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data set size.

8.0 Conclusions and Future Work

This paper has described the DIVA system, an architecture incorporating PIM devices as smart memories to
one or more external host processors. Other distinguishing features of DIVA include its PIM-to-PIM intercon-
nect and explicit support for in-memory operations on irregular data structures. In this paper, we presented sys-
tem-level requirements for in-memory acceleration of irregular applications. We presented three case studies,
sparse conjugate gradient, natural join and an OO7 database query, to demonstrate how irregular applications
can be mapped to the DIVA architecture. High-level simulation results show a speedup for all three applica-
tions, resulting from increased processor-memory bandwidth, much more effective use of cache on the host
processor, lower latency accesses and parallelism.

Future descriptions of the DIVA project will include details of the PIM VLSI device, architecture studies using
a high-fidelity system simulator based on RSIM, the DIVA compiler and run-time systems, and further applica-
tion studies.
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defined hierarchically in terms of other base or complex assemblies or base assemblies. Base assembly compo-
nents are defined in terms of composite parts which in turn consist of more than one library atomic part. Each
of these objects have specific attributes such as a unique identifier, creation date and other type-specific fields.

This database application was originally developed at the University of Wisconsin to study the performance of
various database management systems [007]. We have ported this application to a C++ stand-alone program by
implementing the dictionary and relations abstraction using hash-tables and linked lists in a total of 9,000 lines
of C++ code. Our performance evaluation concentrates on a specific database query, query #6. Query #6 finds
all assemblies (base or complex) B that reference (directly or transitively) a composite part with a more recent
build date than B’s build date. This query is implemented using set operations over the database relations and
extensively uses the iteration abstraction from C++ to access successive objects in a given relation.

Besides the overall organization of the database objects in a graph data structure, the database schema also
relies heavily on singly-linked and hash-table pointer-based data structures for indexing of the object in each
category (documents, manual, base assemblies, etc.). The primary access pattern over the indexing structure
traverses a singly-linked list or a hash-table, searching for a particular subset of objects matching a given pred-
icate. In addition, the application also traverses the overall graph structure of the objects in the database. Such
traversals perform poorly on conventional systems because they exhibit almost no temporal reuse of memory
accesses, and there is little spatial locality due to the way the pointer-based data structures are created.

To take advantage of the PIM architecture, we perform two key transformations on the original application.
The first transformation takes advantage of the fact that the computation accesses a set of objects; the order in
which the elements of the set are accessed by the application is irrelevant, so these accesses can be performed
in parallel. The second transformation restructures the code so that the PIM nodes traverse the linked data
structure that represents the relations in the schema and selects the set of objects the computation needs to
access. Each PIM selects a subset of the objects in the relation from its local memory only. The host then gath-
ers the partial results and constructs a larger set. The host is responsible for any updates to the storage. Figure 9
shows the execution time breakdown and speedups for 007.
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Figure 9: Execution Breakdown and Speedups for 007.

The results show an impressive superlinear speedup. As the execution breakdown reveals, this result is due to
the severe performance impact of the L2 miss stalls (almost 80% of the sequential computation for this query)
for the case where only the host executes the computation. When the computation is partitioned across the PIM
nodes, each PIM fetches data from its local memory and communicates very infrequently. The overhead of
coherence is also negligible for all runs, as the query does not update the objects in the database but rather col-
lects overall statistics. As a result, the performance scales well up to 16. For 32 PIM nodes, speedup, while still
impressive, trails off a little due to the relative frequency of communication compared to computation for this



cuted on the PIMs, much fewer accesses to array Y are brought into the host, and the miss rates on L1 and L2
cache were reduced respectively to 10% and 7%. As Figure 7(a) shows, this contributes to a significant reduc-
tion of the application time waiting for results from memory. Figure 7(b) shows the overall application speed-
ups for different numbers of PIM nodes as compared to the entire application executing on the host. At 16
PIMs, the application speedup is more than 8 over the original sequential execution time. While this applica-
tion scales very well for up to 16 PIM nodes, the problem size we use is too small relative to the overhead of
the reduction computation to scale much beyond 32 PIMs.

7.2 Hash-Based Natural Join

The Natural Join is a fundamental operation in relational database systems. It consists of generating all possible
combinations of tuples for two relations R and S with a common attribute A. In the implementation used in
these experiments, the algorithm builds a hash table for each of the relations R and S indexed by the attribute A.
Then, for each hashed value in the table, the algorithm joins all tuples of the two relations that have a common
value for the attribute A.
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Figure 8: Execution Breakdown and Speedups for Natural Join.

The strategy to map this application to DIVA is to distribute the hash table along contiguous blocks of the table
entries. Each PIM node has a set of consecutive entries of the hash table and the hash-table collision lists corre:
sponding to each of the table entries it owns. Once the host processor has constructed the distributed hast
table, the natural join operation proceeds by having each PIM node computing a local natural join operation.
At the end, the host simply scans the partial hash tables local to each PIM node to read the results.

Figure 8 shows performance results when the first phase, constructing the local hash tables, is performed by the
host, and the second phase, the join of local hash tables, executes in the PIMs. The speedups for the join phas
of the computation are superlinear, as shown in Figure 8(c). These superlinear speedups result from the com-
bined effects of the smaller memory latencies at the PIMs, as compared to the cache miss latencies suffered by
the host, and the parallelism obtained by distributing the computation across PIMs. Due to Amdahl’s Law, the
overall speedup is limited, as the first phase, which accounts for about half the baseline execution time, is exe-
cuted sequentially on the host. Even more speedup is possible from two sources, both of which we are explor-
ing: (1) building portions of the local hash table in parallel on the PIMs and merging the results; and, (2)
performing in parallel on the ASAP unit the comparison of a key from the R-tuple with that of several S-tuples
with the same hash value.

