Mapping into LUT Structures

Sayak Ray Alan Mishchenko Niklas Een Robert Brayton
Department of EECS, University of California, Berkeley
\{sayak, alanmi, een, brayton\}@eecs.berkeley.edu

Stephen Jang Chao Chen
Agate Logic Inc.
\{sjang, chaochen\}@agatelogic.com

Abstract

Mapping into K-input lookup tables (K-LUTs) is an important step in synthesis for Field-Programmable Gate Arrays (FPGAs). The traditional FPGA architecture assumes all interconnects between individual LUTs are "routable". This paper proposes a modified FPGA architecture which allows for direct (non-routable) connections between adjacent LUTs. As a result, delay can be reduced but area may increase. This paper investigates two types of LUT structures and the associated tradeoffs. A new mapping algorithm is developed to handle such structures. Experimental results indicate that even when regular LUT structures are used, area and delay can be improved 7.4% and 11.3%, respectively, compared to the high-effort technology mapping with structural choices. When the dedicated architecture is used, the delay can be improved up to 40% at the cost of some area increase.

1. Introduction

LUT-based FPGAs are used already for implementing digital designs in a wide variety of application domains. However, the search for new FPGA architectures and efficient methods of their synthesis remains a continuing area of research. This is motivated by considerations such as reducing delay, area, and power consumption, improving routability and resource utilization, and increasing expressive power of programmable logic. Reducing delay is especially important as it allows high-frequency FPGAs to compete with ASICs.
Delay in modern FPGAs is dominated by interconnect. A typical ratio between the intrinsic delay of a LUT and a wire delay is $1: 5$, because most of the wires are routed through multiple switch-boxes and routing channels.
One way to reduce routing delay is to use an FPGA architecture that has direct, or "non-routable", wires. Such wires can connect two adjacent LUTs in a programmable fabric, possibly at the expense of restricting the fanout count of the LUTs involved. In this paper, we investigate several ways direct wires can be used and experimentally show improvements in delay as a consequence.
We call a group of LUTs connected by direct wires, a LUT structure. It can be characterized by the number of interconnected LUTs, their sizes and connectivities. We investigate two single-output LUT structures, " 44 " and " 444 ", shown in Figure 1. The connections between the LUTs inside each structure are direct (non-routable), while all other connections are routable.

Figure 1: The 7-input LUT structure " 44 " (left) and the 10 -input LUT structure " 444 " (right).

In order to investigate the viability of these structures, we had to develop a new mapping algorithm, aimed at efficient implementation into such structures.
The contributions of this paper are the following:

- Development of an efficient matching algorithm to check if a given Boolean function can be implemented using a given LUT structure.
- Modification to the priority-cut-based technology mapper [16] to perform mapping into the LUT structures, as opposed to single LUTs.
- Experimental evaluation of the new mapping algorithm applied to regular LUTs as well as the 44 and 444 structures. A promising conclusion is that the algorithm can improve delay and area also for the traditional mapping and substantially improve delay when LUT structures are used.
- Statistics on the relative number of k-input Boolean functions, appearing in industrial designs, that can be implemented using the 44 and 444 LUT structures.
The paper is organized as follows. Section 2 describes the background and the relevant decomposition theory and Section 3 describes the mapping algorithm. Section 4 reports on some experimental results while Section 5 concludes the paper and outlines future work.

2. Background

2.1 Boolean network

A Boolean network (or netlist, or circuit) is a directed acyclic graph (DAG) with nodes corresponding to logic gates and edges corresponding to wires connecting the gates. In this paper, we consider only combinational Boolean networks. A combinational And-Inverter Graph (AIG) is a Boolean network composed of two-input ANDs and inverters. The size (area) of an AIG is the number of its nodes; the depth (delay) is the number of nodes on the longest path from the primary inputs (PIs) to the primary outputs (POs). A cut C of a node n is a set of nodes of the network, called leaves of the cut, such that each path from a

PI to n passes through at least one leaf. Node n is called the root of cut C. For details on cuts and their roles in technology mapping, see [8][16]. We have modified an existing cut-based mapper for mapping into LUTstructures.

