
Mapping into LUT Structures

Sayak Ray Alan Mishchenko Niklas Een Robert Brayton Stephen Jang Chao Chen
 Department of EECS, University of California, Berkeley Agate Logic Inc.
 {sayak, alanmi, een, brayton}@eecs.berkeley.edu {sjang, chaochen}@agatelogic.com

Abstract
Mapping into K-input lookup tables (K-LUTs) is an
important step in synthesis for Field-Programmable Gate
Arrays (FPGAs). The traditional FPGA architecture
assumes all interconnects between individual LUTs are
“routable”. This paper proposes a modified FPGA
architecture which allows for direct (non-routable)
connections between adjacent LUTs. As a result, delay can
be reduced but area may increase. This paper investigates
two types of LUT structures and the associated tradeoffs. A
new mapping algorithm is developed to handle such
structures. Experimental results indicate that even when
regular LUT structures are used, area and delay can be
improved 7.4% and 11.3%, respectively, compared to the
high-effort technology mapping with structural choices.
When the dedicated architecture is used, the delay can be
improved up to 40% at the cost of some area increase.

1. Introduction
LUT-based FPGAs are used already for implementing

digital designs in a wide variety of application domains.
However, the search for new FPGA architectures and
efficient methods of their synthesis remains a continuing
area of research. This is motivated by considerations such
as reducing delay, area, and power consumption, improving
routability and resource utilization, and increasing
expressive power of programmable logic. Reducing delay
is especially important as it allows high-frequency FPGAs
to compete with ASICs.

Delay in modern FPGAs is dominated by interconnect. A
typical ratio between the intrinsic delay of a LUT and a
wire delay is 1:5, because most of the wires are routed
through multiple switch-boxes and routing channels.

One way to reduce routing delay is to use an FPGA
architecture that has direct, or “non-routable”, wires. Such
wires can connect two adjacent LUTs in a programmable
fabric, possibly at the expense of restricting the fanout
count of the LUTs involved. In this paper, we investigate
several ways direct wires can be used and experimentally
show improvements in delay as a consequence.

We call a group of LUTs connected by direct wires, a
LUT structure. It can be characterized by the number of
interconnected LUTs, their sizes and connectivities. We
investigate two single-output LUT structures, “44” and
“444”, shown in Figure 1. The connections between the
LUTs inside each structure are direct (non-routable), while
all other connections are routable.

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

Figure 1: The 7-input LUT structure “44” (left) and
the 10-input LUT structure “444” (right).

In order to investigate the viability of these structures, we
had to develop a new mapping algorithm, aimed at efficient
implementation into such structures.

The contributions of this paper are the following:
• Development of an efficient matching algorithm to

check if a given Boolean function can be
implemented using a given LUT structure.

• Modification to the priority-cut-based technology
mapper [16] to perform mapping into the LUT
structures, as opposed to single LUTs.

• Experimental evaluation of the new mapping
algorithm applied to regular LUTs as well as the 44
and 444 structures. A promising conclusion is that
the algorithm can improve delay and area also for the
traditional mapping and substantially improve delay
when LUT structures are used.

• Statistics on the relative number of k-input Boolean
functions, appearing in industrial designs, that can be
implemented using the 44 and 444 LUT structures.

The paper is organized as follows. Section 2 describes the
background and the relevant decomposition theory and
Section 3 describes the mapping algorithm. Section 4
reports on some experimental results while Section 5
concludes the paper and outlines future work.

2. Background

2.1 Boolean network
A Boolean network (or netlist, or circuit) is a directed

acyclic graph (DAG) with nodes corresponding to logic
gates and edges corresponding to wires connecting the
gates. In this paper, we consider only combinational
Boolean networks. A combinational And-Inverter Graph
(AIG) is a Boolean network composed of two-input ANDs
and inverters. The size (area) of an AIG is the number of
its nodes; the depth (delay) is the number of nodes on the
longest path from the primary inputs (PIs) to the primary
outputs (POs). A cut C of a node n is a set of nodes of the
network, called leaves of the cut, such that each path from a

978-3-9810801-8-6/DATE12/©2012EDAA

PI to n passes through at least one leaf. Node n is called the
root of cut C. For details on cuts and their roles in
technology mapping, see [8][16]. We have modified an
existing cut-based mapper for mapping into LUT-
structures.