7.3 Object-Oriented Database Benchmark (007)

The 007 application implements a representative object-oriented database for CAD applications. The database
schema defines several one-to-one and one-to-many relationships among database objects. These objects col
sist of documents, manuals and base or complex assembly components. Each complex assembly component i



Figure 5(b) and Figure 5(c) present the corresponding code for the DIVA architecture, which makes use of the
parcel and synchronization primitives to orchestrate the computation. Figure 6 illustrates graphically the data
mapping for the various arrays in this computation for a system with 4 PIM nodes.
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Figure 6: Data Mapping on DIVA for CG.

Figure 7 illustrates simulation results for this application. We separate original sequential execution into sev-
eral components in Figure 7(a). The host busy category accounts for the time spent executing instructions. The
L1 and L2 miss stall categories represent time spent waiting for memory accesses to be satisfied from either the
L2 cache or main memory. In the version of the program that executes the matrix-vector product on the PIMs,
we show time spent in the host and on average in one PIM, and we include additional categories (the host is
idle during PIM execution, so this is an accurate reflection of overall execution time). The coherency overhead
refers to time spent by the host flushing cache lines prior to execution on the PIMs. Note that additonal coher-
ency overhead is charged as L1 and L2 cache misses in the host when PIMs are used; by flushing data from the
cache prior to PIM computations, extra cache misses in the host may occur in later host computation. This
cache miss effect due to flushing is not significant in the programs presented here because the irregular
accesses in the PIM computations were polluting the host cache when executed on the host. Additional catego-
ries show time spent in the PIMs, including PIM-to-PIM communication overhead and time spent in local
memory stalls.
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Figure 7: Execution Breakdown and Speedups for CG.

As the results in Figure 7(a) indicate, the original application suffers significantly from poor cache locality
with overall L1 and L2 cache miss rates of 15% and 20%, respectively. When the matrix-vector product is exe-



present results on three applications evaluated with this simulation methodology.
7.1 NAS Sparse Conjugate Gradient (CG)

CG implements a linear system solver using a conjugate gradient iterative method. Its main data structures are
three very large arrays of floating-point double-precision values. The main computation consists of a sparse
matrix-vector product (see Figure 5(a)) and accounts for about 80% of the total sequential execution time. The
computation is structured as a single loop performing commutative and associative updates to array Y indexed
by the values in the ROWIDX array. The sparseness of the computation is derived from the indirection of the
accesses to the Y array whereas both arrays A and X are accessed using simple loop indexing functions.

To effectively map this computation to DIVA, we parallelize the execution of the sparse matrix-vector product
by exploiting the commutativity and associativity of the addition operations. In this version, each PIM node
has a local copy of array Y (named PRIV_Y), and performs its updates on its own private copy; after all PIMs
complete their local computation, the local results are merged using a parallel reduction algorithm. The parallel
reduction algorithm ensures that there is no network contention during the communication phase. However,
since each PIM node has to communicate its copy of array Y to other nodes, the total amount of communica-
tion increases with the number of PIMs, as well as the number of steps of the parallel reduction. This example
makes use of a lightweight run-time system and the parcel communication mechanism to generate and manage
concurrency. The basic code generation strategy is for the compiler to split the computation between the host
and the PIM nodes and to initiate the computation on the PIMs by sending parcel, uSiegdRarceprimi-

tive. PIM nodes are activated by the receipt of a given parcel and proceed to execute the code associated with
it. This code might in turn generate other concurrent computation on the same or on other PIM nodes. The host
can enforce termination of a given computation using an explicit barrier synchronization coBstmtet)(or

implicitly through memory. Also included in this run-time system KEush primitive that allows the compiler

to maintain the consistency of the data between the host caches and the PIM nodes.

(a) Original Loop Nest.
DOJ=1,N
DO K = COLSTR[J], COLSTR[J+1]-1
Y[ROWIDX[K]] = YIROWIDX[K]] + A[K] * X[J]

(b) DIVA Host Program.
Flush(Y);
PartitionSize = Sizeof (ROWIDX) / NumPimNodes;
for (i=0; i<NUM_PIMNODES; i++) {
Send_parcel (ROWIDX[I*PartitionSize], LoopBody, PartitionSize,
A[lI*PartitionSize], PRIV_COLSTRI[O,1],PRIV_X][0,1],Y);
}

Barrier();

(c) Code for PIM node command_oopBody.

BarrierEnter();
for (j=1; j<=N; j++) {
Lower = Max(PRIV_COLSTRI[J], PIMID*PartitionSize);
Upper = Min(PRIV_COLSTR[J+1]-1, (PIMID+1)*PartitionSize-1);
for (i=Lower; i<=Upper; i++) {
K1 = K - PIMID*PartitionSize;
PRIV_Y[ROWIDX[K1]] = PRIV_Y[ROWIDX[K1]] + (A[K1] * PRIV_X[J])
}

}
ParallelReduction(Y,PRIV_Y,PIMID,NUM_PIMNODES);

BarrierRelease();

Figure 5: CG Matrix-vector product and its mapping to DIVA.



using Shade [Cmelik94]. Shade executes application programs and generates traces under the control of a user-
supplied trace analyzer. We simulate parallel execution in our experiments by recording the simulated time at
the beginning of a parallel section and setting the parallel execution time at the end of the concurrent execution
to be the maximum value of the simulated time by each of the participating PIM nodes. The Shade-based sim-
ulator does not directly model the PiRC interconnection. To account for network latency and congestion, we
generate traces of time-stamped network requests for each application, and use these traces as inputs to a net-
work simulator [Draper96]. The throughput and contention derived by the network simulator are then used as
parameters to the Shade simulator.

The PIM chips modeled in these experiments are much simpler than what was presented in Section 2. There is
a single node per chip, and we only consider applications that use standard scalar integer and floating-point
processing on the PIM nodéase(,no ASAP instructions). These simplifications reduce the contention for on-
chip resources, and allow us to get meaningful early results from the simple Shade-based simulation strategy.
We anticipate that the multiple processing nodes per PIM chip and the ASAP functional units planned for the
actual DIVA implementation will yield much better on-chip computation rates, albeit with additional costs due

to contention for internal memory banks and PiRC channels.

