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Abstract

Quantifying and monitoring the spatial and temporal dynamics of the global land cover is crit-

ical for better understanding many of the Earth’s land surface processes. However, the lack

of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data

limit our ability to better understand the spatial extent and the temporal dynamics of land sur-

face changes. Despite the free availability of high spatial resolution Landsat satellite data,

continental-scale land cover mapping using high resolution Landsat satellite data was not

feasible until now due to the need for high-performance computing to store, process, and

analyze this large volume of high resolution satellite data. In this study, we present an

approach to quantify continental land cover and impervious surface changes over a long

period of time (15 years) using high resolution Landsat satellite observations and Google

Earth Engine cloud computing platform. The approach applied here to overcome the compu-

tational challenges of handling big earth observation data by using cloud computing can

help scientists and practitioners who lack high-performance computational resources.

Introduction

Quantifying and monitoring the spatial and temporal dynamics of the global land use land

cover (LULC) is essential for better understanding many of the Earth’s land surface processes.

Human-induced land cover changes may affect land surface processes including urbanization,

drought, and flood which impact the world’s population [1, 2]. Understanding these changes

can allow quantifying and monitoring trends in agriculture [3], fresh water resources [4], forest

cover [5–7], and disease transmission [8, 9]. Lack of high spatial resolution (30 m) and regularly

updated LULC data limit our ability to quantify the spatial extent and monitor the temporal

dynamics of these changes. Earlier attempts to generate continental-scale LULC products were

limited to coarse spatial scale (250m-1km) which lacked sufficient spatial details [10–13].

There is a need for a high spatial resolution (30 m) and regularly updated LULC data to

improve our understanding of changes in the land surface processes. However, there are chal-

lenges in generating global to continental scale LULC maps from high spatial resolution
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Landsat observations that span over a long period of time. These challenges have included the

lack of freely available earth observation data and high-performance computing to process and

analyze these data. Starting from 2008, the United States Geological Survey (USGS) has been

distributing Landsat data at no cost for public use. This created an opportunity for scientists

and practitioners to use Landsat satellite data to map and monitor LULC at continental to

global scale and over a long time series [5, 7, 14]. Since the USGS released the Landsat data

archive for public use, there has been an increasing trend in efforts to map land use land cover

using these data [15–18]. However, most of these efforts have been limited to local scale analy-

ses due to the computational requirements of analyzing large volumes of data. For example,

nearly ~10,000 Landsat scenes or ~3 terabytes are required to produce a global land cover map

for any given time point [19].

In recent years, there has been an increase in the availability of high performance cloud

computing. For example, the NASA Earth Exchange (NEX) platform allows the processing

and analysis of NASA earth observation data [20]. Amazon Web Service (AWS) also now pro-

vides access to the Landsat data archive, enabling analysis of this dataset on the cloud. Google

Earth Engine (GEE) is a new high-performance computing platform which gives access to a

vast and growing amount of earth observation data as well as processing power to analyze

these data at planetary scale.

The launch of these high-performance cloud computing platforms has opened the door to

global-scale geospatial data storage, processing and analyzing at a low cost and efficient man-

ner in the cloud [7, 19, 21]. One of the first global scale applications of the Landsat data archive

was a study by Hansen et al, which used Landsat satellite data and machine learning to map

global forest cover over the 2000–2012 period [7]. Although the focus of their study was to

quantify global scale changes in forest cover, theirs is the only recent effort to apply high spatial

resolution (30 m) Landsat satellite observation data for mapping global scale land cover over a

long period of time (i.e. from 2000–2012). In our study, we present the use of Landsat satellite

observation data and GEE cloud platform to map land cover and impervious surface changes

over continental Africa for 2000–2015.