As usual, a Boolean network is a logical realization of a single or multi-output Boolean function. A single output Boolean function of n variables is denoted as $f:\{0,1\}^{n}$ $\cdot\{0,1\}$, and a multi-output Boolean function is treated as a vector of single-output Boolean functions. We use boldface letters to denote vectors (of variables or functions). A completely-specified Boolean function F essentially depends on a variable if there exists an input combination such that the value of the function changes when the variable is toggled. The support of F is the set of all variables on which function F essentially depends. The supports of two functions are disjoint if they do not contain common variables. A set of functions is disjoint if their supports are pair-wise disjoint. Additional information can be found in the following publications: AIGs [9][4], AIGbased synthesis [14][15], delay optimization and area recovery [6][18].

2.2 Decomposition theory

This section reviews the decomposition theory used in Section 4 of this paper. Refer to [12][13][19][20] for details on the traditional decomposition algorithms.

For a Boolean function $f(\boldsymbol{X})$ and a subset of its support, \boldsymbol{X}_{1}, the set of distinct cofactors, $q_{1}(\boldsymbol{X}), q_{2}(\boldsymbol{X}), \ldots, q_{\mu}(\boldsymbol{X})$, of f with respect to (w.r.t.) \boldsymbol{X}_{1} is derived by substituting all assignments of \boldsymbol{X}_{1} into $f(\boldsymbol{X})$ and eliminating duplicated functions. The number of distinct cofactors, μ, is the column multiplicity of f with respect to X_{1}.

Given a partition of \boldsymbol{X} into two disjoint subsets, \boldsymbol{X}_{1} and \boldsymbol{X}_{2}, we say that Ashenhurst-Curtis decomposition of $f(\boldsymbol{X})$ exists if $f(\boldsymbol{X})$ can be expressed as

$$
f(\boldsymbol{X})=h\left(g_{1}\left(\boldsymbol{X}_{1}\right), g_{2}\left(\boldsymbol{X}_{1}\right), \ldots, g_{k}\left(\boldsymbol{X}_{1}\right), \boldsymbol{X}_{2}\right)
$$

Subsets $\boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$ are called the bound set and the free set, respectively. Functions $g_{i}\left(\boldsymbol{X}_{1}\right), 1 \leq i \leq k$, are the decomposition functions. Function $h\left(\boldsymbol{G}, \boldsymbol{X}_{2}\right)$ is the composition function. The following lemma is useful in subsequent discussions.

Lemma 1. [1][7] The decomposition of $f(\boldsymbol{X})$ with k functions $g_{1}\left(\boldsymbol{X}_{1}\right), g_{2}\left(\boldsymbol{X}_{1}\right), \ldots, g_{\mathrm{k}}\left(\boldsymbol{X}_{1}\right)$ exists if and only if $\left\lceil\log _{2} \mu\right\rceil \leq k \leq n$, where μ is the column multiplicity of f with respect to \boldsymbol{X}_{1}, and $n=\left|\boldsymbol{X}_{1}\right|$.

3. Algorithm

We use a notation for the LUT structures, e.g. "XY" or "XYZ", where the last character represents the root node and the first one or two characters represent the nodes feeding into it. For example, " 345 " represents a structure where a node of size 3 and a node of size 4 feed directly into a node of size 5 . This section describes an efficient algorithm to determine whether a Boolean function can be implemented in "XY" or "XYZ", $2 \leq k \leq 6, k \in\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$.

The node size does not exceed 6 because most FPGAs are based on LUTs of 6 inputs or less. The support size of a function is limited to 16, because the truth table representation works well for such functions. In general, if runtime is not an issue, functions up to 20 inputs can be
handled using truth tables. For larger functions, BDDs or a mixed AIG/SAT representation is preferable.

A special case of checking whether a function can be implemented using a LUT structure, is when the support sizes of the function and the structure are equal. In the case of the LUT structure "XY", if the support of the function is equal to $\mathrm{X}+\mathrm{Y}-1$, the only case when the decomposition exists, is when the function has a DSD with exactly X variables as a separate block. This check is handled in the pseudo-code below.