In our simulations, each PIM node consists of a PIM processor, a 2M-byte memory bank, a host interface and a
PiRC network interface. Since processor technology is optimized for speed and DRAM technology is opti-
mized for density and yield, the PIM processing logic is expected to be slower than the host processor logic.
Based on projections, we assume that the PIM processor cycle is twice the host processor cycle. The PIM node
memory bank is organized as 8192 2K-bit memory rows, and the DRAM interface provides a 256-bit sub row

per memory access. We assume the first access to a 2K-bit row (random-mode access) takes 2 PIM cycles, and
each subsequent access to the same row (page-mode access) takes 1 PIM cycle. These parameters are based on
current memory speeds [Kogge98].

The host has separate instruction and data on-chip caches, and a unified off-chip second level cache. We model
a parcel issue as a sequence of writes to specific memory addresses, the last of which triggers the delivery of
the parcel. Coherence between the caches and memory is enforced by software (e.g., the compiler), using an
instruction to flush data from the cache. At a flush instruction, the simulator invalidates the cache line and, if
the line is modified, writes it back to memory. We summarize the simulation parameters in Table 1. We now

Cache Parameter| Instruction L1 Data L1 Data L2
size 32 K bytes 32 K bytes 1 M bytes
associativity 2 2 2
Host Caches line size 64 bytes 32 bytes 32 bytes
replacement LRU LRU LRU
write policy write back write back write back
latency (hit) 1 cycle 1 cycle 10 cycles
latency (miss) 10 cycles 10 cycles 100 cycles
PIM Node processor cycle 2 cycled
memory size 2 M bytes
memory row size 256 bits
memory latency 1 cyclé (page mode), 4 cyclegrandom mode)
PiRC Network channel width 32 bits
network cycle 4 cycle$

a. Host processor cy_cles ) . ) ) .
Table 1: Simulation Parameters used in Application Studies.



need to know its exact location. Coherence of data shared across PIM chips is not guaranteed by the hardware
and must be managed by either the compiler or programmer, similar to what is required in the Cray T3E. Also
as with distributed-shared-memory multiprocessors, locality of data accesses is very important to good perfor-
mance.

Because of these similarities to a distributed-shared-memory multiprocessor, most parallelizing and locality-
management compiler techniques and parallel programming paradigms can be leveraged for DIVA. Applicable
compilation techniques include automatic parallelization for both regular [Blume96] [Hall96] and irregular
applications [Rinard97], and data and computation co-location [Anderson93]. Explicitly parallel programming
languages that permit some programmer control of locality are also applicable, such as High Performance For-
tran and its extensions for irregular applications, Olden [Carlisle95], and CC++[Foster95]. As discussed in
Section 4.1, the parcel mechanism is really a refinement, tailored to the DIVA architecture, of active messages,
which were developed for message-passing multiprocessor systems [vonEicken92].

While there are many similarities between programming for DIVA and parallel programming, there are several
important differences. One additional requirement is keeping the host cache coherent with the PIM memories.
As discussed in Section 5.4, this is accomplished with explicit flushing, immediately prior to sending a parcel
from the host, of objects in the host cache that may be touched by the PIM computation. In keeping with the
above stated goal of making correct programs easy to develop, the required flushing can be optionally auto-
mated by the compiler through analysis of the object and arguments associated with the parcel. Further, DIVA
applications can exploit fine-grain parallelism using the ASAP functional unit for operations on aggregate data
objects, which demands a combination of compiler technology and a user development environment for
exploiting complex ASAP-oriented computatiomsg(,string matching). Other high-level operations such as
memory management can be optimized for the PIMs to improve the locality of pointer-based computations. As
an example, when building a tree data structure in parallel, each PIM can locally allocate a subtree, with the
host sequentially connecting the subtrees in the upper level of the trees. Locality for each subtree is then
ensured.

An important component of the DIVA project is a large software effort to develop application programmer
libraries, and compiler and run-time system support. The DIVA compiler, either automatically or in response to
programmer specification, partitions computation and data across host and PIMs. This partitioning requires
that it must generate code that interfaces with the operating system to control data placement on the PIMs, gen-
erate code to load application-specific PIM code onto the memories, and also generate parcels in the appropri-
ate places in the code to initiate PIM computation, communicate and synchronize. This high-level code must
then pass through separate backend compilers: one for the host, for which we can use an existing native back-
end compiler; and one for the PIMs, which requires a DIVA PIM-specific backend that generates standard
RISC as well as ASAP instructions. There are also separate run-time systems for the host and PIMs. The host
run-time system performs similar functions to a standard architecture-independent parallel run-time library
(e.g., Pthreads), managing threads and synchronization. The PIM run-time system is a small, DIVA-specific
system, primarily for parcel processing.

As part of the software development efforts, we are currently retargeting the Stanford SUIF compiler system to
DIVA, allowing us to take advantage of its wealth of compiler analyses for distributed-shared-memory
machines. In addition, we are developing an extensible approach to support compiler and programmer genera-
tion of ASAP instructions that are seamlessly integrated into the PIM backend. Since DIVA is targeting irregu-
lar computations, we are also investigating a memory management library for dynamic generation and
reorganization of irregular data structures.

7.0 Case Studies

To derive preliminary performance estimates for complete applications, we developed a simulator for the
major system components of DIVA. The simulated architecture consists of a host processor, and a number of
PIMs interconnected via a PiRC ring network. We simulate computations executing on the host and PIMs



tent model of memory access must be chosen and maintained. Conventional NUMA and COMA models are
suboptimal for irregular, data-intensive applications. Specifically, in a NUMA or COMA model, a reference to
remote data by a local node causes the remote data to be automatically moved or copied to the local node,
where it is made available under the same virtual address as the remote version. In general, the overhead of
supporting this model becomes excessive for irregular applications, where there is by definition great potential
for false sharing, and little temporal locality.