As usual, a Boolean network is a logical realization of a
single or multi-output Boolean function. A single output
Boolean function of n variables is denoted as f : {0,1}n
•{0,1}, and a multi-output Boolean function is treated as a
vector of single-output Boolean functions. We use bold-
face letters to denote vectors (of variables or functions). A
completely-specified Boolean function F essentially
depends on a variable if there exists an input combination
such that the value of the function changes when the
variable is toggled. The support of F is the set of all
variables on which function F essentially depends. The
supports of two functions are disjoint if they do not contain
common variables. A set of functions is disjoint if their
supports are pair-wise disjoint. Additional information can
be found in the following publications: AIGs [9][4], AIG-
based synthesis [14][15], delay optimization and area
recovery [6][18].

2.2 Decomposition theory
This section reviews the decomposition theory used in

Section 4 of this paper. Refer to [12][13][19][20] for details
on the traditional decomposition algorithms.

For a Boolean function f(X) and a subset of its support,
X1, the set of distinct cofactors, q1(X), q2(X), … , qμ(X), of f
with respect to (w.r.t.) X1 is derived by substituting all
assignments of X1 into f(X) and eliminating duplicated
functions. The number of distinct cofactors, μ, is the
column multiplicity of f with respect to X1.

Given a partition of X into two disjoint subsets, X1 and
X2, we say that Ashenhurst-Curtis decomposition of f(X)
exists if f(X) can be expressed as

f(X) = h(g1(X1), g2(X1), …, gk(X1), X2).
Subsets X1 and X2 are called the bound set and the free

set, respectively. Functions gi(X1), 1 ≤ i ≤ k, are the
decomposition functions. Function h(G, X2) is the
composition function. The following lemma is useful in
subsequent discussions.

Lemma 1. [1][7] The decomposition of f(X) with k
functions g1(X1), g2(X1), …, gk(X1) exists if and only if
⎡log2μ⎤ ≤ k ≤ n, where μ is the column multiplicity of f with
respect to X1, and n = |X1|.

3. Algorithm
We use a notation for the LUT structures, e.g. “XY” or

“XYZ”, where the last character represents the root node
and the first one or two characters represent the nodes
feeding into it. For example, “345” represents a structure
where a node of size 3 and a node of size 4 feed directly
into a node of size 5. This section describes an efficient
algorithm to determine whether a Boolean function can be
implemented in “XY” or “XYZ”, 2 ≤ k ≤ 6, k ∈ {X, Y, Z}.

The node size does not exceed 6 because most FPGAs are
based on LUTs of 6 inputs or less. The support size of a
function is limited to 16, because the truth table
representation works well for such functions. In general, if
runtime is not an issue, functions up to 20 inputs can be

handled using truth tables. For larger functions, BDDs or a
mixed AIG/SAT representation is preferable.

A special case of checking whether a function can be
implemented using a LUT structure, is when the support
sizes of the function and the structure are equal. In the case
of the LUT structure “XY”, if the support of the function is
equal to X + Y – 1, the only case when the decomposition
exists, is when the function has a DSD with exactly X
variables as a separate block. This check is handled in the
pseudo-code below.

For example, 5-variable Boolean function F = MUX(c0,
d0, MUX(c1, d2, d3)) can be matched with structure “33”,
because variables {c1, d2, d3} can be decomposed as a
separate block, MUX(c1, d2, d3). On the other hand, this
function cannot be matched with structure “24”, because no
two variables can be decomposed as a separate block.

3.1 Checking decomposition “XY”
Consider decomposition checking for the “XY” structure.
The input to the algorithm is an n-input Boolean function

and an ordered pair of numbers (X, Y) where 0 ≤ n ≤ 16
and 2 ≤ X,Y ≤ 6. The pseudo-code of the algorithm is
shown in Figure 3.1 below.

varset performLutMatchingXY(

function F, // F is represented using a truth table
int X, int Y) // 2 ≤ X ≤ 6, 2 ≤ Y ≤ 6

{
 varset V; // a set of Boolean variables
 int n: // the support size
 int m; // the column multiplicity

 // perform support minimization and simple checks
 n = supportMinimize(F); // removes vacuous variables
 assert(n ≤ 16);
 if (n ≤ max(X, Y)) return supp(F);
 if (n > X + Y - 1) return “structure is too small”;