For example, 5-variable Boolean function $\mathrm{F}=\mathrm{MUX}(\mathrm{c} 0$, d0, MUX(c1, d2, d3)) can be matched with structure " 33 ", because variables $\{\mathrm{c} 1, \mathrm{~d} 2, \mathrm{~d} 3\}$ can be decomposed as a separate block, $\operatorname{MUX}(\mathrm{c} 1, \mathrm{~d} 2, \mathrm{~d} 3)$. On the other hand, this function cannot be matched with structure " 24 ", because no two variables can be decomposed as a separate block.

3.1 Checking decomposition "XY"

Consider decomposition checking for the "XY" structure.
The input to the algorithm is an n-input Boolean function and an ordered pair of numbers (X, Y) where $0 \leq n \leq 16$ and $2 \leq \mathrm{X}, \mathrm{Y} \leq 6$. The pseudo-code of the algorithm is shown in Figure 3.1 below.

```
varset performLutMatchingXY(
    function F, // F is represented using a truth table
    int X, int Y ) // 2 SX \leq 6,2\leqY\leq6
{
    varset V; // a set of Boolean variables
    int n:\quad// the support size
    int m; // the column multiplicity
```

 // perform support minimization and simple checks
 \(n=\) supportMinimize(F); // removes vacuous variables
 \(\operatorname{assert}(n \leq 16)\);
 if (\(n \leq \max (\mathrm{X}, \mathrm{Y})\)) \(\quad\) return \(\operatorname{supp}(\mathrm{F})\);
 if \((n>X+Y-1) \quad\) return "structure is too small";
 // look for the special case decomposition on the output side
 \(\mathrm{V}=\) findOutputDecomposition(\(\mathrm{F}, \mathrm{Y}-1\)); assert \((|\mathrm{V}| \leq \mathrm{Y}-1\));
 if \((n \leq X+|V|) \quad\) return \(\operatorname{supp}(F)-V\);
 // look for a good bound-set in the direct variable order
 (V, \(m\)) = findGoodBoundSet (\(\mathrm{F}, \mathrm{X}\)); assert \((|\mathrm{V}| \leq \mathrm{X})\);
 if (\(m==2\))
 if \((n \leq|\mathrm{V}|+\mathrm{Y}-1)\) return V ;
 if \((3 \leq m \leq 4 \& \& n \leq|\mathrm{V}|+\mathrm{Y}-2)\)
 if (checkSpecialNonDisjoint \((\mathrm{F}, \mathrm{V})\)) return V;
 // look for a good bound-set in the reverse variable order
 reverseVariableOrder(F);
 (V, \(m\)) = findGoodBoundSet(F, X); assert(\(|\mathrm{V}| \leq \mathrm{X})\);
 if (\(m==2\))
 if \((n \leq|\mathrm{V}|+\mathrm{Y}-1)\) return V ;
 if (\(3 \leq m \leq 4 \& \& n \leq|\mathrm{V}|+\mathrm{Y}-2\))
 if (checkSpecialNonDisjoint \((\mathrm{F}, \mathrm{V})\)) return V ;
 return "decomposition does not exist";
 \}

Figure 3.1. LUT matching for two-node structure "XY".
The LUT matching uses procedure supportMinimize(), which removes vacuous variables and returns the new support size. For example, assuming that the variable order is ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$), function $\mathrm{F}=$ acd has the vacuous variable b .

Support minimization removes variable b from the support, resulting in function $G=a b c$, whose support size is 3 .

If $n \cdot \max (\mathrm{X}, \mathrm{Y})$, the function can be packed into one node, while the other node can be treated as a buffer. If $n>\mathrm{X}+\mathrm{Y}-1$, decomposition does not exist because the LUT structure is too small.

Procedure findOutputDecomposition() checks for a special case of decomposition, $\mathrm{F}=\mathrm{x} \otimes \mathrm{G}$, where \otimes is a two variable Boolean function, x is a support variable, and G is a remainder function. For this, single-variable cofactors of F are checked and the following three special cases are considered: a constant- 0 cofactor (AND-decomposition), a constant-1 cofactor (OR-decomposition), and two cofactors that are complements of each other (XOR-decomposition). Note that a pair of cofactors cannot be equal, because after support minimization, F depends on all its variables.

