
family to be close to the exact posterior. Stochastic optimization (Robbins andMonro, 1951) scales
variational inference to large datasets, iteratively subsampling from the data to produce cheap, noisy
gradients of the objective; this strategy is called stochastic variational inference (SVI) (Hoffman
et al., 2013). Building off of SVI, stochastic variational Gaussian processes (SVGP) bring in
inducing point methods to scale Gaussian processes to massive datasets (Hensman et al., 2013).
We build on the SVGP framework here, adapting it to fit the GP model of astronomical data.

3 A Gaussian process model of starlight extinctions

The data areN stars, each one a tuple of its location xn, a noisy measurement of the extinction an,
and the variance of the observation σ2n; denote the data setD , {xn, an, σ2n}Nn=1. Given the latent
dust map ρ(x), the likelihood of each observation an is defined in Equation 2, where the region
of integration Rn is the ray that originates at the origin O (i.e. the Earth) and ends at the spatial
location of the star, xn,

Rn = {α ·O + (1− α) · xn : α ∈ [0, 1]} . (3)

To complete the model, Equation (1) places a Gaussian process prior on the dust map.
Given the data, the posterior distribution, p(ρ | D), summarizes the evidence about the latent

dust map. Via the relationship between ρ(xn) and en defined in Equation (2), we use this posterior
over ρ to form estimates of the extinction for observed stars en, the extinction at new locations e∗,
and the dust map itself at new locations ρ(x∗). Specifically, the compute the posterior expectations

ρ̂(x∗) , E [ρ(x∗) | D] , ên , E [en |xn,D] , ê∗ , E [e∗ |x∗,D] . (4)

The posterior variance, e.g., V [e∗ |x∗,D], describes the uncertainty of the estimates.
The posterior dust map ρ(·) synthesizes information from nearby sources to de-noise or shrink

an individual extinction en, resulting in more accurate inferences with smaller estimator variance.
Moreover it enables estimating the dust density at a new location x∗ or to estimate estimate the
extinction along a path to the new point.

In the following sections we discuss how to calculate the posterior and how to approximate
it with large data sets of stellar observations. Before that, however, we discuss the choice of a
Gaussian process prior.
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Why use a Gaussian process? First, Gaussian processes can flexibly model complex un-
observed latent functions. The dust map ρ(·) is not easily described by a parametric functional
form, but GPs can adapt highly complex, non-linear functions to describe data. Second, high-level
properties of the unobserved dust map can be captured by the choice of the GP’s covariance
function. In particular, we assume the dust map has specific structure—it is continuous and two
nearby locations are more likely to have similar dust density values than two distant locations.
GPs naturally capture such spatial coherence. Third, all stellar observations are derived from
the same underlying dust map ρ(x). Two noisy extinction measurements with nearby integration
paths must be coherently described by a single estimate of ρ(·). The continuity, smoothness, and
spatial coherence across observations give traction in forming an accurate statistical estimate of
the unobserved dust map.

3.1 GP Inference with Integrated Observations

In a GP, any finite set of function evaluations are multivariate normal distributed with covariance
defined by the covariance function, cov(ρ(xi), ρ(xj)) = kθ(xi, xj). When observations are
corrupted with Gaussian noise—the typical setting for GP models—the joint distribution between
all observations and latent process quantities remains multivariate normal and the posterior at a
new point ρ(x∗) can be expressed as a few matrix operations (Rasmussen and Williams, 2006,
Chapter 2). Inference in Gaussian process models with noisy integrated observations—defined in
Equation 2—closely mirrors inference with the more typical, noisy pointwise observations.

Consider the model in Equations (1) and (2). We derive the posterior distribution by first
characterizing the joint distribution over ρ(x∗) and a = (a1, . . . , aN ) (Rasmussen and Williams,
2006). Observe that linear operations of multivariate normal random variables remain multivariate
normal in distribution. As noted in Rasmussen and Williams (2006, Section 9.8), because integra-
tion is a linear operation, the value of the integral of ρ over the domain X will remain Gaussian.
This is also true for any collection of definite integrals and the corresponding (Gaussian) noisy
observations.

The joint distribution over a and ρ(x∗) , ρ∗ remains multivariate normal. Given the mean
and covariance of this joint distribution, we can compute the posterior distribution over ρ∗ (or any
set of ρ∗ points) given observations a, x, and σ2. The joint distribution over a and ρ∗ mimics the
standard Gaussian process setup

(
a
ρ∗

)
∼ N

(
0,

(
Ke + Σa Ke,∗

K∗,e K∗

))
, (5)

where the covariance matrix blocks are defined

(Ke)ij = Cov(ei, ej) , (K∗,e)∗j = Cov(ρ∗, ej) , K∗ = Cov(ρ∗, ρ∗) , (6)

and the observation noise matrix Σa ≡ diag(σ21, . . . , σ
2
N ). We note that because ρ∗ is scalar,

K∗ is a 1 × 1 matrix. Computing these covariance entries enables us to populate the joint
covariance matrix and use standard multivariate normal conditioning for posterior inference. This
conditioning mimics the equations for standard Gaussian process inference,

ρ(x∗) ∼ N (µ∗,Σ∗) (7)

µ∗ = K∗,e (Ke + Σa)−1 a (8)

Σ∗ = K∗ −K∗,e (Ke + Σa)−1 Ke,∗. (9)
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To compute this posterior, we need to compute the covariances in Equation 6.
The chosen covariance function directly specifies Cov(ρ∗, ρ∗) The other terms, Cov(ei, ej)

and Cov(ρ∗, ej) are slightly more complex, and require integrating the covariance function in one
or both of its arguments.

Claim 3.1 (Semi-integrated Covariance Function). The covariance between a process value ρi ,
ρ(xi) and an integrated value ej ,

∫
x∈Rj

ρ(x)dx takes the form

Cov(ρi, ej) =

∫

x∈Rj

k(xi, x)dx = k(semi)(xi, xj) . (10)

For consistency, we will write the integrated argument second.

The proof is in Appendix B.

Claim 3.2 (Doubly-integrated Covariance Function). The covariance between two integrated pro-
cess values ei and ej takes the form

Cov(ei, ej) =

∫

(x,x′)∈Ri×Rj

k(x, x′)dxdx′ = k(double)(xi, xj) . (11)

The proof for the doubly-integrated kernel is similar to the semi-integrated case.
To summarize, if we can compute these two types of covariance values then we can plug the

result into the distribution in Equation 5. As for standard GP inference, we can then manipulate
the joint distribution using Gaussian conditioning to compute the posterior distribution over the
value of the unobserved function ρ(x∗) or functionals over test locations, for example integrated
values e∗. Algorithm 1 summarizes GP inference using integrated measurements.

3.2 Choice of covariance function

Assumptions about the dust map ρ(·) can be encoded in the covariance function kθ(·, ·). We
focus on kernels that are stationary and isotropic, which can be written kθ(x, y) = σ2k

(
|x−y|
`

)

where θ , (σ2, `). The parameter ` is the length scale, and the parameter σ2 is the process
marginal variance (Genton, 2001). The length scale controls how smooth the function is; the
marginal variance influences the function’s amplitude. We will compare three families of kernel
functions: squared exponential, Matérn, and a kernel fromGneiting (Gneiting, 2002). The squared
exponential kernel — a commonly used covariance function for Gaussian process regression —
admits an analytically tractable form for the semi-integrated kernel, but not the doubly integrated
kernel. (See Appendix A.) Other kernels, such as the Matérn (Matérn, 1960) or the kernel
presented in Gneiting (2002) do not readily admit a semi-integrated form, which complicates their
use with integrated observations. Similarly, none of the mentioned kernels, including the squared
exponential, admit a doubly-integrated form over two line segments. We develop a method to
overcome this technical limitation in the following section. Furthermore, we use the analytic
tractability of the semi-integrated kernel to validate this method on the squared exponential kernel.

Beyond the choice of covariance function family, the covariance function parameters (e.g. the
length scale and process variance) ought to be tuned. Tuning GP covariance parameters can be
complex — the process values ρ can strongly depend on parameters σ2 and `, making it difficult
to explore their joint space. We discuss this phenomenon within the context of our scalable
approximate inference algorithm in Section 4.
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4 Scaling Integrated GP Inference

Gaussian process models scale poorly to large datasets (Quiñonero-Candela and Rasmussen, 2005;
Titsias, 2009). Computing the posterior distribution of the latent function, the posterior predictive
distribution of new observations, or the marginal likelihood of observed data (e.g. for model
comparison) all require computing the inverse or the determinant of a N ×N matrix — a O(N3)
operation. As N grows larger than a few thousand observations, this computation becomes
intractable. To address this bottleneck, a common strategy is to approximate Gaussian process
inference using M << N inducing points, or spatial locations in the input space that are used
to approximate the full Gaussian process. Inducing point approximations can be interpreted in
multiple ways. One interpretation is that the inducing points are used to construct a rank M
approximation to theN ×N matrix that can be efficiently inverted (e.g.,O(N ·M3)) (Quiñonero-
Candela andRasmussen, 2005). Another interpretation (whichwe adopt below), is that the inducing
points are used to define a family of variational distributions for approximating the posterior over ρ,
and optimizing the variational objective avoids direct manipulation of the N ×N matrix (Titsias,
2009; Hensman et al., 2013).