 // look for the special case decomposition on the output side
 V = findOutputDecomposition(F, Y-1); assert(|V| ≤ Y-1);
 if (n ≤ X + |V|) return supp(F) - V;

 // look for a good bound-set in the direct variable order
 (V, m) = findGoodBoundSet(F, X); assert(|V| ≤ X);
 if (m == 2)
 if (n ≤ |V| + Y – 1) return V;
 if (3 ≤ m ≤ 4 && n ≤ |V| + Y – 2)
 if (checkSpecialNonDisjoint(F, V)) return V;

 // look for a good bound-set in the reverse variable order
 reverseVariableOrder(F);
 (V, m) = findGoodBoundSet(F, X); assert(|V| ≤ X);
 if (m == 2)
 if (n ≤ |V| + Y – 1) return V;
 if (3 ≤ m ≤ 4 && n ≤ |V| + Y – 2)
 if (checkSpecialNonDisjoint(F, V)) return V;

 return “decomposition does not exist”;
}

Figure 3.1. LUT matching for two-node structure “XY”.

The LUT matching uses procedure supportMinimize(),

which removes vacuous variables and returns the new
support size. For example, assuming that the variable order
is (a,b,c,d), function F = acd has the vacuous variable b.

Support minimization removes variable b from the support,
resulting in function G = abc, whose support size is 3.

If n • max(X,Y), the function can be packed into one
node, while the other node can be treated as a buffer.
If n > X + Y – 1, decomposition does not exist because the
LUT structure is too small.

Procedure findOutputDecomposition() checks for a
special case of decomposition, F = x ⊗ G, where ⊗ is a two
variable Boolean function, x is a support variable, and G is
a remainder function. For this, single-variable cofactors of
F are checked and the following three special cases are
considered: a constant-0 cofactor (AND-decomposition), a
constant-1 cofactor (OR-decomposition), and two cofactors
that are complements of each other (XOR-decomposition).
Note that a pair of cofactors cannot be equal, because after
support minimization, F depends on all its variables.

If the simple decomposition exists for one variable x, the
check is iteratively applied to the remainder function G and
its remainders, if any, until the number of decomposed
variables is equal to Y-1. The decomposed variables are
returned by the procedure findOutputDecomposition().

If the variable set returned is not enough to decompose
the function, procedure findGoodBoundSet(), attempts are
made to find a good bound set. This procedure tries to
reorder variables in the truth table while minimizing the
column multiplicity with respect to the topmost X
variables. Reordering of variables in a truth table is similar
to that in for BDDs, but typically is faster because a
procedure has been developed, which swaps variables i and
j directly, without going through a sequence of adjacent
variable swaps, known as variable sifting for BDDs. The
best column multiplicity and variable set are returned.

If the column multiplicity is 2 and the number of
variables in the set is sufficiently large (n ≤ |V| + Y – 1),
the variable set is returned. Otherwise, a non-disjoint
decomposition with one shared variable is attempted [12].
If such decomposition exists, the variable set is returned.

If decomposition is not found, the variable order is
reversed and findGoodBoundSet() is called again.
Reversing the variable order is a heuristic used for hard-to-
match functions, even though it does not guarantee that the
match is always found if it exists. The reversing of the
variable order can be done efficiently on a truth table.

An additional optimization omitted in the pseudo-code of
Figure 3.1, is that of caching previously computed results.
Thus, when decomposition checking is applied repeatedly
to the same function, it is retrieved from the cache, instead
of running the check from scratch.

3.2 Checking decomposition “XYZ”
The input to the algorithm is an ordered set of integers

(X, Y, Z) and a n-input Boolean function F, 0 ≤ n ≤ X + Y
+ Z - 2, where 2 ≤ X,Y,Z ≤ 6 and 0 ≤ n ≤ 16.

The decomposition check in this case is implemented as
two checks: checking F for decomposition using “XW”,
where W = Y + Z – 2. If it exists, the remainder function G
is checked for decomposition using structure “YZ”.

To ensure that the resulting structure has blocks “X” and
“Y” feeding directly into block “Z”, instead of block “X”
feeding into block “Y” and block “Y” feeding into block
“Z”, the algorithm in Figure 3.1 is modified slightly. When

the feasibility checks are performed, the output variable of
the first block “X” is not included into the variable sets
returned by the checking procedures.