The philosophy in the DIVA system is therefore to move the computation to the data, rather than move the data
to the computation. At any one time, the data at a virtual address is located on exactly one PIM node, and there
are no cached copies on other PIM nodes. Global pages can be moved from one node to another for load bal-
ancing purposes, but this is a heavyweight operation that should be used infrequently and explicitly managed
by the operating system. Consistency of the distributed address translation table must be maintained, but since
this changes relatively rarely, software coherence methods are adequate.

During normal operation, therefore, data coherence issues do ndieivig=rPIMs, and there is no need for

a sophisticated, hardware-supported coherence mechanism. The movement of code is a much simpler problem,
since code is read-only, and can be replicated easily. Moreover, the only references to code that get passed in
parcels are indirect references that index into a method table, so the translation mechanism for code references
is built into the application. The result is a memory model that can be supported by fairly simple hardware in
the PIM nodes, independent of the host CPU details.

The remaining coherence issue, namely between the PIM system and the host, is the most difficult. Individual
cache lines may be cached by the host processor(s). The simplest solution, adopted in this prototype, is to
always explicitly flush PIM-accessible data, or keep it uncached. A more transparent approach is for each PIM
to track ownership of individual cache lines, and request writebacks from the CPU caches as necessary. The
hardware for this on each PIM is not excessive and scales well, so this is a suitable long-term solution. How-
ever, broader issues suggest it is premature to implement in our prototype. As stated at the beginning of this
section, our goal is a memory model that is independent of which processor is used as a host; the mechanism
for requesting writebacks is processor specific, and usually involves the requestor driving the address bus. In a
large system with many potential requestors, this introduces significant arbitration, electrical drive, and porta-
bility problems. In the long term, it would be better to develop a standard (probably network-based) memory-
to-processor channel for this activity, which would find other uses in smart memory systems.

Although the explicit flushing is a burden, either to the programmer or compiler, it is not expected to degrade
performance significantly. In practice, even with automated hardware, the user would probably obtain higher
performance in some applications by manually flushing cache lines anyhow, to minimize the number of write-
back requests.

6.0 Developing Applications in DIVA

The success of a new architecture is highly dependent on the ease in which software can be developed for it. It
should be straightforward to develop correct programs, even if it is somewhat more difficult to effectively
exploit the performance-enhancing features of the architecture. DIVA offers a smooth migration path for
developing applications. First, the applications programmer can begin with a standard sequential program,
which will run correctly with no modification by using the PIMs as standard memory. Then, either the com-
piler or programmer can exploit the PIMs as smart memory in portions of the application where this is deemed
profitable, gradually migrating the original sequential application to make full use of the DIVA architecture.

To the applications programmer or compiler, the abstract DIVA architecture appears very similar to a distrib-
uted-shared-memory multiprocessor. The host can serve as a master to coordinate activities on the PIMs. Each
node on a PIM processor acts as a worker processor waiting for work, and possibly initiating work on other
PIMs through the parcel mechanism. The memory associated with a PIM node can be thought of as its local
memory. The PIM node can access a datum on other memory chips through a global address space without



supported page size of the host CPU. Also, each PIM node should ideally be able to hold in a fast TLB the
translation information for all active global pages resident on it, to avoid the frequent TLB misses that would
occur on an irregular application. This therefore suggests that global memory pages should be large; in the pro-
totype, one simplifying option under consideration is a single very large global page (per application) on each
node.

Parcel Buffers: The final step in invoking the PIMs is to request the host OS to allocate and map one or more
virtual parcel buffers, for use in communicating parcels with the PIM system. Parcels are then sent to individ-
ual nodes to start the PIM computation. Finally, when the computation is complete, one of the PIM methods
communicates this to the host, typically by setting a flag in the global memory, and the host picks up the results
from the global memory.

The overall memory structure for a typical DIVA application is shown in Figure 4. In the far left column is the
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Figure 4. Decomposition of a host process address space across multiple
PIM nodes. Shaded regions have supervisor-level protection.

virtual address space of a typical host application process, where each rectangle represents a page or segmel
from one of the memory regions. Shaded pages are accessible only while in supervisor mode. The label indi-
cates whether the page is used for global data (G), dumb user or system pages (DU or DS) or internal user or
system pages (IU or 1S), as well as the PIM node (0-3) where the page currently resides. The second column
shows the subset of pages visible to a method executing on PIM node 0. The third column shows the subset of
pages actually resident on node 0. The last two columns show the same information for node 1. Note that glo-
bal pages are visible from all nodes, while internal pages are visible only on their local nodes, where they
appear at a common virtual address.

5.4 Coherence Management
In any system with distributed processing, the distributed information needs to be kept coherent, and a consis-



during application start-up, following an explicit system call, or transparently when the first PIM operation is
attempted; some combination of these initialization steps can be profitably supported. For instance, a basic
PIM kernel could be installed on each node at system boot time, as could code for any widely useful PIM
methods. Application load time is a good time to install application-specific method code that is used fre-
guently; individual methods from a large system library could be loaded dynamically on demand during appli-
cation execution.

User-level code on the host never accesses this internal memory during normal operation. To the host, the
internal pages appear within the supervisor region, like the kernel and its associated data structures. Moreover,
the host only needs to access them under exceptional conditignapplication loads, service requests, and
errors. Access from the host is thus guaranteed to be infrequent, through trusted code with access to translation
tables. On the other hand, access to internal regions by the PIM processor needs to be highly efficient and well
protected, since it is used for everything from local OS code and data to execution stacks and working memory
for the many light-weight user-level methods launched in response to parcels during normal operation.