Integrated observations create an additional computational issue — the semi-integrated or
doubly-integrated covariance value between any two values may be unavailable in closed form
(except in some special cases) and may require high-precision numerical approximation. With the
integrated observations considered here, we have an additional computational issue. Calculating
the semi-integrated or doubly-integrated covariance value between any two values may be un-
available in closed form (except in some special cases) and may require high-precision numerical
approximation. The exact GP inference algorithm in Algorithm 1 requires computing a N × N
matrix of doubly-integrated covariance values, which will be computationally prohibitive when
N is a modest size. Furthermore, when tuning covariance function parameters or comparing
covariance functions, theN ×N matrix of numerically integrated covariance function values will
need to be recomputed many times.

Thus, to use the model to analyze millions of integrated stellar observations, we derive a
scalable variational inference algorithm to perform approximate posterior inference. Variational
inference approximates a posterior distribution by optimizing a parameterized family—the varia-
tional distribution—to be close to the exact posterior (Jordan et al., 1999; Wainwright et al., 2008;
Blei et al., 2017). For the model here, our approach builds on the stochastic variational Gaussian
process (SVGP) framework (Hensman et al., 2013). It uses stochastic optimization to approximate
the posterior (Hoffman et al., 2013), operating on small mini-batches of observations.

Further, to accommodate the integrated observations, we construct a Monte Carlo estimate of
the semi-integrated kernel that generalizes to covariance functions that do not admit a closed form
semi-integrated version. Additionally, we use the rotational invariance of stationary and isotropic
covariance functions to construct a fast approximation to the doubly integrated covariance kernel.

This section describes the SVGP framework and our approach to adapt the framework to
incorporate integrated observations. Section 4.1 describes relevant details of the SVGP framework,
including inducing points, the variational family, and forming efficient mini-batch estimates of the
variational objective. Section 4.2 details our approach to do inference with integrated observations
for a general class of semi-integrated kernels.

4.1 Stochastic Variational Gaussian Processes

SVGP casts inference in GP models as an optimization problem. Crucially, the SVGP optimization
objective is constructed such that it can be written as a sum of N terms, each depending on only
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one data point. Given this construction, the objective can be optimized using stochastic gradients
computed with mini-batches of data. This makes inference more computationally and memory
efficient.

Here, we discuss the SVGP objective with the standard observations— noisy versions of ρ(x)..
We then adapt this approximate inference framework to integrated observations in Section 4.2.
Our derivation of the variational objective is slightly different from Hensman et al. (2013)—we
first define a structured approximating family and then directly derive the evidence lower bound
objective.

For this section’s presentation of inducing points, variational inference, and stochastic varia-
tionalGaussian processes, consider the typicalGPmodel forN observationswithρ ∼ GP (0, kθ(·, ·)),
and standard (i.e., non-integrated) observations yn |xn ∼ N (ρ(xn), σ2n). Wewrite the observation
vector y = (y1, . . . , yN ) and the corresponding latent process vector ρ = (ρ(x1), . . . , ρ(xN )).

Inducing points. Inducing points are a common tool used to scale Gaussian process inference
(Quiñonero-Candela and Rasmussen, 2005). An inducing point is simply a location in the input
space, x̄, which has a corresponding inducing point value ρ(x̄). Inducing points are typically
distributed about the input space — in our experiments we place them on a fixed 3-dimensional
grid throughout space.

We augment the model above withM inducing points and their corresponding values

x̄ , x̄1, . . . , x̄M inducing points (12)

u , ρ(x̄1), . . . , ρ(x̄M ) inducing point values (13)

where u is theM -length vector of values of ρ evaluated at each of theM inducing points. Note
that the introduction of x̄ and u has not altered the original model.

The model above specifies two latent variables, ρ and u, whose distributions we wish to
infer given data y. That is, we wish to characterize the posterior distribution p(ρ,u |y,x, x̄) in a
computationally efficientway.5 SVGPuses inducing points and a specific variational approximation
to avoid the manipulation of the N ×N observation covariance matrix.

Variational inference. Variational inference (VI) is an optimization-based approach to
approximate posterior inference (Jordan et al., 1999; Wainwright et al., 2008; Blei et al., 2017).
VI methods posit a variational family of distributions, q ∈ Q, and use optimization techniques to
find the optimal approximate distribution from the setQ. Here, each element ofQ is a distribution
over the latent quantities — q(ρ,u).

The variational inference framework defines an objective to be optimized— the most common
VI objective is the evidence lower bound (ELBO)

L(q) = Eq(u,ρ) [ln p(ρ,u,y |x, x̄)− ln q(ρ,u)] ≤ ln p(y |x, x̄) . (14)

Maximizing the ELBO minimizes the KL divergence between q(ρ,u) and the true posterior
p(ρ,u |y,x, x̄).

Stochastic variational Gaussian processes The stochastic variational GP framework (SVGP)
(Hensman et al., 2013) uses a particular form for the variational family. Given the set of inducing
points x̄, the SVGP variational approximation is

q(ρ,u) = p(ρ |u) qλ(u) , qλ(u) , N (u |m,S) , and λ , (m,S), (15)

5Note that we are considering a model where the likelihood and prior are both Gaussian distributions — a conjugate
pair — which implies that the posterior distribution will also be Gaussian. Indeed it will be, but manipulating Gaussian
will scale cubically in N . The SVGP approach is constructed to scale linearly in N .
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where p(ρ |u) is specified by the Gaussian process prior and recall that u and ρ are jointly
multivariate normal. The variational parameters λ are fit by optimizing the ELBO defined in
Equation 14.

The SVGP approximation defined in Equation 15 is chosen because it has a very specific
property — when plugged into Equation 14, the objective decomposes into the sum ofN separate
terms. This allows us to create unbiasedmini-batched estimators of the objective (and its gradients),
enabling efficient inference. We can see through a straightforward algebraic manipulation (we
suppress ρ and u’s dependence on x and x̄ to remove clutter)

L(λ) = Eq(ρ,u) [ln p(ρ,u,y)− ln qλ(ρ,u)] (16)
= Eqλ(u)p(ρ |u) [ln p(y |ρ) +

XXXXXln p(ρ |u) + ln p(u)− ln qλ(u)−XXXXXln p(ρ |u)] (17)
= Eqλ(u)p(ρ |u) [ln p(y |ρ)]
︸ ︷︷ ︸

(i)

−KL(qλ(u) || p(u)) , (18)

and we can write the term (i) as a sum over the N observations

(i) , Eqλ(u)
[
Ep(ρ |u) [ln p(y |ρ)]

]
(19)

= Eqλ(u)

[
Ep(ρ |u)

[
N∑

n=1

ln p(yn | ρn)

]]
(20)

=
N∑

n=1

Eqλ(u)
[
Ep(ρ |u) [ln p(yn | ρn)]

]
︸ ︷︷ ︸

,Ln

. (21)

When the likelihood p(yn | ρn) is Gaussian, the expectation in each of theLn terms can be computed
analytically. Notice the cancellation in Equation 17 eliminates the term that involves all N data
points and a N ×N matrix inversion, ln p(ρ |u) (Titsias, 2009).

To complete the derivation, we write a mini-batched estimator of the ELBO. Given a set of
randomly selected observations B,

L̂(λ) =
N

|B|
∑

b∈B
Lb −KL(qλ(u) || p(u)) , (22)

which is an unbiased estimator of the full objective, and only touches |B| << N observations.
We can use gradients of this estimator to optimize the lower bound with respect to variational
parameters λ = (m,S). WithM inducing points, a mini-batched estimator can be computed in
O(|B| ·M3) time.

When predicting, note that we only condition on the inducing point values u, relying only
on the prior covariance between u and ρ∗. The structure of this variational approximation forces
the inducing point values u to represent all of the information learned from the data. While
this approximation is no longer “nonparametric” in the traditional sense, it has been shown that
inducing point methods can provide good approximations to exact GP inference provided enough
inducing points are used (Burt et al., 2019). Empirically, we find that we can adequately tune
covariance parameters and predict on held-out data using a modest number of inducing points (on
the order ofM = 6,000).

Natural gradients Given the objective in Equation 18, we are now tasked with finding the
optimal parameters λ. We use stochastic optimization with mini-batches (Hoffman et al., 2013)
alongwith natural gradients (Amari, 1998), which are effective for variational inference ofGaussian
processes (Hensman et al., 2013).
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For exponential family distributions (e.g. the multivariate normal), the natural gradient can
be computed by taking the standard gradient with respect to the mean parameters (Hoffman
et al., 2013). Following Hensman et al. (2013), the natural gradient for variational parameters
λ = mλ,Sλ is straightforward to express using the natural parameterization of the multivariate
normal qλ. See Appendix C for more details.

Whitened parameterization. Draws of u ∼ p(u | x̄,θ) are highly dependent on θ. Consider
a draw u conditioned on a fixed length scale parameter of `. This same draw will be highly
improbable under the prior with a different length scale parameter, e.g. 2`. The variational
approximation λ targets the posterior distribution p(u |y,θ), which is highly dependent on the
structured Gaussian process prior. This dependence frustrates the joint inference of λ and θ —
small changes in θ can make the approximate distribution over u suboptimal. This dependence
forces gradient methods to take small steps, which leads to extremely slow joint inference.

An effective strategy for coping with this dependence is to do posterior inference in an al-
ternative parameterization of the same model that decouples variables u and θ. For structured
latent Gaussian models (e.g. Gaussian processes) this alternative model uses the whitened prior
(Murray and Adams, 2010) or non-centered parameterization (Bernardo et al., 2003). For the
dust map model, we whiten the prior by altering the target of posterior inference — instead of
approximating the posterior over inducing point values p(u |y,θ), we target the posterior over
inducing point noise values p(z |y,θ), where the relationship between z and u is constructed to
produce an equivalent model. For notational clarity, we define K , K

(θ)
u,u for a fixed value of θ

and L such that K = LLᵀ is a general matrix square root. The whitened model can be written

z ∼ N (0, IM ) , u , Lz ∼ N (0,K) . (23)

Wenow target the posterior distributionp(z |y,θ) byfitting an approximation qλ(z) = N (z | m̃, S̃).
The linear relationship between z and u implies that m = Lm̃ and S = LS̃Lᵀ. We describe
additional details of this parameterization in Appendix D.