3.3 Modifying the technology mapper
The priority-cut-based technology mapper [16] needed to

map into the “XY” and “XYZ” LUT structures allows the
user to define custom cost functions for evaluating cuts
during mapping. In the case of mapping into the “44”
(”444”) structures, the mapper performs enumeration of
7-input (10-input) cuts, computes their cut functions as
truth tables, and checks the decomposition for each cut
function. If the function is not decomposable, the cut is
skipped. If it is decomposable, the area and delay of the
resulting cut are defined using the number of inputs of the
function, as specified in the given LUT library. A LUT
library lists delay and area of the LUT of each size.
Examples of LUT libraries are given in Section 5.

The mapper minimizes the delay of the mapping,
followed by several rounds of heuristic area recovery.
When the user-specified cost functions are employed, as
described above, all the cuts used in the mapping have
Boolean functions decomposable into the “XY” or “XYZ”
LUT structures.

4. Experimental results
The proposed algorithm is implemented in ABC [2][4] as

part of the priority-cut-based technology mapper [16]
(command if). The following are the relevant switches that
have been added to the technology mapper:

• -S 44 enables mapping into “44” structure,
• -S 444 enables mapping into “444” structure,
• -K <num> specifies the cuts size.
Experiments were performed using a suite of public

benchmarks and a suite of industrial benchmarks.

4.1 Improvements to traditional mapping
In the first experiment, reported in Table 4.2, the target

structure is the traditional 4-LUT FPGA. In this case, when
switch “-S” is used, the delay/area of the LUT structure
“44” (“444”) are the same as the area/delay of two (three)
4-LUTs. The following runs are performed and reported in
the columns of Table 4.2. The notation (cmd1; cmd2)n
means that cmd1 followed by cmd2 was iterated n times.

• Baseline: This runs if with LUT Library L1 shown in
Table 4.1. Note that this library specifies unit-delay
and unit-area for each LUT up to size 4.

• Mapping with structural choices (MSC): This runs
(dch; if)4 using the Library L1.

• 44: This runs (dch; if –S 44)4 with Library L2. This
library specifies delay/area equal to 1 for each LUT
up to size 4, and equal to 2 for larger LUTs.

• 444: This runs (dch; if -S 444)4 using Library L4.
This library specifies delay/area equal to 1 for each
LUT up to size 4, and delay/area equal to 2 or 3 for
larger cuts.

• Best 444: This runs (dch; if -S 444)4 using Library
L5. This library estimates the quality of mapping into
the LUT structure “444”. For each cut size, the
library contains the approximate number of LUTs
needed to implement it, assuming that 50% of 7-

input functions are mapped into two 4-LUTs and
50% are mapped into three 4-LUTs.

Table 4.2 shows that, when the proposed algorithm is
used, both area and delay are improved, compared to
mapping with structural choices (MSC). For example,
when mapping is performed using 7-input cuts matched
with the “44” LUT structures composed of two 4-LUTs, the
area and delay are improved by 4.6% and 6.1%,
respectively. When mapping using 10-input cuts matched
with the “444” LUT structures composed on three 4-LUTs,
the area and delay are improved by 7.4% and 11.3%,
respectively.

4.2 Delay-optimization using LUT structures
In this experiment, reported in Table 4.3 and Table 4.4,

we assume that FPGA hardware allows for efficient
realization of the “44” and “444” structures with direct
(non-routable) connections between the adjacent LUTs.

The runs performed are the same as in the previous
experiment (Section 4.1), except that the delay of the direct
connection is assumed to be 1.2 instead of 2. The updated
LUT libraries are listed below: 44 (Library L3), 444
(Library L6), Best 444 (Library L7). The results of this
experiment show that the delay can be substantially
reduced at the cost of some increase in area, compared to
mapping with structural choices (MSC).

Consider Table 4.3 as an example. When mapping is
performed using 7-input cuts matched with the “44” LUT
structures, the delay is reduced by 28.2% while the area is
increased by 5.1%. When mapping is performed using the
“444” LUT structures, the delay is reduced by 43.2% while
the area is increased by 14.1%. The area increase may be
prohibitive and will be addressed as part of future work.