One can exploit these asymmetric requirements by adopting a memory-management approach for the internal
memory that is very convenient for the PIM processor, but perhaps quite unrelated to the memory-management
hardware on the host. A particularly useful scheme, planned for the prototype, is to give each lightweight local
context on a PIM processor eight variable-sized segments or pages of internal memory, each defined by virtual
and physical base addresses, size and access permissions. By convention, these are assigned to the following:

1. Supervisor-level kernel code (shared by all contexts on the node)
Supervisor-level kernel data and stack (shared by all contexts on the node)
User-level code (shared by all contexts in the same application)

User-level data (shared by all contexts in the same application)

User stack (unique to each context)

Miscellaneous (possibly unique to each context)

Supervisor-level parcel buffer device (shared by all contexts on the node)
User-level parcel buffer device (shared by all contexts in the same application).
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Translation of internal virtual addresses can be made extremely fast and efficient by adopting some simple con-
ventions, e.g., high bits of all the page virtual starting addresses are the same, the next three bits specify the
page number, and the size is a power of two. Then, the TLB simplifies to a look-up table, the translation infor-
mation for a lightweight context fits into 256 bits, and can be switched in one clock cycle. Since PIM nodes do
not access each other’s internal memory, the same virtual address range can be used for internal memory on
every node, making PIM contexts relocatable from one node to another.

Global Memory: The next step in setting up to use the PIM features is to allocate DRAM on each PIM for use
as smart “global” storage. This can be done at run time by a series of system calls such as
mem_alloc(pim_node, virtual_address, size) , Which allocates a region of memorysife

bytes onpim_node and maps it avirtual_address , an unmapped virtual address range within the
application address space. Unlike the dumb memory, whose mapping is visible only to the host process, or the
internal memory, whose mapping is visible only to the associated PIM node and the host OS, the global mem-
ory is visible to the host process and to all PIM nodes involved in the application. Although only the host and
the local node where the data resides can access an element of global memory directly (i.e., by read and write
instructions), pointers to global objects are meaningful to all nodes and to the host, and can be communicated
freely within parcels. Once global memory has been allocated, the host process can set up any initialized data
by writing to it. In practice, global memory will make up the majority of memory in a data-intensive applica-
tion using the PIM features. It is important that access to this memory be efficient from both the PIM and the
host, and this therefore presents the greatest implementation challenge. Address translation must be compatible
with both host CPU and PIM hardware. The page size must therefore be equal to or a multiple of the hardware-



communicate a parcel, a process reads or writes fields in the buffer, then performs a final read on a status field
to pass the parcel to the PIM chip internals. In the rare case of corrupted accesses, a failure status is returned
and the application can retry.

5.2 Address Translation

Parcels, application code and data contain virtual addresses. For PIM processors to interpret these, they mus
have access to translation information, or there must be some fixed relationship between virtual and physical
addresses. The latter option is simpler to implement, but was determined to be too restrictive. Each PIM thus
contains translation hardware, and tables managed by the host. Any virtual page can reside on any PIM. How-
ever, the hardware is simplified by the characteristics of the system. For instance, for performance, a PIM
needs to be able to rapidly determine if an address is local to its own memory bank, and find the physical
address if it is. However, if the address is not local and communication is required, the additional cost of the
non-local translation is negligible.

Each PIM therefore maintains translations for those virtual pages currently residing on it, plus part of a global,
distributed table (similar to a home node concept as presented in [Saulsbury95]). Non-local translations are
obtained by querying the distributed table, or, equivalently, submitting the virtual address in a parcel, for for-
warding to the PIM where it resides. Advantages of this approach are that the translation tables on each PIM
scale well; every address can be accessed in at most two parcel transmissions, and the application can option
ally maintain location hints and use them to reduce this to a single parcel transmission in performance-critical
cases.

5.3 PIM Memory Organization

The DRAM in the PIM subsystem is the primary storage for the DIVA system, and can be treated physically as
a uniform, undifferentiated RAM. However, during operation the system uses the memory in three distinct
ways, making it helpful to organize the memory on each PIM node logically into three regions according to
whether it is used primarily by the host processor, primarily by the PIM processor, or significantly by both.
These regions may be either physically contiguous or interspersed, and memory allocation within these regions
can either be initiated by explicit system calls in the application, or undertaken at load time for all applications
by the loader or start-up code. A flexible combination of static and dynamic allocation is usually most conve-
nient for the user, but for this discussion assume explicit system calls are used.

An advantage of making this distinction is that different, optimized memory-management hardware can be
used on each of the regions. As modern processor architectures demonstrate[IBMMot94], there is no concep-
tual problem with having multiple translation mechanisms in place, as long as they provide consistent virtual-
to-physical mappings and access permissions.

Dumb Memory: Initially, the application is a normal (say Unix) process on the host. The various regions of its
virtual address space (typically the user code, heap and stack and one or more kernel segments) are mapped ¢
usual to some set of pages in DRAM, with some possibly paged out to disk. If the system memory contains
both ordinary DRAM and PIM DRAM, these normal pages can be mapped into the ordinary DRAM, since
they are never directly accessed by PIM processors. If all memory is PIM memory, the system can simply note
that these pages are only accessed by the host, and that they need not appear in PIM-processor translatiol
tables. A major use of dumb memory will be application code for the host CPU, which is meaningless to the
PIM processors; also, many host processes will never require PIM services at all, and will remain in this con-
figuration.

Internal Memory: If an application elects to use the PIM processing, the first step is to allocate and initialize

a region of memory on each node to be used by that node for its local processing needs. These include: a smal
run-time kernel for parcel management, synchronization and exception handling; code for the application-level
methods supported by the PIM; and storage for executing PIM programs such as buffers and stacks.

In practice, efficiency dictates whether this initialization step occurs at host boot time, application load time,



» command:an integer encoding the action to be performed, which may refer to a compiled function
stored on the PIM.

» argumentsjother tharobjec), specified as virtual addresses.