4.2 Adapting to integrated observations

The previous section detailed a scalable approximate inference algorithm for Gaussian processes
in the typical noisy pointwise observation setting. Here, we adapt this framework to integrated
observations. The challenge is now efficiently computing the appropriate semi- and doubly-
integrated covariance values to be used within each mini-batch update.

The natural gradient described in Equation 39 consists of two types of covariance matrices
— Ku,u and Ku,ρ. The former describes the prior covariance between inducing point values
and remains exactly the same in the integrated observation setting. The latter describes the cross
covariances between process locations and inducing point values — this cross covariance must be
adjusted to reflect the covariance between the integrated process and the inducing point values.
This is precisely what is defined by the semi-integrated covariance function. The entries of Kρ,u

have to simply be switched to the semi-integrated covariance defined in Claim B.1

(Kρ,u)n,m =

∫

x∈Rn

k(xm, x)dx . (24)

In addition to the semi-integrated cross covariances, ziggy will need to calculate doubly-
integrated covariance terms. First, note that the gradient defined in Equation 39 does not require
doubly integrated terms. This is convenient — the inducing point method does not require cross
covariances between integrated observations, and these cross covariances also happen to be the
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most expensive to approximate with numerical methods. However, computing the variational
objective (Equation 18) and making predictions (Equation 78) do require the doubly-integrated
diagonal terms, Kn,n for each observation.

Given the above dependence on integrated covariance terms, the full adaptation of the SVGP
method to integrated observations runs into two technical hurdles. First, the semi-integrated co-
variance is not available in closed form beyond the simple squared exponential, which is considered
too smooth (and thus of limited capacity) in many settings. This limitation will make it difficult
to use custom covariance kernels constructed with astronomical theory (Leike and Enßlin, 2019).
Further, it will make it difficult to compare different models and choose the best predictor among
them. Second, even when the semi-integrated covariance kernel is available in closed form, the
doubly-integrated covariance is not. The SVGP (and any inducing point) algorithm only relies on
the diagonal of the covariance kernel, so we only need to approximate this diagonal, scalar-valued
function. We show that this scalar-valued function can be easily approximated using a small grid
of interpolated values, where the “true” values are approximated using numerical integration.

We introduce two computationally efficient approximations to these operations on the covari-
ance function to overcome these technical issues: (i) Monte Carlo estimates for semi-integrated
covariance functions and (ii) linear interpolation for the doubly-integrated diagonal covariance
function.

Monte Carlo estimators for semi-integrated kernels The natural gradient updates in Equa-
tion 39 require computing the covariance between observations and inducing point values, Kρ,u.
For integrated observations, the covariance between observations and inducing points is given by
the semi-integrated kernel in Equation 24. For kernels with a closed form semi-integrated kernel
(e.g. the squared exponential), we can simply substitute k(semi)(x̄m, xn) for k(x̄m, xn) in the loss
and gradients and proceed within the typical SVGP framework.

For kernels without a closed form semi-integrated kernel, we run into a computational issue—
how do we compute the appropriate cross covariance values? One approach is to use numerical in-
tegration— the semi-integrated covariance is a one-dimensional integral that can be approximated
with quadrature techniques. However, each batch requires computing M × |B| semi-integrated
covariance values — this can be computationally expensive, which would force us to use small
batches, and this leads to slower learning.

Stochastic natural gradient updates are already an estimate of the true gradient — how good
does this estimate have to be to effectively find the optimal solution? Numeric integration approxi-
mations to k(semi)(·, ·) are precise to nearly machine precision, but are computationally expensive.
Analogously we can ask, how good do the semi-integrated covariance approximations have to be
to effectively find the optimal solution?

Pursuing this idea, we propose using a Monte Carlo approximation to the semi-integrated co-
variance values—we sample uniformly along the integral path and average the original covariance
values. More formally, we introduce a uniform random variable νRn that takes values along the
ray Rn from the origin to xn. We can now write the semi-integrated covariance as

k(semi)(xm, xn) =

∫

x∈Rn

k(xm, x)dx = |Rn|
∫

ν∈Rn

1

|Rn|︸︷︷︸
=p(ν)

k(xm, x)dx = |Rn|Eν [k(xm, ν)] .

This form admits a simple Monte Carlo estimator

ν(1), . . . , ν(L) ∼ Unif(Rn) , k̂(semi)(xm, xn) =
|Rn|
L

∑

`

k(xm, ν
(`)) . (25)
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It is straightforward to show that Equation 25 is an unbiased and consistent estimator for the true
semi-integrated covariance value evaluated at xm and xn. While plugging this directly into the
gradient formula results in a biased estimator for the natural gradient, we find that with a modest
number of samples we can closely match the optimization performance of the true natural gradient
estimator. We investigate the relationship between samples L and the resulting optimization in
Appendix Figure 9. Appendix E.1 contains additional details and experimental results validating
this approach.

Although conceptually similar, note that this Monte Carlo estimate of the semi-integrated
covariance is not equivalent to discretizing along each line of site as in (Rezaei Kh. et al., 2017).
The estimator can use a small number of samples along the ray and still be useful within stochastic
gradient optimization.

Integrated Observation Variance. The SVGP algorithm requires an additional covariance
calculation — the marginal variance of an integrated observation at point xn, k(doubly)(xn, xn).
Note that we do not need to compute the non-diagonal terms of the doubly integrated kernel, a
consequence of the separability of Equation 21. Similar to the semi-integrated kernel function, the
doubly integrated function can be approximated with numerical methods — a double quadrature
routine for each observation. But, similar to the semi-integrated case, this double quadrature call
becomes a computational bottleneck within each batch. Furthermore, computing the gradient of
the ELBO with respect to the covariance parameters with autodifferentiation tools would require
differentiating through a double quadrature call — prohibitive in our setting.

We solve this problem by observing that a rotationally invariant (and stationary) kernel admits
a doubly-integrated version that is a function only of the distances to each of the two integral
endpoints. That is, k(doubly)(xi, xj) can be written as a function f(|xi|, |xj |) for a fixed setting of
covariance function parameters. Further, we can write the diagonal of the doubly-integrated kernel
as a function of only the distance to the single point, k(doubly)(xn, xn) = f(|xn|).

Given that this is a one-dimensional function shared by all N of our observations, we approx-
imate the doubly-integrated kernel diagonal with linear interpolation. The interpolation scheme
allows us to cheaply compute a highly accurate approximation to the doubly-integrated diagonal. It
also enables us to easily backpropagate gradients to the kernel function parameters, which enables
efficient tuning during the variational inference optimization routine. Appendix E.2 describes the
interpolation scheme for k(doubly)(xn, xn) in further detail.

4.3 Method summary and remarks

To summarize, ziggy scales Gaussian process inference with integrated observations by fusing
several strategies: (i) the explicit representation of the inducing point posterior within the SVGP
framework; (ii) a whitened parameterization to decouple λ and θ in the variational objective; (iii)
on-the-fly Monte Carlo estimates of the semi-integrated covariance function; (iv) and fast kernel
interpolation of the doubly integrated diagonal covariance function that leverages the stationary
and isotropic properties of the covariance functions considered.

Algorithm2describes themain loop for updating based on stochastic gradients of the variational
parameters and the covariance function parameters θ. Maximizing the variational lower bound
(Equation (18)) with respect to prior parameters θ is a similar strategy to empirical Bayes (Efron
et al., 2008; Efron, 2019), a method used to reduce the average error of posterior estimates.

We find that the inducing point approach dovetails nicely with integrated observations—most
evaluations of the covariance function are between inducing points and observations. This only
requires computing the (easier) semi-integrated covariance function. Further the doubly-integrated
covariance values between any two distinct observations never needs to be computed. Rather, only
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the diagonal of this covariance function needs to be computed, but this conveniently reduces to a
one-dimensional function that can be efficiently approximated. ziggy circumvents computing the
(prohibitive) N ×N doubly-integrated covariance.

We note that the SVGP framework for scaling Gaussian process is one approach to build upon
for our application—other frameworks for scaling kernel methods could have been employed. One
example is random (or carefully selected) features for approximating the kernel function (Rahimi
and Recht, 2008; Yang et al., 2012; Le et al., 2013). While these approximate kernel methods
could yield superior performance, one reason we reach for the SVGP framework is extensibility.
The variational inference framework can incorporate more complex probabilistic graphical model
structure. For this application, additional types of observations can be incorporated into a more so-
phisticated likelihood model to help identify the spatial dust distribution and incorporate additional
sources of uncertainty.

5 Validation with a Domain Simulation

We developed ziggy with the goal of generating a three-dimensional dust map of the Milky Way
using 2 billion stars in the Gaia dataset (Brown et al., 2018). As a step towards that goal—and to test
ziggy in an applied environment—we infer the dust distribution of a mechanistic and physically
motivated domain simulation. The domain dataset is a synthetic Gaia survey of a high resolution
Milky Way-like galaxy simulation.

The domain dust density ρ(x) was generated in a Milky Way-like galaxy simulation, one of
many in the Latte suite of simulations of Milky-Way-mass galaxies (Wetzel et al., 2016; Hopkins
et al., 2018). It was run as part of the Feedback In Realistic Environments (FIRE) simulation
project, which self-consistently models extinction and star formation in a cosmological context at
high resolution.