4.3 The ratios of realizable functions
In a separate experiment not shown in the tables, we

evaluated the relative number of 7-input (10-input)
functions appearing in the circuits that can be matched with
the “44” (“444”) LUT structures. The results differ for the
industrial designs and for the public benchmarks listed in
Tables 4.2 and 4.3. For the industrial designs, 97% (70%)
of 7-input (10-input) functions can be matched with the
“44” (“444”) LUT structure. For the public benchmarks,
the numbers are 99% and 84%, respectively. It is surprising
that such a high percentage of cuts have Boolean functions
that can be matched with the LUT structures.

5. Conclusions
This paper proposes an improvement to technology

mapping for FPGAs. The main idea is to reduce structural
bias by mapping into LUT structures composed of two or
three 4-LUTs. The experimental results indicate that the
new algorithm can improve both area and delay of the
traditional technology mapping.

Additionally, an FPGA architecture allowing for direct
connections between pairs of adjacent LUTs is evaluated.

When the algorithm is used to map into this architecture,
the delay improvement can be up to 40% at the cost of
some area increase.

Future work will explore whether the delay reductions
reported in this paper translate into improved maximum
clock frequency (Fmax) after place-and-route.

6. Acknowledgements
This work has been supported in part by contacts from

SRC (1875.001), NSA, and industrial sponsors: Actel,
Altera, Atrenta, Cadence, Calypto, IBM, Intel, Jasper,
Magma, Oasys, Real Intent, Synopsys, Tabula, and Verific.

7. REFERENCES
[1] R. L. Ashenhurst, “The decomposition of switching functions”,

Proc. Intl Symposium on the Theory of Switching, Part I (Annals of
the Computation Laboratory of Harvard University, Vol. XXIX),
Harvard University Press, Cambridge, 1959, pp. 75-116.

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc

[3] V. Bertacco and M. Damiani. "The disjunctive decomposition of
logic functions". Proc. ICCAD '97, pp. 78-82.

[4] R. Brayton and A. Mishchenko, "ABC: An academic industrial-
strength verification tool", Proc. CAV'10, LNCS 6174, pp. 24-40.

[5] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, ICCAD '05.

[6] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE Trans. CAD, vol. 13(1), Jan. 1994, pp. 1-12.

[7] A. Curtis. New Approach to the Design of Switching Circuits. Van
Nostrand, Princeton, NJ, 1962.

[8] R. J. Francis, J. Rose, and K. Chung, ”Chortle: A technology
mapping program for lookup table-based field programmable gate
arrays”, Proc. DAC ’90, pp. 613-619.

[9] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification”, IEEE TCAD, Vol. 21(12), Dec. 2002, pp. 1377-1394.

[10] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD, Vol.
16(8), Aug. 1997, pp. 813-833.

[11] A. Mishchenko, B. Steinbach, and M. A. Perkowski, "An algorithm
for bi-decomposition of logic functions", Proc. DAC '01, 103-108.

[12] A. Mishchenko and T. Sasao, "Encoding of Boolean functions and
its application to LUT cascade synthesis", Proc. IWLS '02, 115-120.

[13] A. Mishchenko, X. Wang, and T. Kam, "A new enhanced
constructive decomposition and mapping algorithm", Proc. DAC '03,
pp. 143-148.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis", Proc. DAC
'06, pp. 532-536.

[15] A. Mishchenko and R. K. Brayton, "Scalable logic synthesis using a
simple circuit structure", Proc. IWLS '06, pp. 15-22.

[16] A. Mishchenko, S. Cho, S. Chatterjee, R. Brayton, “Combinational
and sequential mapping with priority cuts”, Proc. ICCAD ’07, pp.
354-361.

[17] A. Mishchenko, R. Brayton, and S. Jang, "Global delay optimization
using structural choices", Proc. FPGA'10, pp. 181-184.

[18] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” Proc. FPGA’98, pp. 35-42.

[19] J.-H. R. Jiang, J.-Y. Jou, and J.-D. Huang. “Compatible class
encoding in hyper-function decomposition for FPGA synthesis,"
Proc. DAC’98, pp. 712-717.

[20] W.-Z. Shen, J.-D. Huang, and S.-M. Chao, “Lambda set selection in
Roth-Karp decomposition for LUT-based FPGA technology
mapping”, Proc. DAC’95, pp. 65–69.

Table 4.1. LUT libraries used in the experimental results.