An obvious requirement on parcels is small size, to prevent overloading the host-to-memory interface and
PIM-to-PIM interconnect. In DIVA, we expect a single packet to consist of a header and 256 bits of payload. A
parcel requiring more bits must be sent in multiple packets. A related requirement is that processing parcels
must be efficient (see 3.2.1).

In addition, protection must be provided arguments pid andcommandfields; the protection on memory

accesses cannot rely on standard host mechanisms as the parcels pass virtual rather than physical addresses to
the memory. Also, the order of parcel processing must preserve sequential semantics, but parcel execution
should be overlapped to exploit parallelism. To accomplish these goals, we employ optional sequence numbers
on parcels when a specific ordering of processing is required.

4.2 Host-Memory Interface

In the initial DIVA prototype, an underlying assumption is that DIVA PIM devices can also serve as conven-
tional memory, so that they can be used as smart-memory coprocessors in a standard system. For this reason,
the PIM VLSI device is being designed with a host interface consistent with the standard memory interface
typical of commercial memories. This enables PIMs to be packaged in the form of DIMM modules with provi-
sions for top-plane interconnections to support the PIM-to-PIM communication fabric. However, unlike com-
mercial memories, computation activities give rise to new problems: how to communicate internal exceptions
and possible memory busy conditions to the host system. These issues are being addressed as part of the larger
system architecture.

5.0 Memory Model

Systems with smart memory resemble both uniprocessors (or small SMPs) with large memory, and large, het-
erogeneous multiprocessors. The semantics are made precise by the DIVA memory model, developed from the
following list of requirements:

* asimple virtual machine for both programmers and compiler writers;

* application-level visibility and control of data placement;

* high overall performance;

* scalability to many PIM chips, larger PIM chips, and multiprocessor hosts;
* compatibility with conventional memory models and memory interfaces;

* support for virtual memory (i.e., paging to/from disk); and,

* a host-independent PIM chip architecture.

These requirements look ahead toward future uses of PIM chips, augmenting all sorts of systems and used to
accelerate all sorts of applications, both at the small and large scale.

5.1 Parcel Buffers

For high performance, applications must communicate with PIM chips without invoking the host operating
system. A conventional memory interface supports this naturally, but cannot generally guarantee atomicity or
ordering when caching and write buffers exist. Each PIM chip therefore has a second intelligent interface, the
Parcel Buffer, which is mapped into each process as a (roughly) parcel-sized piece of SRAM. The host OS
ensures each process uses a different physical address for the multiply-mapped buffer, so the interface can
identify the source of each transaction. Hardware in the interface transparently manages ownership of the
buffer using a wait-free protocol [Herlihy91] that can be implemented simply at the application level without
supervisor state interactions; this interface hardware ensures that access patterns are grammatically correct. To



in the range of 32 to 64 chips, depending on how many PIM chips can be packed onto a DIMM module. The
PIM-to-PIM interconnect must then be amenable to the dense packing requirement of DIMM modules. Obvi-
ously, low latency and high bandwidth are also desirable properties of this interconnect. Furthermore, this net-
work must be scalable to allow the addition or removal of modules from the system. This combination of
requirements favors a one-dimensional network. Although higher-dimension networks offer lower network
diameters, they are not easily scalable in all dimensions, especially in a densely packaged system. Also, the
dense packing achievable with one-dimensional networks allows more data signals per channel. Hence, the
slightly larger distances (in hops) of message traversals in a 32- or 64-hop one-dimensional network are com-
pensated by shorter messages (in flits). Furthermore, router cycle times are faster in one-dimensional network
routers because of simpler switching decisions.

The PIM interconnect requirements closely resemble those of interconnect in embedded scalable systems. We
therefore use the interconnection network of one such system, the Package-Driven Scalable System (PDSS)
[Steele97], as a model for designing the DIVA PIM interconnect. The DIVA PIM interconnect is then a point-
to-point bidirectional ring using wormhole routing and the Red Rover routing algorithm [Draper96] to effect
deadlock-free routing. It routes fixed-sized packets and uses source routing to achieve low latency. The inter-
connect is implemented by PIM Routing Co-processor (PiRC) devices - one per PIM chip.

Later generations of DIVA systems are envisioned to contain hundreds and even thousands of PIM chips.
Clearly, the advantages of a flat ring topology do not extend to systems of this size. A more complex network
scheme will be needed. One possibility is another level of interconnect for connecting host/PIM clusters. To
provide adequate aggregate bandwidth, this higher-level interconnect will have to employ channels with
greater bandwidth than those of the PIM chips. The details of these channels are beyond the scope of this paper
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Figure 3: PIM DIMM Module Organization.

4.0 Required Mechanisms

We now present a collection of key mechanisms in DIVA.
4.1 Parcels

A parcelis the general mechanism for coordinating computation in memory, communicating data and perform-
ing synchronization across components of the DIVA system, a refinement of the parcel concept described pre-
viously [Brockman99]. Similar to an active message [vonEicken92], a parcel incorporates data and an encoded
operation to apply to the data; a parcel is directed to a memory object, not a process or processor. A parcel has
the following four fields:

» pid: indicates which process issued the parcel.

» object:the virtual address of the primary object the parcel will modify or access, used for routing the
parcel.



able system with an unlimited number of chips, not just single chip solutions.

The DIVA architecture and the material presented in this paper is distinguished from these previous approaches
in several ways: (1) unlike most of these other approaches, we consider an architecture where smart memory is
optionally used to improve performance of a standard host processor; (2) we develop a system that can support
in-memory manipulation of both regular and irregular data structures; and, (3) we consider the requirements
imposed on the system architecture and system software for mapping application execution between host and
memory.