In astronomy, most observations prefer amodel inwhich ourUniverse is predominantlymade of
cold dark matter (Aghanim et al., 2018). On small scales, however, there are significant challenges
to this model (Klypin et al., 1999), which this suite of simulations helps resolve (Wetzel et al.,
2016). This Latte simulation overcomes the computational challenge of including gas, dust, and
stars with high enough resolution to resolve these tensions. It includes more complex physics of
“normal” matter, as apposed to just dark matter, including a high resolution disk of gas and dust.
Because of the results from these simulations, which resolved these tensions, astronomers are more
confident in a universal model of dark matter.

The simulation has enough resolution to resolve the formation of structures in the dense gas that
forms dust and stars, creating a realistic environment for inference. The positions of the extinction
observations, or the positions of stars within ρ(·), was generated by the Ananke framework.
The Ananke framework generated a realistic, mock star catalog from the FIRE simulation, and
kept intact important observational relationships between gas, extinction, and stellar populations
(Sanderson et al., 2018). This catalogue was specifically designed to resemble a Data Release
2 Gaia astrometric survey (Brown et al., 2018), with a similar resolution of stellar density as
Gaia. We integrated ρ(x) along lines of sight to 1 million stars in the Ananke dataset within a
0.5kpc× 0.5kpc× 0.1kpc region of the synthetic sun. So, we generate a set of N noisy integrated
observations

xn ∼ Ananke(X ) stellar locations (26)

en =

∫

x∈Rn

ρ(x)dx domain extinctions (27)
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Figure 2: Integrated observation GPs can reveal spatial structure from a severely limited vantage
point. This figure summarizes domain simulated data posterior inference using N = 1,000,000
examples in a three-dimensional space. Panel 2a depicts the true (unobserved) ρ(x) that generates
the data. Panel 2b depicts the observed data, noisy integrated measurements of ρ from the origin to
stellar positions in the domain simulation. 2c depicts the inferred ρ given these observations using
ziggy with a squared exponential kernel. 2d depicts the marginal posterior standard deviation at
each location in X -space. All Panels are a slice at z = 0

an ∼ N (en, σ
2
n) noisy integrated observation (28)

where the domainX = [(−0.25, 0.25), (−0.25, 0.25), (−0.05, 0.05)], the median extinction value
is 0.01, and noise variance is chosen to be σn = 0.005. So our median signal-to-noise value is 3.
The true extinctions, en, are computed to high precision using numerical quadrature, integrating
from the origin to the Ananke stellar locations xn. The integrated observations are depicted in
Figure 2b. We estimate this domain specific dust density ρ(·) from noisy integrated observations
using ziggy.

In Section 5.1, we compare posterior estimates of ρ(·) as a function of training data set size.
This highlights the importance of scaling inference to more observations in order to obtain a more
accurate statistical estimator. In Section 5.2, we compare posterior estimates of ρ(·) as a function
of kernel choice, with a fixed data set size.
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Figure 3: Scaling to massive N improves estimator performance. We compare predictive RMSE
(left) and log likelihood (right) as a function of data set size N on a held out sample of test stars.
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Figure 4: Slices of the posterior mean function at z = 0 for various dataset sizes. More data leads
to more accurate predictions of ρ(·).

5.1 The quality of the estimate

We study the quality of the estimate of ρ(x) as a function of data set sizeN . We fit the dust model
to the Ananke dataset with data set sizes N ∈ {103, 104, 105, 106} for 105, 104, 103, 100 epochs,
respectively. We trained each model using mini-batches of size |B| = 2,000, an initial step size of
0.01, reducing it every epoch by multiplying by a decay factor of 0.99. We measure model quality
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by computing root mean squared error (RMSE) and log likelihood (LL) on a set of Ntest = 2,000
held out extinction values. Each model usesM = 16× 16× 4 inducing points, evenly spaced in
a grid in the input space.

Figure 2 summarizes the model’s fit using one million observations, the most we tried in this
example. Figure 2c displays the posteriormean for ρ(x) given the onemillion observations depicted
in 2b. Figure 2d shows the posterior uncertainty (one standard deviation) about the estimatedmean.
We see that the million-observation model recovers the true latent function particularly well.

Figure 3 quantifies the improvement in the RMSE and log likelihood on a held out sample of
test stars as a function of dataset size N . As the dataset size increases, both statistics drastically
improve. Figure 4 visualizes a direct comparison of the posterior estimate of the latent function
as we increase data set size N . We can clearly see that as we incorporate more data into the
nonparametric model, the form of the true underlying function emerges. To accurately visualize
and interpret large scale features of the latent dust distribution, we will want to incorporate as
many stellar observations as possible. This is particularly true in the low signal to noise regime of
extinction estimates.

5.2 Comparing kernels

Similar to the synthetic dataset, we compare multiple models by fitting the variational approxima-
tion and tuning the covariance function parameters for 5 different kernel choices.

In this domain setup, we ran each model for 100 epochs, saving the the model with the best
ELBO value. We used mini-batches of size |B| = 2,000, and started the step size at 0.01, reducing
it every epoch by multiplying by a decay factor of 0.99. For kernels that do not have a closed
form semi-integrated version, we used L = 50 uniform grid Monte Carlo samples to estimate the
integrated covariance.

We validate the inferences against a set of 2,000 held-out test extinctions e∗. We quantify the
quality of the inferences with mean squared error, log likelihood, and the χ2-statistic on the test
data. We also visually validate ziggy with a QQ-plot and coverage comparison, also on test data.
We also visualize the behavior of ziggy as a function of distance to the origin — specifically, we
visualize how accurate and well-calibrated test inferences are as synthetic observations are made
farther away.

In Figure 5 we compare the mean squared error (MSE), the log likelihood, and the χ2 statistic
on the held out test data. We compare five different kernels – (i) Gneiting α = 1 from Rezaei Kh.
et al. (2018) (ii-iv) Matérn, ν ∈ {1/2, 3/2, 5/2}, and (v) the squared exponential kernel. The
results match our expectations. The true ρ(·) is quite smooth, and we see that the smoother kernels
tend to have lower predictive error and higher log likelihood. All kernels have similarly calibrated
χ2 statistic, except for Matérn, ν = 3/2, which under predicts it’s posterior variances. This can
also be seen in Figure 6. The test statistic comparison has chosen a good match in the squared
exponential kernel.

To test the calibration of posterior uncertainties, we inspect statistics of test-sample z-scores
for e∗. We test that the statistics of predictive z-scores resemble a standard normal distribution
using a QQ-plot. For a more detailed description fo the QQ-plot, please see Section F.2. To
compare different models, we visualize QQ-plots for the different covariance functions in Figure 6.
As an additional summary of calibration, we compare the fraction of predicted examples covered
by 1/2, 1, 2, and 3 posterior standard deviations, summarized in Table 1. We see that there is room
for improvement in the posterior variances. The z-scores and empirical coverage show posterior
variances that are well calibrated for the squared exponential and Matérn, ν = 5/2 kernels, but
are too large for the other kernels. The models for the less smooth kernels are compute bound,
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Figure 5: Predictive summaries across different models and inference schemes. The smoother
models have better predictive summary statistics which is consistent with the underlying density
field being very smooth.
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requiring thousands of inducing points to tile the domain. We ran the models for 100 epochs, which
maxed out the memory and compute time. Miscalibration could be the result of misspecification
of the model itself — e.g., mismatch between the covariance function k and the true underlying ρ,
or the inflexibility of the variational approximation. To diagnose this shortcoming, methods that
allow us to scale the expressivity of the variational approximation — e.g., largerM — would be
necessary.

We also depict model fit statistics as a function of distance from the origin in Figure 7. Figure 7a
visualizes the test extinction values. ziggy is able to accurately reconstruct the dust map. Figure 7b
shows the posterior standard deviation by distance, which shows a noise reduction of about 10×
for most stars. In Figure 7c we see that the predictions have posterior variances that are slightly
too high, causing z-scores that lie mostly within 2σ independent of distance, with only the most
nearby stars extending to 3σ. Decent calibration, including at far distances, is encouraging, as the
goal is to form good estimates of this density far away from the observer location.

6 Discussion

Mapping the three-dimensional distribution of dust in the Milky Way is fundamental to astronomy.
Star dust obscures our observations of star light, and so an accurate dust map would help us more
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Gneit-α = 1 Mat-ν = 1/2 Mat-ν = 3/2 Mat-ν = 5/2 SqExp N (0, 1)
σ

0.5 0.894 0.760 0.451 0.730 0.625 0.383
1.0 0.965 0.900 0.677 0.900 0.869 0.683
2.0 0.997 0.969 0.878 0.991 0.986 0.955
3.0 1.000 0.994 0.947 1.000 0.999 0.997

Table 1: Coverage fractions at various levels of z-score standard deviation σ for test extinctions
e∗. Compared with theoretical coverage fractions, we see that our inferences generate predictions
that are well calibrated for the smoothest kernels

0.05 0.10 0.15 0.20 0.25 0.30 0.35
distance

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

et
es

t

(a) Test e values by distance

0.05 0.10 0.15 0.20 0.25 0.30 0.35
distance

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

es
ig

_t
es

t

(b) Test e posterior standard devi-
ation

0.05 0.10 0.15 0.20 0.25 0.30 0.35
distance

4

3

2

1

0

1

2

e 
zs

co
re

(c) Test e z scores by distance

Figure 7: Posterior summaries as a function of distance to the origin (observation point). The
noise variance for the extinction estimates is σn = 0.005, so Figure a demonstrates our low signal
to noise regime, Figure b demonstrates our shrinkage by a factor of 10, and Figure c demonstrates
our decent calibration in this very low signal to noise regime.

clearly observe the universe. Such a dust map would be a new lens into the dynamics of the Milky
Way, providing a trace of the process by which it formed.