Table 4.2. Improvements to the traditional FPGA mapping.
 Profile LUTs Levels Runtime (secs)

Designs PI PO FF Basic MSC 44 444 Best Basic MSC 44 444 Best MSC 44 44 Best
alu4 14 8 0 705 688 635 584 567 9 7 7 7 7 2 5 14 12
apex2 39 3 0 961 799 691 611 554.5 9 8 7 7 7 4 7 15 14
b14 32 54 245 2295 1750 1678 1647 1671.5 22 20 19 17 16 7 38 78 55
b15 36 70 449 3293 3022 2910 3009 3067.5 23 22 22 19 18 19 58 98 78
b17 37 97 1415 10392 9271 8957 8919 9029.5 34 31 30 26 26 62 162 276 277
b20 32 22 490 4510 3523 3361 3386 3329 23 22 22 20 20 16 84 169 130
b21 32 22 490 4758 3512 3359 3304 3338 23 22 22 21 21 17 79 131 128
b22 32 22 735 6727 5255 4971 4953 4997 24 22 22 21 21 25 97 208 207
clma 383 82 33 3872 3766 3358 2814 2460 17 13 12 11 11 27 62 91 57
des 256 245 0 1242 1213 1172 1077 1053.5 8 6 6 6 6 3 16 37 38
elliptic 19 2 194 377 428 415 414 417.5 11 8 8 8 8 1 2 3 4
ex5p 8 63 0 514 463 443 433 432 12 6 5 5 5 1 5 15 14
frisc 4 116 886 2242 2220 2108 2223 2239.5 21 19 18 14 14 11 30 76 80
i10 257 224 0 739 733 747 766 752 19 14 12 11 12 2 8 23 24
pdc 16 40 0 2232 2039 1923 1951 1921 13 8 8 8 8 20 45 107 84
s38584 13 278 1452 4234 3942 3805 3668 3779 11 8 8 7 7 11 35 32 35
s5378 36 49 161 467 445 446 436 436.5 7 6 5 5 5 1 3 7 6
seq 41 35 0 979 908 830 734 724.5 8 6 6 6 6 4 9 23 20
spla 16 46 0 2168 1900 1858 1838 1850 13 9 8 8 8 17 42 96 70
tseng 52 122 385 837 740 744 738 759.5 13 13 10 10 9 2 6 14 15
Geomean 1772 1598 1524 1479 1464 14.51 11.67 10.96 10.35 10.28 6.59 20.68 42.67 38.78
Ratio1 1 0.902 0.860 0.835 0.826 1 0.804 0.755 0.713 0.708 1 3.138 6.474 5.885
Ratio2 1 0.954 0.926 0.916 1 0.939 0.887 0.881 1 2.063 1.875
Ratio3 1 0.970 0.961 1 0.944 0.938 1 0.909
Ratio4 1 0.990 1 0.993

Library L1 Library L2 Library L3 Library L4 Library L5 Library L6 Library L7

#k
ar

ea

de
la

y #k

ar
ea

de
la

y #k

ar
ea

de
la

y #k

ar
ea

de
la

y #k

ar
ea

de
la

y #k

ar
ea

de
la

y #k

ar
ea

de
la

y

1-4 1 1 1-4 1 1 1-4 1 1 1-4 1 1 1-4 1 1 1-4 1 1 1-4 1 1
 5-7 2 2 5-7 2 1.2 5-10 3 2 5-6 2 2 5-10 3 1.2 5-6 2 1.2
 7 2.5 2 7 2.5 1.2
 8-10 3 2 8-10 3 1.2

Table 4.3. Delay-optimization using dedicated FPGA architecture with direct connections between adjacent LUTs.

 Profile LUTs Levels Runtime (secs)
Designs PI PO FF Base MSC 44 444 Best Base MSC 44 444 Best MSC 44 444 Best