If the simple decomposition exists for one variable x, the check is iteratively applied to the remainder function G and its remainders, if any, until the number of decomposed variables is equal to $\mathrm{Y}-1$. The decomposed variables are returned by the procedure findOutputDecomposition().
If the variable set returned is not enough to decompose the function, procedure findGoodBoundSet(), attempts are made to find a good bound set. This procedure tries to reorder variables in the truth table while minimizing the column multiplicity with respect to the topmost X variables. Reordering of variables in a truth table is similar to that in for BDDs, but typically is faster because a procedure has been developed, which swaps variables i and j directly, without going through a sequence of adjacent variable swaps, known as variable sifting for BDDs. The best column multiplicity and variable set are returned.

If the column multiplicity is 2 and the number of variables in the set is sufficiently large ($\mathrm{n} \leq|\mathrm{V}|+\mathrm{Y}-1$), the variable set is returned. Otherwise, a non-disjoint decomposition with one shared variable is attempted [12]. If such decomposition exists, the variable set is returned.

If decomposition is not found, the variable order is reversed and findGoodBoundSet() is called again. Reversing the variable order is a heuristic used for hard-tomatch functions, even though it does not guarantee that the match is always found if it exists. The reversing of the variable order can be done efficiently on a truth table.

An additional optimization omitted in the pseudo-code of Figure 3.1, is that of caching previously computed results. Thus, when decomposition checking is applied repeatedly to the same function, it is retrieved from the cache, instead of running the check from scratch.

3.2 Checking decomposition "XYZ"

The input to the algorithm is an ordered set of integers (X, Y, Z) and a n-input Boolean function $\mathrm{F}, 0 \leq n \leq \mathrm{X}+\mathrm{Y}$ $+\mathrm{Z}-2$, where $2 \leq \mathrm{X}, \mathrm{Y}, \mathrm{Z} \leq 6$ and $0 \leq n \leq 16$.
The decomposition check in this case is implemented as two checks: checking F for decomposition using "XW", where $\mathrm{W}=\mathrm{Y}+\mathrm{Z}-2$. If it exists, the remainder function G is checked for decomposition using structure "YZ".
To ensure that the resulting structure has blocks " X " and "Y" feeding directly into block "Z", instead of block "X" feeding into block " Y " and block " Y " feeding into block "Z", the algorithm in Figure 3.1 is modified slightly. When
the feasibility checks are performed, the output variable of the first block " X " is not included into the variable sets returned by the checking procedures.

3.3 Modifying the technology mapper

The priority-cut-based technology mapper [16] needed to map into the "XY" and "XYZ" LUT structures allows the user to define custom cost functions for evaluating cuts during mapping. In the case of mapping into the " 44 " ("444") structures, the mapper performs enumeration of 7 -input (10 -input) cuts, computes their cut functions as truth tables, and checks the decomposition for each cut function. If the function is not decomposable, the cut is skipped. If it is decomposable, the area and delay of the resulting cut are defined using the number of inputs of the function, as specified in the given LUT library. A LUT library lists delay and area of the LUT of each size. Examples of LUT libraries are given in Section 5.

The mapper minimizes the delay of the mapping, followed by several rounds of heuristic area recovery. When the user-specified cost functions are employed, as described above, all the cuts used in the mapping have Boolean functions decomposable into the "XY" or "XYZ" LUT structures.

4. Experimental results

The proposed algorithm is implemented in ABC [2][4] as part of the priority-cut-based technology mapper [16] (command $i f$). The following are the relevant switches that have been added to the technology mapper:

- $-S 44$ enables mapping into " 44 " structure,
- $-S 444$ enables mapping into " 444 " structure,
- $-K<n u m>$ specifies the cuts size.

Experiments were performed using a suite of public benchmarks and a suite of industrial benchmarks.

4.1 Improvements to traditional mapping

In the first experiment, reported in Table 4.2, the target structure is the traditional 4-LUT FPGA. In this case, when switch "-S" is used, the delay/area of the LUT structure " 44 " ("444") are the same as the area/delay of two (three) 4-LUTs. The following runs are performed and reported in the columns of Table 4.2. The notation (cmd1; cmd2) ${ }^{n}$ means that $c m d 1$ followed by $c m d 2$ was iterated n times.