In this paper, we developed ziggy, a method to estimate the dust map from millions of
astronomical observations. ziggy incorporates noisy information into a single, coherent spatial
model. We developed technical innovations to accommodate integrated observations into the
Gaussian process framework, and to scale such a model to millions of observations without spatial
discretization. We validated these algorithmic innovations with numerical studies, and measured
the performance of ziggy in both a synthetic setting and a realistic, high-fidelity dataset used in
astronomical study. We showed that ziggy is able to incorporate millions of observations and
recover accurate and well-calibrated estimates of both stellar extinctions and pointwise values of
the three-dimensional dust map.

There are several avenues for future research and improvement. ziggy assumes that distances
are known, when in reality they are noisy. In practical applications, we will only include stars with
precise distance measurements, lowering the spatial density of observations, which may degrade
estimates. We view ziggy as a step toward a probabilistic model of photometric measurements
that jointly infers brightnesses, colors, distance, and spatial dust. Jointly modeling brightnesses,
distances, and a spatial dust map using a Bayesian hierarchical model will allow us to leverage the
coherence of Bayesian probabilistic modeling to form tighter estimates of all modeled quantities.

Additionally, a limitation of our treatment is the Gaussian error assumption. Non-Gaussian
observation errors could degrade extinction estimates — e.g., forcing ρ to be more complex (i.e.,
with a smaller length scale) than it truly is. Aflexible hierarchical Bayesianmodel could incorporate
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a non-Gaussian likelihood that could be more robust to heavier tailed observation error.
A full map that spans the entirety of the Milky Way will require increasing the capacity of

the approximation. To reconstruct both global and local features using an inducing point method,
we need to ensure that small length scales (relative to the input domain) can be resolved. When
inducing points are spatially distant from one another, the inducing point approximation will not
have the capacity to represent sharp changes in ρ(x) at small scales. This limitation can be
overcome by including more, and closer, inducing points. However, introducing more inducing
points butts up against the O(M3) computational limitations. In this work, we assume we are
able to populate the space with enough inducing points; but the scaling concern is an important
avenue of future work. Incorporating more inducing points will be crucial to resolving both global
features and fine local features within the Milky Way.

The ultimate goal of this line of work is to produce an accurate catalog of the properties of
stars, such as probabilistic brightnesses and distances, and the focus of scale is motivated by the
size of modern photometric catalogs. PAN-STARRS 1 catalog includes 2.4 million detected stars
(Flewelling, 2016), the fifteenth data release of the Sloan Digital Sky Survey includes photometry
for over 260 million detected stars (Aguado et al., 2019), and the second GAIA data release has
1.3 billion stars with parallax measurements that can be used to estimate the interstellar dust
distribution (Brown et al., 2018). As a final avenue of research, we will scale ziggy to incorporate
billions of observations in a much larger spatial domain.
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Mapping Interstellar Dust with Gaussian Processes:
Supplementary Material

A Covariance Function Definitions

Wecompare three families of covariance functions in thiswork: (i) squared exponential, (ii)Matérn,
(ii) and a kernel from Gneiting (Gneiting, 2002). Each are parameterized with an amplitude scale
σ2 and length scale parameter `.

The squared exponential kernel is defined

k(x, y) = σ2 exp

(
− 1

2`2
|x− y|22

)
(29)

The Matern class of kernels

k(x, y) = σ2
21−ν

Γ(ν)

(√
2ν
d

`

)ν
Kν

(√
2ν
d

`

)
(30)

And the Gneiting kernel is defined

k(τ) = σ2(1 + τα)−3 ((1− τ)cos(τ · π) + (1/π)sin(τ · π)) (31)

for τ = |x− y|/`, τ < 1.
We graphically depict these covariance functions in Figure 8.

B Integrated Covariance Functions

Below is a simple derivation of the semi-integrated covariance function.
Claim B.1 (Semi-integrated Covariance Function). The covariance between a process value ρi ,
ρ(xi) and an integrated value ej ,

∫
x∈Rj

ρ(x)dx takes the form

Cov(ρi, ej) =

∫

x∈Rj

k(xi, x)dx (32)

= k(semi)(xi, xj) . (33)

For consistency, we will write the integrated argument second.
Proof. Without loss of generality consider a mean zero process ρ. For positive and integrable
covariance functions k(·, ·) (e.g. the Matérn and squared exponential) the double integral will be
finite. By Fubini’s theorem we can reverse the order of integration, yielding

Cov(ρi, ej) = E

[
ρi

∫

x∈Rj

ρ(x)dx

]

= E

[∫

x∈Rj

ρiρ(x)dx

]

=

∫

x∈Rj

E [ρiρ(x)] dx

=

∫

x∈Rj

Cov(ρi, ρ(x))dx =

∫

x∈Rj

k(xi, x)dx .
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Figure 8: Correlation function for squared exponential, Matérn, and Gneiting kernels. Here the
squared exponential and Matérn kernels have σ2 = 1 and ` = 1; the Gneiting kernel has ` = 2.
Note that the Gneiting kernel goes to zero above `, while the other two kernels. Further, the
steepness of the function at 0 determines how smooth the GP sample paths will be — the squared
exponential kernel is the smoothest, while the Gneiting α = .5 is the most jagged.

B.1 Semi-integrated Squared exponential kernel

The squared exponential covariance function is commonly used for Gaussian process regression
(Rasmussen and Williams, 2006). For D-dimensional inputs xi, xj , it is

ksqe(xi, xj) = σ2 exp

(
−1

2
(xi − xj)ᵀL−1(xi − xj)

)
, (34)

where θ = (L, σ2) are the D ×D-size length scale matrix L and the process marginal variance
σ2. For an isotropic Gaussian process, the length scale matrix L is ` · ID for a scalar length scale
`. The length scale controls the smoothness of the function; smaller length scales create more
wiggly functions and longer length scales create more slowly-changing functions. This kernel puts
support on functions with infinitely differentiable sample paths.

The squared exponential kernel admits an analytically tractable form for the semi-integrated
kernel

k(semi)
sqe (xi, xj) =

∫

[0,1]
ksqe(xi, α · xj)||xj ||2dα (35)

=
1

2
||xj ||2σ2

√
2π

a
exp

(
b2

2a
− c

2

)[
erf

(
1− b/a√

2/a

)
− erf

(
−b/a√

2/a

)]
(36)

where erf(·) is the error function, and a, b, and c are defined

a = xᵀjL
−1xj , b = xᵀiL

−1xj , c = xᵀiL
−1xi

and the origin, or observer, is at 0.
The doubly-integrated squared exponential covariance function is not as straightforward to ex-

press. Deriving the doubly-integrated squared exponential covariance function requires integrating
the expression in Equation (36). Integrating the error function multiplied by a quadratic requires
either numerical approximation or a more sophisticated approach (Fayed and Atiya, 2014). We
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Algorithm 1: Exact Gaussian process inference with noisy integrated observations.

Data: data set D , {xn, σn, an}Nn=1, test location x∗, covariance functions: standard
k(·, ·), semi-integrated k(semi)(·, ·), and doubly-integrated k(double)(·, ·)

Result: µ∗, σ2∗ for posterior p(ρ(x∗)|D) = N (µ∗, σ
2
∗)

(Ke)i,j ← k(double)(xi, xj) for i, j = 1, . . . , N ; // doubly-integrated Gram matrix

(K∗,e)∗,j ← k(semi)(x∗, xj) for j = 1, . . . , N ; // semi-integrated cross
covariance
K∗,∗ ← k(x∗, x∗) ; // prior variance from standard covariance function
Σ← diag(σ21, . . . , σ

2
N )

µ∗ ← K∗,e(Ke + Σ)−1a
σ2∗ ← K∗ −K∗,e(Ke + Σ)−1Kᵀ

∗,e
return µ∗, σ2∗

note that, while it is straightforward to analytically derive the integral of the squared exponential
kernel over the unbounded region [−∞,∞]2 (e.g. to compute a Gaussian normalizing constant), it
is not straightforward to integrate over two-dimensional compact sets, e.g. [0, xi]× [0, xj ] — this
is exactly what is required to compute the doubly-integrated kernel.

C Stochastic Natural Gradients for SVGPs

Following Hensman et al. (2013) and Hoffman et al. (2013), the natural gradient for variational
parameters λ = mλ,Sλ is straightforward to express using the natural parameterization of the
multivariate normal qλ

η1 = S−1λ mλ , η2 = −1

2
S−1λ . (37)

The natural gradient of L with respect to η1 and η2 can be written

∇̃η2
L = −1

2
Λ + η2 (38)

∇̃η1
L = −1

2
K−1u,uK̃u,ρy + η1 (39)

where we define

Λ = K−1u,uK̃u,ρK̃ρ,uK−1u,u + K−1u,u (40)

=
∑

n

K−1u,u

(
K̃u,nK̃n,u

)
K−1u,u + K−1u,u , (41)

and

K̃ρ,u , Σ−1/2Kρ,u (42)
(Kρ,u)n,m = k(xn, x̄m) (43)

Σ , diag(σ21, . . . , σ
2
N ) . (44)

Note that Equation 41 shows that the term Λ can be decomposed into a sum of N data-specific
terms. Further, the gradient for η1 includes the term K̃u,ρy =

∑
n K̃u,nyn that also decomposes
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into a sum over the N data-specific terms. These two decompositions enable us to compute
unbiased mini-batched natural gradients and optimize the ELBO using stochastic gradient ascent.
An additional benefit of using the natural gradient is that a stochastic gradient update to η2 will stay
in the positive semi-definite cone. This allows us to directly parameterize η2 and not its Cholesky
factor or symmetric square root, simplifying our implementation.