 alu4 14 8 0 705 688 664 685 634 9 7 5.6 4.6 4.6 2 5 12 11
 apex2 39 3 0 961 799 822 829 774.5 9 8 6 4.8 4.8 4 7 16 14
 b14 32 54 245 2295 1750 1806 2067 2127 22 20 14 10.6 10.6 8 33 108 70
 b15 36 70 449 3293 3022 3274 3656 3900.5 23 22 15.4 11.8 10.8 19 55 81 86
 b17 37 97 1415 10392 9271 9596 10182 10446 34 31 20.8 15.4 14.4 63 154 276 309
 b20 32 22 490 4510 3523 3830 4552 4592 23 22 14.2 10.8 10.8 16 67 147 134
 b21 32 22 490 4758 3512 3867 4394 4413 23 22 14.2 10.8 10.8 17 78 184 134
 b22 32 22 735 6727 5255 5749 6801 6770.5 24 22 15.4 10.8 10.8 24 96 199 212
 clma 383 82 33 3872 3766 3771 3528 3710.5 17 13 9.4 8 7 28 53 131 53
 des 256 245 0 1242 1213 1246 1047 1267.5 8 6 4.6 4.4 3.6 3 16 42 43
 elliptic 19 2 194 377 428 456 476 466 11 8 6.6 5.8 5.6 1 1 4 3
 ex5p 8 63 0 514 463 498 527 483.5 12 6 4.6 3.4 3.4 1 6 10 9
 frisc 4 116 886 2242 2220 2442 2618 2678.5 21 19 10.6 8.2 8.2 10 29 72 76
 i10 257 224 0 739 733 772 882 884 19 14 9.4 7.2 7.2 2 8 24 25
 pdc 16 40 0 2232 2039 2604 3043 2855 13 8 6.8 5.8 5.8 21 41 111 62
 s38584 13 278 1452 4234 3942 3448 3950 3881 11 8 6.8 4.6 4.8 11 32 63 64
 s5378 36 49 161 467 445 390 476 497.5 7 6 4.4 3.6 3.4 1 4 6 7
 seq 41 35 0 979 908 927 887 826 8 6 4.8 4.6 4.6 4 8 22 22
 spla 16 46 0 2168 1900 2315 2769 2691 13 9 7 5.8 5.8 18 45 49 51
 tseng 52 122 385 837 740 797 931 826.5 13 13 7 4.8 5.8 1 6 14 9

Geomean 1772 1598 1679 1824 1814 14.51 11.67 8.38 6.63 6.52 6.42 19.54 43.55 37.82
Ratio1 1 0.902 0.948 1.029 1.024 1 0.804 0.578 0.457 0.449 1 3.045 6.787 5.894
Ratio2 1 1.051 1.141 1.135 1 0.718 0.568 0.558 1 2.229 1.936
Ratio3 1 1.086 1.080 1 0.791 0.777 1 0.868
Ratio4 1 0.994 1 0.983

Table 4.4. Delay-optimization using dedicated FPGA architecture with direct connections
between adjacent LUTs for industrial designs.

 LUT Levels
Designs Base MSC 44 444 Best Base MSC 44 444 Best
D1 1437 1344 1397 1320 1363.5 15.0 13.0 10.2 9.9 9.5
D2 1455 1405 1540 1411 1410.5 8.0 8.0 5.6 4.8 4.6
D3 1565 1540 1667 2187 1952.5 14.0 13.0 8.0 4.8 4.6
D4 1831 1734 1713 1724 1726.5 11.0 8.3 6.1 5.9 6.0
D5 2901 2787 2715 2742 2753.5 15.9 14.0 11.4 11.2 11.3
D6 2908 2746 2776 2888 2882.5 10.0 10.0 7.0 5.8 5.8
D7 3235 3093 3099 2984 3012.0 14.9 13.4 11.6 11.1 10.8
D8 3605 3249 3412 3300 3840.0 20.0 15.0 11.6 11.8 10.8
D9 4421 3851 3417 3532 3547.0 7.0 7.0 5.6 6.0 6.0
D10 4540 4323 4337 4272 4343.5 19.0 16.9 10.6 11.8 11.3
D11 5743 4415 4899 5545 5365.5 15.0 15.0 12.6 10.6 10.8
D12 6063 6248 5096 6759 6498.5 12.0 10.0 8.2 7.0 7.0
D13 6238 6236 6994 7619 8124.0 9.0 9.0 7.2 7.0 7.0
D14 10248 9227 9171 8962 8657.0 13.9 13.5 11.8 11.2 11.5
D15 27896 23793 23395 23833 24276.0 17.0 17.0 13.0 11.4 11.0
Geomean 3900 3624 3650 3803 3824 12.88 11.77 8.99 8.23 8.09
Ratio1 1 0.929 0.936 0.975 0.980 1 0.914 0.698 0.639 0.628
Ratio2 1 1.007 1.050 1.055 1 0.764 0.699 0.687
Ratio3 1 1.042 1.048 1 0.915 0.900
Ratio4 1 1.005 1 0.983