- Baseline: This runs if with LUT Library L1 shown in Table 4.1. Note that this library specifies unit-delay and unit-area for each LUT up to size 4.
- Mapping with structural choices (MSC): This runs (dch; if) $)^{4}$ using the Library L1.
- 44: This runs (dch; if $-S 44)^{4}$ with Library L2. This library specifies delay/area equal to 1 for each LUT up to size 4 , and equal to 2 for larger LUTs.
- 444: This runs (dch; if $-S 444)^{4}$ using Library L4. This library specifies delay/area equal to 1 for each LUT up to size 4, and delay/area equal to 2 or 3 for larger cuts.
- Best 444: This runs (dch; if $-S 444)^{4}$ using Library L5. This library estimates the quality of mapping into the LUT structure " 444 ". For each cut size, the library contains the approximate number of LUTs needed to implement it, assuming that 50% of 7 -
input functions are mapped into two 4-LUTs and 50% are mapped into three 4 -LUTs.
Table 4.2 shows that, when the proposed algorithm is used, both area and delay are improved, compared to mapping with structural choices (MSC). For example, when mapping is performed using 7 -input cuts matched with the " 44 " LUT structures composed of two 4-LUTs, the area and delay are improved by 4.6% and 6.1%, respectively. When mapping using 10 -input cuts matched with the " 444 " LUT structures composed on three 4 -LUTs, the area and delay are improved by 7.4% and 11.3%, respectively.

4.2 Delay-optimization using LUT structures

In this experiment, reported in Table 4.3 and Table 4.4, we assume that FPGA hardware allows for efficient realization of the " 44 " and " 444 " structures with direct (non-routable) connections between the adjacent LUTs.
The runs performed are the same as in the previous experiment (Section 4.1), except that the delay of the direct connection is assumed to be 1.2 instead of 2 . The updated LUT libraries are listed below: 44 (Library L3), 444 (Library L6), Best 444 (Library L7). The results of this experiment show that the delay can be substantially reduced at the cost of some increase in area, compared to mapping with structural choices (MSC).

Consider Table 4.3 as an example. When mapping is performed using 7 -input cuts matched with the " 44 " LUT structures, the delay is reduced by 28.2% while the area is increased by 5.1%. When mapping is performed using the " 444 " LUT structures, the delay is reduced by 43.2% while the area is increased by 14.1%. The area increase may be prohibitive and will be addressed as part of future work.

4.3 The ratios of realizable functions

In a separate experiment not shown in the tables, we evaluated the relative number of 7 -input (10 -input) functions appearing in the circuits that can be matched with the " 44 " (" 444 ") LUT structures. The results differ for the industrial designs and for the public benchmarks listed in Tables 4.2 and 4.3 . For the industrial designs, 97% (70%) of 7 -input (10 -input) functions can be matched with the " 44 " ("444") LUT structure. For the public benchmarks, the numbers are 99% and 84%, respectively. It is surprising that such a high percentage of cuts have Boolean functions that can be matched with the LUT structures.

5. Conclusions

This paper proposes an improvement to technology mapping for FPGAs. The main idea is to reduce structural bias by mapping into LUT structures composed of two or three 4-LUTs. The experimental results indicate that the new algorithm can improve both area and delay of the traditional technology mapping.

Additionally, an FPGA architecture allowing for direct connections between pairs of adjacent LUTs is evaluated.

When the algorithm is used to map into this architecture, the delay improvement can be up to 40% at the cost of some area increase.
Future work will explore whether the delay reductions reported in this paper translate into improved maximum clock frequency (Fmax) after place-and-route.

6. Acknowledgements

This work has been supported in part by contacts from SRC (1875.001), NSA, and industrial sponsors: Actel, Altera, Atrenta, Cadence, Calypto, IBM, Intel, Jasper, Magma, Oasys, Real Intent, Synopsys, Tabula, and Verific.