3.0 Overview of DIVA System Architecture

In Figure 1, we show a small set of PIMs connected to a single external host through a host-memory interface;
through this interface the host processor performs standard reads and writes, augmented as discussed in Sec-
tion 3.3. The PIM chips communicate through separate PIM-to-PIM channels to bypass the system bus with
additional memory traffic from parcels used to spawn computation, gather results, synchronize activity, or sim-
ply access non-local data. The separate interconnect is provided because PIM-to-PIM communication requires
greater bandwidth than can be achieved with a conventional memory bus.

3.1 PIM VLSI Component

A PIM is a VLSI memory device augmented with general and special-purpose computing hardware. A PIM
may consist of multipleodes each of which are comprised of a few megabytes of memory and a node proces-
sor. The inset in Figure 1 shows a PIM with four nodes. The nodes on a chip share resources for communica-
tion with the rest of the system. As a result each chip contains a single PIM Routing Co-processor (PiRC) and
a host interface. We anticipate that DIVA PIMs, like many other PIM chips, will be split roughly 60% memory
and 40% logic (reflecting the importance of memory density).

Within a single node, shown in Figure 2, the processing logic consists of a standard scalar microprocesor
including a floating-point unit and a special DIVA functional unit calledA&the-Sense-Amps Processor
(ASAP) The key idea behind the ASAP is to perfaside operations on aggregate objects stored within a row

of the local memory array. Rather than selecting a 32-bit object from the row as is done with conventional sca-
lar processing, the ASAP unit operates on up to 256 bits in a single processor cycle. This fine-grain parallelism
offers additional opportunity for exploiting the increased processor-memory bandwidth available in a PIM.
The ASAP unit can be used to perform bit-level operations such as simple pattern matching, or higher-order
computations such as searches, limited pointer chasing, and associative and commutative reduction operations.
Details on a related wide-word unit are discussed elsewhere [Brockman99].

I ™ ""Node Processor ~ !
| ASAP Sca_lar | PIRC
| Unit unit |l Interface w
e — d| PiRC Interface
Unit
256-bit
Datapath
To Chip
Host Interface
Node Host Unit
Local Interface H
Memory

Figure 2: Processor-In-Memory Node Organization.

3.2 PIM Interconnection

We anticipate PIM chips to be physically grouped as conventional memory chips, mounted on DIMM modules,
as shown in Figure 3. Bounded by host bus loading constraints, the number of PIM chips in a hosted cluster is



leveraging existing approaches from parallel programming. Section 7 presents three case studies of irregular
computations from scientific and database computations; we present system-level simulation results to demon-
strate the potential of PIM-based systems at achieving improved performance on these applications.

2.0 Background and Related Work

The concept of mixing memory and logic closer than in a CPU-Memory dichotomy is an old one. The DAPP,
STARAN, CM-2, and GAPP all used many relatively small data flows positioned very close to memory arrays
to implement very large SIMD machines (all with multiple data flows per chip). At least one such chip, the
TERASYS [Gokhale95], was fabricated in relatively large volumes, and targeted as the main memory for one
of the later Cray machines. This grew into more or less single chip systems which contained a CPU, some
memory, and I/O with machines like the INMOS Transputer [Knowles91], the nCUBE [Palmer86], the J-
machine [Dally92], and the SHARC (www.analogdevices.com). While these latter chips could scale to large
arrays, their system architecture was a relatively conventional MPP of some form. The first DRAM-based mul-
tiple node PIM chip was EXECUBE, fabricated in 1992 and supporting a 3D binary hypercube MIMD/SIMD
MPP on a single chip [Kogge94][Sunaga96]. A more recent chip is the Mitsubishi M32 R/D, where more than
2 MB of memory is tightly tied into the on-chip CPU’s cache [Shimizu96].

What stopped all these designs from becoming mainstream architectures is very simplery density.

Early PIM-like devices used SRAM for memory, and even with relatively primitive MOS technology, it was
guite easy to put more processing power on a single chip than the on-chip data storage could feed. A rule of
thumb for scientific computing is that one byte of storage for each FLOP provides a good system balance. Tak-
ing any of the previously discussed machines and computing the ratio of on-chip memory to performance
(using whatever metric of performance the chip was designed for - usually not even floating point), the ratios
are uniformly 0.0001 or worse. Even the EXECUBE chip had a storage to performance ratio of only 0.01. The
chips were uniformly memory starved, requiring designs which included ports to off-chip memory.

This began to change around 1997, when DRAM chips with densities greater than 32 Mbits began to appear.
At this density, a reasonable ratio of storage to processing can be achieved; for example, an entire video frame
buffer can fit in one chip, along with logic to perform processing on it. With current CMOS projections, in a
few years a single memory chip will contain more than enough memory capacity for a conventional PC. The
realization that complete systems can now be placed on a single chip has led virtually every major semicon-
ductor manufacturer to offer some form of an embedded DRAM macro that can be coupled with other pre-
defined logic macros. At least one industrial organization has sprung up to help set standards to enable such
systems [Birnbaum99].

While the technology has finally developed to the point of reasonable systems, architectures which take dis-
tinct advantage of the new capabilities have only recently come under serious study. In addition to the Mitsub-
ishi M32 R/D, the IRAM is another system-on-a-chip embedded DRAM device with vector processing logic,
designed for streaming computations [Patterson97]. Other approaches use PIM devices as the only processor:
in a multiprocessor architecture: a cache-coherent distributed-shared-memory system [Saulsbury96], and a
large-scale distributed-memory system [Kogge96]. The Active Pages project, which is the most closely related
to DIVA, associates configurable logic with each memory page to accelerate performance of an external host
[Oskin9g].