D Whitened Parameterization Gradients

The relationship between the whitened model over z and the standard model over u implies the
following relationship between the Gaussian variational parameters

m = Lm̃ (45)

S = LS̃Lᵀ. (46)

Similarly, the natural parameters have the relationship

η1 = S−1m = (Lᵀ)−1S̃
−1

L−1Lm̃ = (Lᵀ)−1η̃1 (47)

η2 = −1

2
S−1 = −1

2
(Lᵀ)−1S̃

−1
L−1 = (Lᵀ)−1η̃2L

−1. (48)

The natural gradient is invariant to parameterization (Amari, 1982), which implies that the
whitened natural gradient transformation can be derived by multiplying the standard update by Lᵀ

η
(t+1)
1 = η

(t)
1 + (µ− η

(t)
1 ) natural gradient updates (49)

η
(t+1)
2 = η

(t)
2 + (−1

2
Λ− η

(t)
1 ) (50)

=⇒ η̃
(t+1)
1 = η̃

(t)
1 + (Lᵀµ− η̃

(t)
1 ) whitened natural gradient updates (51)

η̃
(t+1)
2 = η̃

(t)
2 + (−1

2
LᵀΛL− η̃

(t)
2 ). (52)

This yields a natural interpretation — the whitened sufficient statistics must undo the inverse
covariance structure from the prior before updating the variational parameters.6

When it comes time to predict, we will simply transform the whitened parameters into standard
parameters using Equation 46, and proceed with the usual multivariate Gaussian conditioning.
In Section G.1 we show that optimizing in the whitened space can yield better tuned covariance
function parameters. This empirical evidence supports the practical conclusion that jointly tuning
the variational approximation over z and θ is an easier optimization problem than jointly tuning
parameters over u and θ due to the stronger dependence between u and θ.

E Scaling Integrated Observation GPs: Algorithm Details

E.1 Monte Carlo estimators for semi-integrated kernels

For tractable semi-integrated covariance functions (e.g. the squared exponential kernel) we can
easily substitute a closed form computation for Kρ,u in Equation 39. However, when the semi-
integrated covariance term is intractable, directly using natural gradient updates becomes com-
plicated. One approach is to use numeric integration — the semi-integrated covariance is a

6Note that the natural parameters are in “information form”— pre- and post-multiplying by the covariance Cholesky
will whiten a precision matrix.
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one-dimensional integral that can be approximated with quadrature techniques. However, when
we haveN andM very large, solvingN×M numerical integration problems to populate the cross
covariance matrix can be too expensive to be practical.

Stochastic natural gradient updates employ computationally cheap estimates of the true gradient
to solve the original optimization problem. The operative question is, how good do these estimates
have to be to effectively find the optimal solution?

Similarly, numeric integration approximations to k(semi)(·, ·) are precise to nearly machine
precision, but are computationally expensive. Analogously we can ask, how good do the semi-
integrated covariance approximations have to be to effectively find the optimal solution?

Pursuing this idea, we propose using a Monte Carlo approximation to the semi-integrated co-
variance values—we sample uniformly along the integral path and average the original covariance
values. More formally, we introduce a uniform random variable νRn that takes values along the
ray Rn from the origin to xn. We can now write the semi-integrated covariance as

k(semi)(xm, xn) =

∫

x∈Rn

k(xm, x)dx (53)

= |Rn|
∫

ν∈Rn

1

|Rn|︸︷︷︸
=p(ν)

k(xm, x)dx (54)

= |Rn|Eν [k(xm, ν)] . (55)

This form admits a simple Monte Carlo estimator

ν(1), . . . , ν(L) ∼ Unif(Rn) (56)

k̂(semi)(xm, xn) =
|Rn|
L

∑

`

k(xm, ν
(`)) . (57)

It is straightforward to show that Equation 57 is an unbiased and consistent estimator for the true
semi-integrated covariance value evaluated at xm and xn.

Uniformly distributed grids The unbiased Monte Carlo estimator k̂(semi) will have some
variance about the mean. The quality of an unbiased estimator is often measured by how low its
variance is— the more precise the better. Independent and identically distributed samples ν(`) will
yield the correct expectation, but may be lower variance than a more clever sampling scheme. For
our application, we uniformly sample along the ray that traces from the originO to the observation
location xn. Intuitively, drawing two uniform random variables that are very close to one another
will carry redundant information (for smooth functions k(·, ·)). Spreading our samples out to cover
more of the length of the ray may yield more precise estimates, provided that we can construct a
sample that yields the correct expectation.

One inexpensive way to generate a set of identically distributed (but not independent samples)
is to lay down a random grid of points. Consider the sampling procedure for L samples along the
unit interval

ν(1) ∼ Unif(0, 1/L) (58)

ν(`) = ν(`−1) + 1
L for ` = 2, . . . , L . (59)

This sampling scheme will generate a set of L correlated samples that constructs a randomly
placed grid within the unit interval. If we randomly permute the variables ν1, . . . , νL (or, equiv-
alently, randomly select one of them) then the marginal distribution of the random variable will
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be Unif(0, 1) — this ensures that the expectation of the estimator in Equation 25 will remain
unbiased. However, because the samples are anti-correlated, the variance of the estimator can be
substantially reduced.

Biased gradient estimates TheMonte Carlo estimate of k̂(semi)(xm, xn) is unbiased, but non-
linear functions of an unbiased estimator, in general, may jettison this property. In our application,
the goal is to compute cheap, unbiased estimates of the gradient of the variational parameters m,S
(or their information form parameterization η1,η2).

For a single term n, the gradient for η1 is a linear function of the semi-integrated covariance
vector Kn,u =

[
k(semi)(xn, x1), . . . , k

(semi)(xn, xM )
]
.7 Due to this linearity, plugging in an

unbiased estimator, K̂n,ρ, for Kn,u will form an unbiased gradient estimate for ∇̃η1L. However,
plugging in K̂n,u into the gradient term for η2 will form a non-linear function of an unbiased
estimator, resulting in a biased estimate of ∇̃η2 .

To see this, consider the vector of unbiased estimates of the semi-integrated covariance

K̂n,ρ =
[
k̂(semi)(x1, xn), . . . , k̂(semi)(xm, xn)

]
. (60)

The stochastic component of the gradient for η2 can be written

E
[
K−1u,uKu,nKn,uK−1u,u

]
= K−1u,uE [Ku,nKn,u] K−1u,u (61)

where K−1u,u can be compute exactly, leaving the expectation of the outer product of the semi-
integrated covariance terms E [Ku,nKn,u] Given an unbiased estimator for Kn,u the naive plugin
estimate for Kn,uKu,n is

Ô(plugin) = K̂u,nK̂n,u (62)

which is biased in general

E
[
K̂u,nK̂n,u

]
6= E

[
K̂u,n

]
E
[
K̂n,u

]
= Kn,uKᵀ

n,u . (63)

Fortunately, we can construct an unbiased estimator for this outer product. Note that the outer
product of an expectation can be expressed as

E [x]E [x]ᵀ = E [xxᵀ]− Cov(x) (64)

Given an L-size sample x1, . . . ,xL we can compute unbiased estimators for µ = E[x], M ,
E [xxᵀ], and Σ , Cov(x)

µ̂ =
1

L

∑

`

x` (65)

Σ̂ =
1

L− 1

∑

`

(x` − µ̂)(x` − µ̂)ᵀ (66)

M̂ =
1

L

∑

`

x`x
ᵀ
` (67)

With these estimators, M̂ − Σ̂ forms an unbiased estimate for E[x]E[x]ᵀ

E
[
M̂ − Σ̂

]
= E[x]E[x]ᵀ . (68)

7Note that the order of the subscripts indicates the vector dimensions, e.g. Kn,u ∈ R1×M and Kᵀ
n,u = Ku,n ∈

RM×1.
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Algorithm 2: Scalable integrated observation GP inference with mini-batches andMonte
Carlo semi-integrated covariance estimates. The natural gradient estimator usesLMonte
Carlo samples to approximate the semi-integrated covariance andB data observations to
approximate the complete data objective.

Data: D , {an, xn, σ2n}Nn=1 (data), k(θ)(·, ·) (covariance function);
(
λ(0),θ(0)

)
(initial

values); k(·, ·) (covariance function); (∆λ,∆θ) (step-sizes); B (batch size); L
(Monte Carlo semi-integrated estimator sample size);

Result: λ,θ variational and covariance function parameters
k̂(dd)(·)← Interpolate-Doubly-Diag(k(θ0)(·, ·)) ; // construct diagonal
interpolator
for t← 1 to tmax do
Dt ← Batch(D, B) ; // mini-batch of data

λ(t) ← λ(t−1) + ∆λ · ∇̃(MC)
λ L(λ(t−1),θ(t−1),Dt, L) ; // MC natural grad

update

θ(t) ← θ(t−1) + ∆θ · ∇(MC)
θ L(λ(t−1),θ(t−1),Dt, L, k̂(dd)(·)) ; // MC kernel grad

update

sgd-update(λ(t), ∇̃λ(MC)) ; // gradient-based update

end
return λ(tmax),θ(tmax) ; // optimal parameters

We can use this fact to construct a de-biased estimator for O

Ô(unbiased) = M̂
(
{K̂(`)

n,u}L`=1

)
− Σ̂

(
{K̂(`)

n,u}L`=1

)
. (69)

Though M̂ − Σ̂ forms an unbiased and symmetric estimator of the outer product, this estimator
may not be positive semi-definite. If this estimator is not positive semi-definite, then a gradient
step along this direction may take the optimization routine outside of the PSD cone. To ensure
safe gradient updates, we will have to meticulously track the magnitude of the lowest eigenvalues
of this matrix.