7. REFERENCES

[1] R. L. Ashenhurst, "The decomposition of switching functions", Proc. Intl Symposium on the Theory of Switching, Part I (Annals of the Computation Laboratory of Harvard University, Vol. XXIX), Harvard University Press, Cambridge, 1959, pp. 75-116.
[2] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and Verification. http://wwwcad.eecs.berkeley.edu/~alanmi/abc
[3] V. Bertacco and M. Damiani. "The disjunctive decomposition of logic functions". Proc. ICCAD '97, pp. 78-82.
[4] R. Brayton and A. Mishchenko, "ABC: An academic industrialstrength verification tool", Proc. CAV'10, LNCS 6174, pp. 24-40.
[5] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, "Reducing structural bias in technology mapping", ICCAD '05.
[6] J. Cong and Y. Ding, "FlowMap: An optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs", IEEE Trans. CAD, vol. 13(1), Jan. 1994, pp. 1-12.
[7] A. Curtis. New Approach to the Design of Switching Circuits. Van Nostrand, Princeton, NJ, 1962.
[8] R. J. Francis, J. Rose, and K. Chung, "Chortle: A technology mapping program for lookup table-based field programmable gate arrays", Proc. DAC '90, pp. 613-619.
[9] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, "Robust boolean reasoning for equivalence checking and functional property verification", IEEE TCAD, Vol. 21(12), Dec. 2002, pp. 1377-1394.
[10] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, "Logic decomposition during technology mapping," IEEE Trans. CAD, Vol. 16(8), Aug. 1997, pp. 813-833.
[11] A. Mishchenko, B. Steinbach, and M. A. Perkowski, "An algorithm for bi-decomposition of logic functions", Proc. DAC '01, 103-108.
[12] A. Mishchenko and T. Sasao, "Encoding of Boolean functions and its application to LUT cascade synthesis", Proc. IWLS '02, 115-120.
[13] A. Mishchenko, X. Wang, and T. Kam, "A new enhanced constructive decomposition and mapping algorithm", Proc. DAC '03, pp. 143-148.
[14] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG rewriting: A fresh look at combinational logic synthesis", Proc. DAC '06, pp. 532-536.
[15] A. Mishchenko and R. K. Brayton, "Scalable logic synthesis using a simple circuit structure", Proc. IWLS '06, pp. 15-22.
[16] A. Mishchenko, S. Cho, S. Chatterjee, R. Brayton, "Combinational and sequential mapping with priority cuts", Proc. ICCAD '07, pp. 354-361.
[17] A. Mishchenko, R. Brayton, and S. Jang, "Global delay optimization using structural choices", Proc. FPGA'10, pp. 181-184.
[18] P. Pan and C.-C. Lin, "A new retiming-based technology mapping algorithm for LUT-based FPGAs," Proc. FPGA'98, pp. 35-42.
[19] J.-H. R. Jiang, J.-Y. Jou, and J.-D. Huang. "Compatible class encoding in hyper-function decomposition for FPGA synthesis," Proc. DAC'98, pp. 712-717.
[20] W.-Z. Shen, J.-D. Huang, and S.-M. Chao, "Lambda set selection in Roth-Karp decomposition for LUT-based FPGA technology mapping", Proc. DAC'95, pp. 65-69.

Table 4.1. LUT libraries used in the experimental results.

Library L1			Library L2			Library L3			Library L4			Library L5			Library L6			Library L7		
\#k	$\stackrel{y}{5}$		\#k	픈	$\stackrel{\text { e }}{\stackrel{\rightharpoonup}{\pi}}$	\#k	$\stackrel{y}{5}$	$\begin{aligned} & \frac{\pi}{9} \\ & \frac{\pi}{9} \end{aligned}$	\#k		$\frac{\underset{\pi}{\pi}}{\stackrel{\rightharpoonup}{\pi}}$	\#k		$\frac{\underset{\pi}{\pi}}{\stackrel{\pi}{\pi}}$	\#k	$\stackrel{y}{5}$	$\begin{aligned} & \text { 侖 } \\ & \stackrel{0}{0} \end{aligned}$	\#k		
1-4	1	1	1-4	1	1	1-4	1	1	1-4	1	1	1-4	1	1	1-4	1	1	1-4	1	1
			5-7	2	2	5-7	2	1.2	5-10	3	2	5-6	2	2	5-10	3	1.2	5-6	2	1.2
												7	2.5	2				7	2.5	1.2
												8-10	3	2				8-10	3	1.2

Table 4.2. Improvements to the traditional FPGA mapping.