There are also several other architecture approaches, not based on PIM technology, designed to improve pro-
cessor-memory bandwidth [Carter99][Burger97][Rixner98]. Impulse augments the memory system to perform
application-specified scatter/gather operations on irregular data in the memory controller, so that contiguous
data is brought into the cache [Carter99]. Imagine is a system-on-a-chip streaming architecture designed for
media applications, which uses a stream programming model [Rixner98]. The DataScalar architecture is a
multiprocessor system where each processor asynchronously executes the same code and broadcasts any loc
data to the other processors [Burger97]. DIVA is distinguished from these approaches as it supports a wide
variety of parallel programming models; DIVA PIMs, with the appropriate interconnect, can be used in a scal-



An obvious class of applications well-suited to PIM technologggsilar --- dense-matrix computations on

large amounts of data that are “embarrassingly parallel,” such as image processing. While good candidates for
DIVA, such applications also perform well on conventional systems. In this domain, locality-exploiting archi-
tecture features (such as long cache lines and vector units) and compiler optimizations (such as tiling
[Wolfe89]), and techniques for hiding latency (such as prefetching [Mowry92]) are effective because such
applications exhibit significant data reuse, and compilers are able to predict their memory access requirements.
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Figure 1: DIVA System Organization.

This paper argues the effectiveness of DIVA for a completely different class of applicateangdar, sparse-

matrix and pointer-based computations with high processor-memory bandwidth requirengemsisarse con-

jugate gradient and database applications). Such applications perform poorly on conventional architectures
because their control and data accesses cannot be statically predicted, and they do not make effective use of
cache. As a result, their execution is dominated by waiting for memory accesses [Carter99]. DIVA can acceler-
ate the performance of such applications by eliminating much of the memory traffic --- simple operations and
dereferencing can be doiresitu rather than laboriously moving data around the system. In addition to the
reduction in memory latency for each access, there is potential for coarse-grain parallelism across multiple
PIM chips. Performance improvements also result from secondary effects such as reduced host cache and TLB
pollution because irregular accesses no longer need be brought into the host processor cache.

While several PIM-based architectures have been proposed in recent years, the DIVA project differs from other
efforts in several ways. There are two distinct advantages to using PIMs as smart-memory coprocessors to one
or more external hosts: (1) DIVA permits augmenting conventional systems in general-purpose computing
environments; and, (2) applications can be gradually migrated from sequential versions that use DIVA PIMs as
“dumb” memory toward fully exploiting smart-memory capabilities and parallel in-memory execution. At the
same time, this co-processor model imposes fundamentally new requirements on the system software and
interfaces. Supporting in-memory pointer accesses requires a new memory model, including a mechanism for
address translation within memory. We also rely orpimeel a mechanism for communicating computation

to memory, either from a host or a PIM processor. DIVA also requires the host-to-memory interface be aug-
mented because memory must now be able to communicate with the processor for synchronization, excep-
tions, to warn of high-latency events, etc.

The primary contributions of thiis paper are as follows:

 the first description of the DIVA architecture.

 the first presentation of system requirements for in-memory processing of irregular data structures.

» a detailed description of how to map applications to a PIM-based architecture, with two case studies
from important irregular computations.

The remainder of the paper is organized into five main sections and a conclusion. The next section discusses
background and previous work. Section 3 presents the system architecture, particularly the PIM-to-PIM inter-
connect. Section 4 discusses the requirements imposed on the system software and interfaces. Section 5 pre-
sents the DIVA memory model. In Section 6, we describe how a user application can be developed for DIVA,
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Abstract

Processing-in-memory (PIM) chips that integrate processor logic into memory devices offer a new opportunity
for bridging the growing gap between processor and memory speeds, especially for applications with high
memory-bandwidth requirements. The Data-IntensiVe Architecture (DIVA) system combines PIM memories
with one or more external host processors and a PIM-to-PIM interconnect. DIVA increases memory bandwidth
through two mechanisms: (1) performing selected computation in memory, reducing the quantity of data trans-
ferred across the processor-memory interface; and (2) providing communication mechanisrparcelisfdr

moving both data and computation throughout memory, further bypassing the processor-memory bus. DIVA
uniquely supports acceleration of importarggular applications including sparse-matrix and pointer-based
computations. In this paper, we focus on several aspects of DIVA designed to effectively support such compu-
tations at very high performance levels: (1) the memory model and parcel definitions; (2) the PIM-to-PIM inter-
connect; and, (3) requirements for the processor-to-memory interface. We demonstrate the potential of PIM-
based architectures in accelerating the performance of three irregular computations, sparse conjugate gradient,
a natural-join database operation and an object-oriented database query.

1.0 Introduction

The increasing gap between processor and memory speeds is a well-known problem in computer architecture,
with peak processor performance increasing at a rate of 60% per year while memory access times improve at
merely 7%. To mask memory latency in current high-end computers now demands up to 25 times the number
of overlapped operations required of supercomputers 30 years ago. Further, techniques designed to hide mem-
ory latency, such as multithreading and prefetching, actually increase the memory bandwidth requirements
[Burger96]. Recent VLSI technology trends offer a promising solution to bridging the processor-memory gap:
integrating processor logic and memory in a processing-in-memory (PIM) chip. Because PIM internal proces-
sors can be directly connected to the memory banks, the memory bandwidth is dramatically increased (up to 2
orders of magnitude, tens or even hundreds of gigabits aggregate bandwidth on a chip). Latency to on-chip
logic is also reduced, down to as little as one-fourth that of a conventional memory system, because internal
memory accesses avoid the delays associated with communicating off chip.

The Data-IntensiVe Architecture (DIVA) project is developing a system, from VLSI design through system
architecture, systems software, compilers and applications, to take advantage of this technology for applica-
tions of growing importance to the high-performance computing community. DIVA combines PIM memory
chips with one or more external host processors and a PIM-to-PIM interconnect (see Figure 1). Within a single
PIM chip, we observe dramatic improvements in and bandwidth and significant reductions in memory latency.
But a more important effect, and a distinguishing feature of DIVA, is the coupling of increased opportunity for
concurrency wittaggregateprocessor-memory bandwidth increases. Multiple memory chips can work in par-
allel on independent data, and perform PIM-to-PIM communication without going through the processor-
memory bus.