Methods

2.1 Earth observation data

In this study, Landsat 7 Enhanced Thematic Mapper Plus (ETM +) surface reflectance data

which was computed using the Landsat Ecosystem Disturbance Adaptive Processing System

(LEDAPS) were used [22]. A cloud screening algorithm was applied using quality assessment

(QA) bands in order to remove snow and cloud contaminated pixels for each Landsat image

between 1999 and 2016. Annual composites were then produced by taking the median value

from images from the target year, plus or minus one year. For example, for the year 2000, pixel

values were obtained by calculating the median of all cloud-free pixels from images between

January 1st, 1999 and December 31st, 2001. A three-year window was used to ensure that at

least one cloud-free pixel was available for each annual composite. Similarly, in addition to

producing annual raw image composites, annual normalized difference vegetation index

(NDVI) and normalized difference water index (NDWI) were computed by taking the median

value from 3-year windows. Additionally, annual inter-calibrated night-time light images were

used from the National Oceanic and Atmospheric Administration (NOAA) [23–25].

2.2. Training data

As used by a number of other studies [8, 26–28], training data were derived from visual inspec-

tion of freely available high spatial resolution imagery. Recently captured (2015–2016) high-
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resolution satellite imagery were visually inspected and used to identify Landsat pixels that

were entirely made up of one of 7 classes (water, impervious surface, high biomass, low bio-

mass, rock, sand and bare soil) to act as training data. Impervious surface class included

asphalt roads, concrete, metal roofs and other built infrastructure while low biomass class

included crop field, grass, and shrubland. High biomass class consisted of dense forest. In an

effort to ensure that these training data were representative of the classes across the continent,

we ensured that training data were captured from all 49 countries in continental Africa, with

the aim of capturing 1000 training points per class. For model validation purposes, 80% of

sample points (5,664) from each class were randomly selected to act as training data, with 20%

of sample points (1,420) withheld as a validation dataset (Fig 1).

2.3 Modeling

For each of the training and validation data points, Landsat spectral bands, NDVI, NDWI and

night-time light from the 2015 layers were extracted to be used as covariates in the model (Fig

1). To model and predict the 7 LULC classes, a random forest decision tree classification algo-

rithm was deployed on GEE. Decision tree classification algorithms have been used widely to

classify satellite data for forest cover mapping [28, 29], wetland mapping [8, 26, 30, 31], crop-

land mapping [32], and land cover mapping [33–36]. A random forest is a nonparametric

machine learning method comprised of ensembles of decision trees [37]. The random forest

algorithm creates multiple decision trees which classify a random subset of the training data

according to the covariate predictors. In our study, we used 500 trees in the random forest clas-

sification. The final classification was based on the majority vote from all the trees. To generate

final LULC layers across Africa 2000–2015, training and validation data were combined into a

single dataset before the model was run, with annual predictions made from this model using

the annual covariate layers. Having made annual predictions, the changes in the area repre-

sented by each class from 2000 to 2015 across continental Africa were calculated. This also

allowed for an exploration of the direction of change for each LULC class from 2000 to 2015.

As well as modeling 7 classes, estimating the likelihood of a given pixel being impervious

was a focus of this study. To do this, the 6 non-impervious surface classes in the training and

validation data were collapsed into a single class, resulting in a binary outcome of impervious

and non-impervious. A random forest model was then applied to the binary outcome. This

model was used to predict the probability (i.e. the proportion of times the model voted) that a

pixel was impervious. As for predictions of the 7 LULC classes, final predictions across Africa

2000–2015 were made by combining training and validation data before running the model.

All analyses were performed on GEE cloud platform.

2.4 Model validation

Using the validation data, a confusion matrix was generated to evaluate predictive accuracy

across classes as well as overall accuracy. This allowed an assessment of user’s accuracy (the

number of correctly classified pixels divided by the total number of pixels predicted within

that class) and producer’s accuracy (the number of correctly classified pixels divided by the

total number of pixels truly in that class) for each class. For the model focused on impervious

surface, an assessment of predictive accuracy was made by calculating both a confusion matrix

as well as area under the curve (AUC) statistic. The AUC statistic represents the probability

that a randomly selected truly impervious pixel will be ranked higher by the model than a truly

non-impervious pixel. As such, it provides a measurement of the discriminatory power of the

model.
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Fig 1. A conceptual model for the land use land cover classificationmodel.