	Profile			LUTs					Levels					Runtime (secs)			
Designs	PI	PO	FF	Basic	MSC	44	444	Best	Basic	MSC	44	444	Best	MSC	44	44	Best
alu4	14	8	0	705	688	635	584	567	9	7	7	7	7	2	5	14	12
apex2	39	3	0	961	799	691	611	554.5	9	8	7	7	7	4	7	15	14
b14	32	54	245	2295	1750	1678	1647	1671.5	22	20	19	17	16	7	38	78	55
b15	36	70	449	3293	3022	2910	3009	3067.5	23	22	22	19	18	19	58	98	78
b17	37	97	1415	10392	9271	8957	8919	9029.5	34	31	30	26	26	62	162	276	277
b20	32	22	490	4510	3523	3361	3386	3329	23	22	22	20	20	16	84	169	130
b21	32	22	490	4758	3512	3359	3304	3338	23	22	22	21	21	17	79	131	128
b22	32	22	735	6727	5255	4971	4953	4997	24	22	22	21	21	25	97	208	207
clma	383	82	33	3872	3766	3358	2814	2460	17	13	12	11	11	27	62	91	57
des	256	245	0	1242	1213	1172	1077	1053.5	8	6	6	6	6	3	16	37	38
elliptic	19	2	194	377	428	415	414	417.5	11	8	8	8	8	1	2	3	4
ex5p	8	63	0	514	463	443	433	432	12	6	5	5	5	1	5	15	14
frisc	4	116	886	2242	2220	2108	2223	2239.5	21	19	18	14	14	11	30	76	80
i10	257	224	0	739	733	747	766	752	19	14	12	11	12	2	8	23	24
pdc	16	40	0	2232	2039	1923	1951	1921	13	8	8	8	8	20	45	107	84
s38584	13	278	1452	4234	3942	3805	3668	3779	11	8	8	7	7	11	35	32	35
s5378	36	49	161	467	445	446	436	436.5	7	6	5	5	5	1	3	7	6
seq	41	35	0	979	908	830	734	724.5	8	6	6	6	6	4	9	23	20
spla	16	46	0	2168	1900	1858	1838	1850	13	9	8	8	8	17	42	96	70
tseng	52	122	385	837	740	744	738	759.5	13	13	10	10	9	2	6	14	15
Geomean				1772	1598	1524	1479	1464	14.51	11.67	10.96	10.35	10.28	6.59	20.68	42.67	38.78
Ratio1				1	0.902	0.860	0.835	0.826	1	0.804	0.755	0.713	0.708	1	3.138	6.474	5.885
Ratio2					1	0.954	0.926	0.916		1	0.939	0.887	0.881		1	2.063	1.875
Ratio3						1	0.970	0.961			1	0.944	0.938			1	0.909
Ratio4							1	0.990				1	0.993				

Table 4.3. Delay-optimization using dedicated FPGA architecture with direct connections between adjacent LUTs.