Though biased, the naive plugin estimator in Equation 62 will always be non-negative definite,
resulting in gradient updates that are guaranteed to remain in the PSD cone. Proceeding with this
estimator, we must ask, how much bias is too much bias? We explore this question empirically
in Section F, comparing the optimization traces of algorithms using various sample sizes L to the
exact k(semi)(·, ·) values in the squared exponential kernel case. We see that, though biased, this
gradient estimator can closely approximate the performance of the exact semi-integrated kernel
given a modest number of samples (≈ 20).

Monte Carlo SVGP comparison
The squared exponential kernel admits an analytic form for the semi-integrated covariance

function. This gives us a way to directly compare our Monte Carlo semi-integrated approximation
within SVGP to the same algorithm using exact semi-integrated covariance values. In this exper-
iment, we compare the progress of the exact variational objective throughout optimization using
different gradient estimators — the analytic version, and the biased Monte Carlo gradients using
sample size L = 5, 7, 10, 20, and 50.

We fit variational parameters using stochastic natural gradient descent with mini-batches of
size 1,000 and step size 0.1. We fix the covariance function parameters in this experiment to report
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Figure 9: Monte Carlo estimates of semi-integrated covariance functions enable efficient ELBO
inference competitive with the analytic semi-integrated covariance. Above is a comparison of
ELBO traces by mini-batch (x-axis) for the squared exponential kernel. The analytic semi-
integrated kernel was used in blue (hidden behind the L = 50 purple line. The optimal value is
depicted with the dotted gray line.

a more direct comparison between exact and Monte Carlo gradients — in subsequent experiments
we apply gradient updates to these two parameters as well. Inducing points are placed on a fixed
grid of size 20x20 (M = 400), tiling the 2-d space.

At each batch, we compute the complete-data ELBO objective (using the exact squared ex-
ponential semi-integrated covariance function across methods). Additionally, we compute the
optimal value of the ELBO (by solving for the optimal values of mλ and Sλ in closed form — an
operation that is too costly when N is on the order of millions of observations) which we depict
alongside optimization traces.

Figure 9 compares the progress of optimizers using different gradient estimators. The “analytic”
version uses the closed form semi-integrated covariance, while the Monte Carlo runs use sample
sizes of varying values. We see that with as few as L = 20 samples the resulting optimization
routine very nearly finds the optimal value (depicted in grey), and almost exactly matches the
path of the “analytic” routine. This confirms that these Monte Carlo semi-integrated covariance
estimators are suitable plug-in estimators for fitting models with covariance functions that do not
admit an analytic form for the semi-integrated covariance, (e.g. the Gneiting and Matérn kernels).

E.2 Fast doubly-integrated kernel diagonal interpolation

Approximating doubly-integrated diagonal terms Tomake predictions within the SVGP frame-
work, we need to compute the marginal variance of each observation according to the Gaussian
process prior. Concretely, this amounts to computing the K∗,∗ term in Equation 81. In the
integrated observation setting, this requires computing the variance of an integrated observation

(K̃N )n,n = Cov(an, an) = V ar(en) = V ar

(∫

[0,1]
ρ(α · xn)dα

)
. (70)

This marginal variance corresponds to the diagonal of the doubly-integrated kernel and may not
be analytically tractable. For the squared exponential kernel, this would require integrating the
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semi-integrated kernel expressed in Equation 36 over a compact set, which does not yield a closed
form (Fayed and Atiya, 2014).

Fortunately, for a one-dimensional compact set, this integral can be numerically computed
relatively efficiently. Unfortunately, if we are scaling to millions of observations, we will have
to perform millions of numerical integrations to simply evaluate the likelihood of the data under
one setting of the covariance function parameters. Further, we will have to recompute all of these
numerical integrations at each iteration when fitting covariance function parameters (or computing
their posterior).

The inducing point variance correction method requires only computing the marginal variance
of each integrated observation under the prior. For stationary kernels this is a function only of
the distance of the observation to the origin (or more generally, the length of the integrated ray).
Similar to the semi-integrated kernel, we can see that this is true by expanding the stationary kernel

∫ 1

0
k(|x− αx|)dα =

∫ 1

0
k((xᵀx+ α2xᵀx− 2αxᵀx)1/2)dα (71)

=

∫ 1

0
k((|x|2 + α2|x|2 − 2α|x|2)1/2)dα (72)

= f(|x|) . (73)

Due to this stationarity, we can view each numerical computation as evaluating the function
kθ(dn) = K̃nn where dn is the distance of observation xn from the origin. This perspective
suggests a numerically cheap approximation — simply estimate this function along a fixed grid of
distances (that spans the range of observed distances) and interpolate the value for each observation.

This one-dimensional function can be estimated independent of the length scale parameter
for isotropic and stationary covariance functions. The effect of the length scale parameter is to
effectively redefine distance, or the magnitude of |x|. We can account for this change by re-scaling
the |x| distance and multiplying the result by `. Specifically for the diagonal, this becomes simply
a function of a one-dimensional distance, which can easily be interpolated with a small number of
knots.

Making predictions. To estimate the process value ρ∗ at new location x∗, we use the posterior
predictive distribution p(ρ∗ | D). Within the SVGP framework, we approximate this distribution
using the posterior qλ(u)

p(ρ∗ | D) =

∫
p(ρ∗ |u)p(u | D)du (74)

≈
∫
p(ρ∗ |u)qλ(u)du . (75)

Under the approximation, u and ρ∗ are jointly normal, making this predictive distribution available
in closed form

p(ρ∗ | D) = N (µ∗, σ
2
∗) (76)

µ∗ = K∗,uK−1u,um (77)

σ2∗ = K̃∗,∗ + K∗,uK−1u,uSK−1u,uKu,∗ (78)

where

(K∗,u)m = Cov(ρ∗,um) (79)
K∗,∗ = Var(ρ∗) (80)

32



2 1 0 1 2
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

1

2

3

4

5

6

7

(a) True ρ(x) (b) Integrated observations an

2 1 0 1 2
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

0

1

2

3

4

5

6

7

(c) Inferred E [ρ | D].
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Figure 10: Integrated observation GPs can reveal spatial structure from a severely limited vantage
point. This figure summarizes synthetic data posterior inference using N = 1,000,000 examples
in a two-dimensional space. Panel 10a depicts the true (unobserved) ρ(x) that generates the
data. Panel 10b depicts the observed data, noisy integrated measurements of ρ from the origin to
uniformly random points in the square. 10c depicts the inferred ρ given these observations using
ziggy with a squared exponential kernel. 10d depicts the marginal posterior standard deviation at
each location in X -space.

K̃∗,∗ , K∗,∗ −K∗,uK−1u,uKu,∗ . (81)

Prediction for integrated process values, e∗ =
∫
x∈R∗ ρ(x)dx, can be computed similarly by substi-

tuting semi-integrated covariance values into the vector K∗,u and the doubly integrated covariance
value K∗,∗.

F Validation on Synthetic Data

In this section we study the performance of ziggy on synthetic data under varying conditions. To
empirically evaluate ziggywemeasure the quality of its statistical inferences on a two-dimensional
synthetic example. To generate synthetic data, we first define the unobserved ρ : R2 7→ R and
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generate noise with known variance. The form we chose for ρ is

ρ(x) = 4 +
d∑

d=1

xd · sin(2x2d) , (82)

which is visualized in Figure 10a. This test function has clear regions of high density far from the
observation point (e.g. around x = (−1.5,−1.5)) and it is positive everywhere. We generate a
dataset of N noisy integrated observations

xn ∼ Unif(X ) simulated star locations (83)

en =

∫

x∈Rn

ρ(x)dx simulated extinctions (84)

an ∼ N (en, σ
2
n) noisy integrated observation (85)

where the domain is X = [−2, 2]2, and the noise variance is chosen to be σ2n = 4 to roughly
approximate the noise level of extinction measurements. The true extinctions, en, are computed to
high precision using numerical quadrature, integrating from the origin to the random location xn.
The integrated observations are depicted in Figure 10b. We estimate this synthetic ρ(·) from noisy
integrated observations using the approach developed in the previous section. In this experiment,
we fix a grid of 20×20 inducing points, evenly spaced from [−2, 2] in each of the two dimensions.

In Section F.1, the first set of simulations compares posterior estimates of ρ(·) as a function of
training data set size. Posterior estimates continue to become more accurate and well-calibrated
even as the number of integrated observationN grows from one hundred thousand to one million.
This accuracy highlights the importance of scaling inference to more observations in order to
obtain a more accurate statistical estimator.

In Section F.2, we compare posterior estimate quality with a fixed dataset over different
kernels, each encoding different assumptions about the underlying function. This experiment tests
the Monte Carlo approach that can incorporate kernels that do not admit an analytic form for
the semi-integrated kernel. Finally, Appendix G describes additional synthetic experiments that
examine the effect of two algorithm hyper parameter choices on variational objective optimization,
the whitened parameterization and the number ofMonte Carlo semi-integrated covariance samples.