https://doi.org/10.1371/journal.pone.0184926.g001
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In addition to validating the model using out of sample predictions, we compared our pre-

dictions to maps of percent tree cover generated by Hansen [7]. This dataset was chosen as it

was conducted at a comparable spatial (30 m) and temporal (annual) resolution. As the Han-

sen study was focused on percent tree cover, rather than LULC, this comparison focused on

forest cover only. To compare results, we first classified the Hansen product for 2000 in to

high biomass (greater than 30% tree cover) and non-high biomass (less than 30% tree cover)

using a threshold of 30% tree cover. This threshold was chosen because it is the closest to our

high biomass class. We then compared our high biomass class predictions for 2000 to the high

biomass class derived from the Hansen data. Furthermore, we compared our 2010 prediction

maps with the 2010 Global Land Cover product (GlobeLand30) at 30 meter spatial resolution

which was generated using Landsat data [38]. The GlobeLand30 product consists of 10 classes

including water bodies, wetland, built-up, cropland, snow, forest, shrubland, grassland, bare-

land, and tundra. We chose to compare our 2010 land cover product with the 2010 Globe-

Land30 product since theirs is available only for years 2000 and 2010.

Results

3.1 Land use land cover classification

A total of 7,084 data points were captured across the 7 classes, resulting in 5,664 training data

points and 1,420 validation data points. Table 1 shows the confusion matrix of observed versus

predicted values using the withheld validation data. The model achieved an overall accuracy of

88 percent (Table 1). Class specific user’s and producer’s accuracies ranged from 84–94% and

79–96% respectively. Water appeared to be most accurately predicted, with user’s and produc-

er’s accuracy of 94 and 96% respectively, while low biomass was least accurately predicted with

user’s and producer’s accuracies of 84 and 79% respectively.

Annual LULC predicted maps that consist of seven classes (impervious surface, low bio-

mass, high biomass, bare soil, sand, rock, and water) for the 2000–2015 period were generated

based on the random forest classification model. Comparison of high biomass class with the

Hansen forest map for the 2000 period showed good agreement. Almost 80% of the total high

biomass predicted by our model (4,174,958 Km2 out of 5,156,559 Km2) matched with the Han-

sen high biomass class (percent of tree cover greater than 30%) as shown in Fig 2. Generally,

there was a good agreement between products in the Congo Basin and western Africa whereas

there were mismatches in the East African highlands and Nile Delta regions, with our model

predicting more high biomass in these regions. For the 3 sites selected for comparison pur-

poses (Fig 3), a total of 1,465 Km2 were classified by the GlobeLand30 as built-up while our

model predicted a total 926 Km2 as impervious surface for the 2010 period. Additionally, a

Table 1. Accuracy assessment based on comparison of model predictions (left) against observed validation data (top) for 2015.

Impervious Surface Low Biomass High Biomass Bare Soil Sand Rock Water Total User’s Accuracy (%)

Impervious Surface 186 1 0 19 3 1 0 210 89

Low Biomass 2 198 14 11 2 7 3 237 84

High Biomass 0 31 209 0 0 1 0 241 87

Bare Soil 10 12 2 172 2 3 1 202 85

Sand 3 2 0 2 149 10 2 168 89

Rock 2 4 1 0 4 131 2 144 91

Water 0 2 1 2 6 2 205 218 94

Total 203 250 227 206 166 155 213 1420

Producer’s Accuracy (%) 92 79 92 83 90 85 96

https://doi.org/10.1371/journal.pone.0184926.t001
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total of 351,036 Km2 were classified as forest by the GlobeLand30 whereas 281,248 Km2 were

classified as high biomass for the 2010 period by our model. Fig 3 shows visual comparison of

our land cover prediction maps with the GlobeLand30 product over three sites including the

Lake Victoria, Congo Basin and Nile Basin regions. Fig 4 shows the prediction of the LULC

product for the years 2000 and 2015. As shown in Fig 4, there was a reduction in high biomass

over the 15 years period throughout continental Africa, with high biomass areas becoming

more concentrated around the equatorial belt. Additionally, Fig 5 shows regional subsets of

2015 land use land cover map including the Rift Valley Lakes, Congo Basin, Nile Delta and

Lake Victoria.