	Profile			LUTs					Levels					Runtime (secs)			
Designs	PI	PO	FF	Base	MSC	44	444	Best	Base	MSC	44	444	Best	MSC	44	444	Best
alu4	14	8	0	705	688	664	685	634	9	7	5.6	4.6	4.6	2	5	12	11
apex2	39	3	0	961	799	822	829	774.5	9	8	6	4.8	4.8	4	7	16	14
b14	32	54	245	2295	1750	1806	2067	2127	22	20	14	10.6	10.6	8	33	108	70
b15	36	70	449	3293	3022	3274	3656	3900.5	23	22	15.4	11.8	10.8	19	55	81	86
b17	37	97	1415	10392	9271	9596	10182	10446	34	31	20.8	15.4	14.4	63	154	276	309
b20	32	22	490	4510	3523	3830	4552	4592	23	22	14.2	10.8	10.8	16	67	147	134
b21	32	22	490	4758	3512	3867	4394	4413	23	22	14.2	10.8	10.8	17	78	184	134
b22	32	22	735	6727	5255	5749	6801	6770.5	24	22	15.4	10.8	10.8	24	96	199	212
clma	383	82	33	3872	3766	3771	3528	3710.5	17	13	9.4	8	7	28	53	131	53
des	256	245	0	1242	1213	1246	1047	1267.5	8	6	4.6	4.4	3.6	3	16	42	43
elliptic	19	2	194	377	428	456	476	466	11	8	6.6	5.8	5.6	1	1	4	3
ex5p	8	63	0	514	463	498	527	483.5	12	6	4.6	3.4	3.4	1	6	10	9
frisc	4	116	886	2242	2220	2442	2618	2678.5	21	19	10.6	8.2	8.2	10	29	72	76
i10	257	224	0	739	733	772	882	884	19	14	9.4	7.2	7.2	2	8	24	25
pdc	16	40	0	2232	2039	2604	3043	2855	13	8	6.8	5.8	5.8	21	41	111	62
s38584	13	278	1452	4234	3942	3448	3950	3881	11	8	6.8	4.6	4.8	11	32	63	64
s5378	36	49	161	467	445	390	476	497.5	7	6	4.4	3.6	3.4	1	4	6	7
seq	41	35	0	979	908	927	887	826	8	6	4.8	4.6	4.6	4	8	22	22
spla	16	46	0	2168	1900	2315	2769	2691	13	9	7	5.8	5.8	18	45	49	51
tseng	52	122	385	837	740	797	931	826.5	13	13	7	4.8	5.8	1	6	14	9
Geomean				1772	1598	1679	1824	1814	14.51	11.67	8.38	6.63	6.52	6.42	19.54	43.55	37.82
Ratio1				1	0.902	0.948	1.029	1.024	1	0.804	0.578	0.457	0.449	1	3.045	6.787	5.894
Ratio2					1	1.051	1.141	1.135		1	0.718	0.568	0.558		1	2.229	1.936
Ratio3						1	1.086	1.080			1	0.791	0.777			1	0.868
Ratio4							1	0.994				1	0.983				

Table 4.4. Delay-optimization using dedicated FPGA architecture with direct connections between adjacent LUTs for industrial designs.

	LUT					Levels				
Designs	Base	MSC	44	444	Best	Base	MSC	44	444	Best
D1	1437	1344	1397	1320	1363.5	15.0	13.0	10.2	9.9	9.5
D2	1455	1405	1540	1411	1410.5	8.0	8.0	5.6	4.8	4.6
D3	1565	1540	1667	2187	1952.5	14.0	13.0	8.0	4.8	4.6
D4	1831	1734	1713	1724	1726.5	11.0	8.3	6.1	5.9	6.0
D5	2901	2787	2715	2742	2753.5	15.9	14.0	11.4	11.2	11.3
D6	2908	2746	2776	2888	2882.5	10.0	10.0	7.0	5.8	5.8
D7	3235	3093	3099	2984	3012.0	14.9	13.4	11.6	11.1	10.8
D8	3605	3249	3412	3300	3840.0	20.0	15.0	11.6	11.8	10.8
D9	4421	3851	3417	3532	3547.0	7.0	7.0	5.6	6.0	6.0
D10	4540	4323	4337	4272	4343.5	19.0	16.9	10.6	11.8	11.3
D11	5743	4415	4899	5545	5365.5	15.0	15.0	12.6	10.6	10.8
D12	6063	6248	5096	6759	6498.5	12.0	10.0	8.2	7.0	7.0
D13	6238	6236	6994	7619	8124.0	9.0	9.0	7.2	7.0	7.0
D14	10248	9227	9171	8962	8657.0	13.9	13.5	11.8	11.2	11.5
D15	27896	23793	23395	23833	24276.0	17.0	17.0	13.0	11.4	11.0
Geomean	3900	3624	3650	3803	3824	12.88	11.77	8.99	8.23	8.09
Ratio1	1	0.929	0.936	0.975	0.980	1	0.914	0.698	0.639	0.628
Ratio2		1	1.007	1.050	1.055		1	0.764	0.699	0.687
Ratio3			1	1.042	1.048			1	0.915	0.900
Ratio4				1	1.005				1	0.983