A python and PyTorch implementation is available.8 Code to reproduce experiments are
included in the repository.

F.1 The quality of the estimate

We study the quality of the estimate of ρ(x) as a function of data set sizeN . We fit the dust model
to synthetic observations with data set sizesN ∈ {103, 104, 105, 106}. We measure model quality
by computing root mean squared error (RMSE) and log likelihood (LL) on a set of Ntest = 2,000
held out extinction values

RMSE =

(
1

Ntest

Ntest∑

n=1

(E [e∗ | D]− e∗)2
)1/2

(86)

LL =
1

Ntest

Ntest∑

n=1

ln p(en | D) . (87)

8Available at [REDACTED TO PRESERVE AUTHOR BLINDNESS].
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Figure 11: Scaling to massiveN improves estimator performance. Above, we compare predictive
RMSE (left) and log likelihood (right) as a function of data set sizeN on a held out sample of test
stars.

Each model usesM = 20× 20 inducing points, evenly spaced in a grid in the input space. We
trained each model until convergence, using batches of size 1,000, a step size of 1e−3 and a kernel
parameter step size of 1e−6. (Additional optimization details can be found in the implementation.)

Figure 10 summarizes the model’s fit using one million observations, the most we tried in
this example. Figure 10c displays the posterior mean for ρ(x) given the one million observations
depicted in 10b. Figure 10d shows the posterior uncertainty (one standard deviation) about the
estimated mean. The million-observation model recovers the true latent function well.

Figure 11 summarizes predictive quality of ziggy as a function of data set size on held out test
data using RMSE and LL. This illustrates the benefit of including more training data — root mean
squared error (RMSE) decreases (and log likelihood increases) significantly as data set size grows.
For example, the RMSE for N = 100,000 is 2.6 times bigger than the RMSE for N = 1,000,000,
(.082 vs. .031) and the average log likelihood is significantly better for the million-observation
model.

Figure 12 makes a more direct graphical comparison of the posterior estimate of the latent
function as we increase data set size N . As we incorporate more data into the nonparametric
model, the form of the true underlying function emerges. To accurately visualize and interpret
large scale features of the latent dust distribution, we will want to incorporate as many stellar
observations as possible.

F.2 Comparing kernels

We compared multiple models by fitting the variational approximation and tuning the covariance
function parameters for five different kernel choices. In this synthetic setup, we ran each model
for 50 epochs, saving the the model with the best ELBO value. We used mini-batches of size
|B| = 1,000, and started the step size at .1, reducing it every epoch by multiplying by a decay
factor of .95.

For kernels that do not have a closed form semi-integrated version, we used L = 30 uniform
grid Monte Carlo samples to estimate the integrated covariance. We chose this on the conservative
end — in Appendix E.1 shows that on the order of L = 10 to 20 samples is often just as effective
as the analytic kernel in the squared exponential case.

We validate the inferences against a set of 2,000 held-out test observations, which include
ground truth extinctions e∗ and pointwise values, ρ∗. We quantify the quality of the inferences
with mean squared error, log likelihood, and the χ2-statistic on the test data. We also visually
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(b) E[ρ | D], N = 10,000

2 1 0 1 2
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

0

1

2

3

4

5

6

(c) E[ρ | D], N = 100,000
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(d) E[ρ | D], N = 1,000,000

Figure 12: More data leads to more accurate function posterior predictions.

validate ziggy with a QQ-plot and coverage comparison, also on test data. We also visualize the
behavior ziggy as a function of distance to the origin — specifically, we visualize how accurate
and well-calibrated test inferences are as synthetic observations are made farther away.

In Figure 13 we compare the mean squared error (MSE), the log likelihood, and the χ2 statistic
on the held out test data. We compare five different kernels – (i) Gneiting α = 1, (ii-iv) Matérn,
ν ∈ {1/2, 3/2, 5/2}, and (v) the squared exponential kernel. The results match our expectations.
The true ρ(·) is smooth, and the smoother kernels tend to have lower predictive error, higher log
likelihood, and better calibrated χ2 statistic (closer to one). The test statistic comparison has
chosen a good match in the squared exponential kernel.

We also note that the MSE for the process evaluations ρ∗ is much higher than the test MSE for
extinctions e∗. This is also expected — intuitively, if the ρ(·) predictions are well-calibrated, then
over a larger distance the pointwise errors can be averaged out, resulting in a better predictor for
extinctions.

A crucial property of a good posterior approximation is well-calibrated uncertainty. To evaluate
the quality of the uncertainty measurements for unobserved extinctions and pointwise process
values, we inspect statistics of test-sample z-scores

z∗ =
e∗ − E[e∗ |x∗,D]√

V [e∗ |x∗,D]
(88)

for both e∗ and ρ∗. If the predictions are well-calibrated, the statistics of predictive z-scores
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Figure 13: Predictive summaries across different models and inference schemes.

should resemble a standard normal distribution. Concretely, the order statistics of a collection of
Ntest z-scores should closely match the theoretical quantiles of a standard normal distribution —
a relationship that can be graphically inspected with a QQ-plot. To compare different models,
we visualize QQ-plots for the different covariance functions in Figure 14. As an additional
summary of calibration, we compare the fraction of predicted examples covered by 1/2, 1, 2, and 3
posterior standard deviations, summarized in Table 2. We see that the squared exponential kernel
z-scores and empirical coverage are not far from what is expected by a theoretical standard normal
distribution, indicating that the estimates are well-calibrated.

We also depict model fit statistics as a function of distance from the origin in Figure 15. In
Figures 15a and 15b show that pointwise predictions are again well-calibrated as a function of
distance, though we observe a small amount of concentration about 0 for the extinction predictions.
This indicates that the predictive model was too conservative, or not confident enough in the
posterior expectation at nearby values. This is corroborated by Figure 15c, which shows the
posterior variance for extinctions is high at nearby (and distant) values, however MSE are high
mostly for distant values. Good calibration, even at far distances, is encouraging, as the goal is to
form good estimates of this density far away from the observer location.

G Additional Synthetic Experiments

In this supplemental section, we examine the effect of hyper parameter choices on algorithm
performance. Specifically, we study two choices: (i) the whitened and standard parameterizations
and (ii) the effect of the Monte Carlo semi-integrated covariance estimator on stochastic variational
inference.
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Figure 14: Posterior for extinctions e and dust density ρ are well calibrated. QQ-plot for predicted
distributions on 2,000 held out integrated-ρ test points e∗. Theoretical normal quantiles are on the
horizontal axis, and predictive z-scored quantiles are on the vertical axis.

Gneit-α = 1 Mat-ν = 1/2 Mat-ν = 3/2 Mat-ν = 5/2 SqExp N (0, 1)
σ

0.5 0.536 0.560 0.441 0.407 0.384 0.383
1.0 0.880 0.917 0.785 0.730 0.679 0.683
2.0 0.997 0.999 0.999 0.988 0.971 0.955
3.0 1.000 1.000 1.000 1.000 1.000 0.997

Table 2: Coverage fractions at various levels of z-score standard deviation σ for test extinctions
e∗. Relative to theoretical coverage fractions, the inferences concentrate too many predictions near
zero — a sign that we are not confident enough.

G.1 Algorithm experiments

The inference algorithm developed in Section 4 involves two key choices, optimizing in the
whitened space and the number of Monte Carlo samples used to approximate the semi-integrated
kernel. To validate our choices, we investigate the impact of these choices on the inference
algorithm and predictions. For simplicity, we assume the number and position of inducing points
is fixed.

Whitened parameterization comparison We compare the optimization performance of the
two parameterizations detailed above: (i) the standard parameterization of variational parameters
m,S and covariance function parameters θ; and (ii) the whitened parameterization of variational
parameters m̃, S̃ and covariance function parameters θ.

We fit the above synthetic dataset with N = 5,000 observations using stochastic gradient
optimization with batches of size 1,000, for 10 epochs. We fix the learning rate for the variational
parameters, and we vary the learning rate for the covariance function parameters to be ∆ ∈ [1e-4,
1e-5, 1e-6]. We also vary the initial value of σ2 to be in σ20 ∈ [1, 10, 100, 1,000]. We fit 24 models,
12 standard and 12 whitened.

We compare the mean squared errors for the test e and ρ(x) values in Figure 16, showing that
the models fit in the whitened space have lower mean squared errors. Empirically, we also find
that optimizing in the whitened space leads to better predictions in fewer epochs.

Semi-Integrated Estimators Additionally, we examine the affect of the number of Monte
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Figure 15: Posterior summaries as a function of distance to the origin (observation point).

Carlo samples used to estimate the semi-integrated covariance function, L. We leverage the fact
that the squared exponential kernel admits a closed form semi-integrated covariance function so
we can directly compare Monte Carlo estimators with different sample sizes L to the analytic
version Further, we use the analytic form of the semi-integrated covariance function to compute
the true variational objective for all approaches; this true objective value is unavailable when
the semi-integrated covariance function is unavailable. Figure 9 compares optimization traces
of the variational objective using different values of L, ranging from 5 to 50. We see that the
performance of the Monte Carlo gradients with L = 20 closely mimics the model fit with the exact
gradient. We use L = 30 when optimizing with the Gneiting and Matérn covariance functions to
be conservative.
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Figure 16: Optimizing with the whitened parameterization leads to better predictions. We ran
stochastic optimization initialized at many different initial settings (the top five shown above) for
ten epochs. The resulting predictive mean squared error for integrated values e (left) and pointwise
values ρ(x) (right) are plotted above. Optimizing in the whitened space dramatically improves
predictive accuracy.
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