With regards to the second model focused on impervious surface, an assessment using the

validation data indicated that the model showed very high predictive capacity, with an AUC

value of 0.98. Fig 6 shows regional subsets of 2015 probability of being impervious including

the Rift Valley Lakes, Congo Basin, Nile Delta and Lake Victoria areas.

Change analysis showed that impervious surface class had the highest relative increase from

2000 to 2015 (38.54%) while high biomass and rock had the highest decreases from 2000 to

2015 with a decrease of around 17% (Fig 7 and Table 2).There was relatively little change in

the areas covered by water or sand. An exploration of annual change in the probability of

being impervious suggests that changes over the study period were in both directions as shown

in four selected regions between 2000 and 2015 (Fig 6). High biomass and rock showed a

declining trend whereas impervious surfaces, low biomass, and bare soil showed increasing

trend.

Growth in the impervious surface was mainly due to conversion from low biomass class to

impervious surface. As shown in Figs 8 and 9, sand and water classes were the most stable and

Fig 2. Comparison of predicted high biomass class and Hansen forest cover for 2000.

https://doi.org/10.1371/journal.pone.0184926.g002

Mapping land cover change over continental Africa

PLOSONE | https://doi.org/10.1371/journal.pone.0184926 September 27, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0184926.g002
https://doi.org/10.1371/journal.pone.0184926


Mapping land cover change over continental Africa

PLOSONE | https://doi.org/10.1371/journal.pone.0184926 September 27, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0184926


did not show substantial change. This study also showed that the decrease in high biomass

class was predominantly due to high biomass becoming low biomass (Fig 9).

Discussion

Regularly updated, high resolution, and continental-scale land cover data are essential for

quantifying and monitoring the Earth’s dynamic land surface processes. Despite the free avail-

ability of high spatial resolution Landsat satellite data, generation of continental to global scale

LULC maps have been challenging due to the need for high-performance computing to store,

process and analyze such a large volume of satellite data. As such, earlier efforts to produce

land cover products at this scale have been limited to coarse spatial resolution. Platforms such

as GEE have opened the door to planetary scale analyses and offer the opportunity to provide a

mechanism to continually monitor the Earth’s surface at high spatial and temporal resolution.

The utility of GEE to quantify various land surface changes has been demonstrated for forest

mapping [7], population mapping [39], cropland mapping [40], and surface water mapping

[21]. Here we presented an approach to quantify continental land cover change over a long

period of time (15 years) using GEE and Landsat satellite observations.

In the present study, we produced annual LULC maps for continental Africa between 2000

and 2015 showing that the continent has dramatically changed during the study period. Our

Fig 3. Predicted land cover maps from this study (left) and GlobeLand30 products (right) for the year 2010. (A) Lake Victoria; (B)
Congo Basin; (C) Nile Basin.

https://doi.org/10.1371/journal.pone.0184926.g003

Fig 4. Model predicted land use land cover maps for 2000 and 2015 over Africa.

https://doi.org/10.1371/journal.pone.0184926.g004
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results indicated area covered by high biomass class showed a declining trend during the study

period. These findings were in concordance with Hansen et al who showed a dramatic forest

loss between 2000 and 2012 period in subtropical Africa [7]. In an effort to compare our prod-

uct with existing data, we made comparisons with the Hansen data. While not the same prod-

ucts, a comparative assessment of our high biomass class and the high biomass class generated

from the Hansen product (greater than 30% tree cover) for the 2000 period showed 80% agree-

ment. Overall, our product showed very good agreement with the Hansen data. Additionally,

comparison of our product with the GlobeLand30 showed good agreement. However, some of

our land cover classes and classes from the GlobeLand30 product were different. For example,

Fig 5. Regional subsets of 2015 land use land cover maps. (A). Rift Valley Lakes; (B) Congo Basin; (C) Nile Delta; (D) Lake Victoria.

https://doi.org/10.1371/journal.pone.0184926.g005
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our low biomass class was represented in three separate classes including wetland, cropland,

and grassland in the Globeland30 data. As a result, we focused our comparison with our high

biomass class and their forest class as well as our impervious surface and their built-up class.

Furthermore, there also appeared to be a large relative increase in man-made impervious sur-

faces during the 2000–2015 periods. These changes in impervious surface were mostly the

conversion of low biomass areas to impervious surfaces. This increase has occurred steadily

throughout the period of study, which appears in line with increasing urban growth in Africa

[41].

Multi-temporal satellite observations and cloud-based analytic platforms such as GEE

could enable cost-effective production of LULC products at low cost and efficient manner.

Fig 6. Regional subsets of changes in the probability of impervious surface between 2000–2015. (A). Addis Ababa, Ethiopia; (B) Cairo, Egypt; (C)
Lagos, Nigeria.

https://doi.org/10.1371/journal.pone.0184926.g006
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The main advantages of using GEE include reduced processing times and enhanced capacity

to perform global scale analysis on high resolution data. There are, however, challenges to

using GEE. Some of these challenges include mastery of JavaScript and Python programming

languages, limited number of GEE built-in functions, and lack of integration for the current

GEE platform with other open source geospatial analytic tools such as R, and QGIS. Although

GEE archives a large library of earth observation and geospatial data, data is not available in

real-time which may limit its utility to some operational applications that need real-time data

access.

While this study suggests that the approach taken here can be used to produce continental

LULC products, it should be pointed out that this study has a number of limitations. Firstly,

training and validation data were only available for 2015. Having more data points throughout

the time period would likely improve the accuracy of the annual maps. This would also allow a

better assessment of predictive performance through time. That said, as the spectral signature

Fig 7. Forest cover change between 2000 and 2015.

https://doi.org/10.1371/journal.pone.0184926.g007

Table 2. Land use land cover change between 2000 and 2015.

LULC Class 2000 (Km2) 2015 (Km2) Total Change (Km2) Total Change (%)

Impervious Surface 39,436 54,634 15,199 38.5

Low Biomass 9,060,578 10,181,331 1,120,752 12.4

High Biomass 5,156,559 4,261,541 -895,018 -17.4

Bare Soil 681,620 797,121 115,501 16.9

Sand 11,037,403 11,603,370 565,967 5.1

Rock 5,417,149 4,496,410 -920,739 -17.0

Water 306,802 305,140 -1,662 -0.5

https://doi.org/10.1371/journal.pone.0184926.t002
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Fig 8. Percentage change in land use land cover classes over Africa 2000–2015.

https://doi.org/10.1371/journal.pone.0184926.g008

Fig 9. Change of each land use land cover classes from 2000 to 2015.

https://doi.org/10.1371/journal.pone.0184926.g009
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of these 7 classes is unlikely to have changed through the time period, predictions are likely to

be robust. Secondly, the study relied on visual inspection of high-resolution imagery to pro-

duce training data; ground truth data from the field were not available. This may have resulted

in some misclassification. Additionally, relying on a single image to represent a 1 year period

ignores the fact that some training data points may move between classes seasonally (i.e. bare

soil in the dry season and low biomass in the wet season). Thirdly, we restricted our analysis to

7 LULC classes which may limit the utility of the current LULC product to some applications.

With accurate training data on a wider variety of LULC classes, it may be possible to use the

approach described here to produce maps of more than 7 classes used here. Although this

study encountered the aforementioned limitations, the standardized approaches demonstrated

here and model validation results indicated that the LULC maps presented in this research had

high prediction accuracy.

The approach used here to overcome the computational challenges of handling big earth

observation data can help scientists and practitioners who lack high-performance compu-

tational resources. Future studies can expand on our study and apply our approach to gen-

erate global-scale land cover products. The LULC product presented in this study will be

freely available (https://geodata.globalhealthapp.net/lulc/) for public use and can be used

in other applications to monitor changes in disease transmission, natural resources, biodi-

versity, and urbanization.
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