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Abstract Language has evolved over centuries and was gradually en-
riched and improved. The question, how people find assignment between
meanings and referents, still remains open. There is plenty of compu-
tational models based on statistical co-occurrence of meaning-reference
pairs. Unfortunately, this mapping strategy shows poor performance in
the environment with higher number of objects or noise. Therefore we
propose a more robust noise-resistant algorithm. We tested the perform-
ance of this novel algorithm both with simulated and physical iCub robot.
We developed a testing scenario consisting of objects with varying visual
properties presented to the robot accompanied by utterances describing
the given object. Our results suggest that the proposed mapping proced-
ure is robust, resistant against noise and shows better performance than
one-step mapping for all levels of noise in the linguistic input as well as
slower performance degradation with increasing noise. Furthermore, it
increases the clustering accuracy of both modalities.

Keywords: cross-situational learning, symbol grounding, cognitive mod-
eling, iCub robot, language acquisition

1 Introduction

The essential (and still not fully answered) question in language acquisition is
how percepts are anchored in some arbitrary symbols. In other words, how words
(symbols) get their meanings. This is a so called symbol grounding problem [17].
For many years, there has been a joint attempt of cognitive modeling, neuros-
cience, psychology and machine learning to understand how human solve this
‘problem’ [5]. The ability to learn language through perception and especially
through visual grounding is not only important for understanding human cog-
nition but is also applicable in many areas such as verbal control of interactive



robots [24], automatic sports commentators [12], car navigation systems, for visu-
ally impaired, situated speech understanding in computer games [16], automated
generation of weather forecasts [15], tutoring children foreign language [19], etc.

Despite the extensive research in the area of language acquisition, the ques-
tion how the word-to-meaning mapping is learned remains open. Using the un-
supervised approach, Li et al. [21] designed the DevLex model, consisting of two
self-organising networks that are bidirectionally connected. Gliozzi et al. [14]
proposed an alternative with a multimodal representation layer: their unsuper-
vised feature-based model was used to account for early category formation in
young infants. This approach postulates the unsupervised role of linguistic labels
that can affect categorisation during the acquisition process, which has also been
supported by Taniguchi et al. [42]. Vavrečka and Farkaš [46] recently introduced
a multimodal architecture for grounding of spatial words using a biologically
inspired approach (separate “what” and “where” visual subsystems) in which
the visual scenes (two objects in 2D space in a spatial relation) are associated
with their linguistic descriptions, hence leading to integration of modalities.

On the other hand, there is still not available fully unsupervised architecture,
which would be able to deal with language grounding [41], particularly language
grounding in a case where sentences have variable structure and when there
is more than one object in a scene. Current state-of-the-art on variable length
sentences is very restricted and deals only with the static scenes [25]. Most of the
recent models based on deep networks are oriented towards the application in the
image-to-text [18] or video-to-text [8] mapping and does not take into account the
psychological aspects of language acquisition (e.g. mutual exclusivity). Moreover,
these systems are trained in supervised manner without advantage of transfer
learning.

The difficulty of the task was described in a well-known experiment done by
Quine [30] who imagined the anthropologist meeting a native who pointed at the
scene and said “gavagai”. When the anthropologist is stimulated in a situation
by seeing a rabbit, he will suppose that the word represents running rabbit in
front of him, even though it could mean as well “ground”, “sun”, “hello”, or
whatever else. This problem is related to language relativity, as there are several
objects and their features that are described by words [29]. A simplified version
of this problem consists of a simple visual scene and separate words that are
grounded based on statistical co-occurrence (cross-situational learning ).

From a neuroscientific point of view, symbol grounding can be viewed as
a process of finding mappings between primary unimodal visual and language
brain areas. Where exactly the integration is performed is still the subject to
research and existing literature provides only incomplete accounts of the cortical
location of this convergence. For example the study of [3] provides evidence for
the involvement of the left basal posterior temporal lobe (BA37) in the integ-
ration of language and visual information. Another studies (eg. Spitsyna et al.
[37]) propose that access to verbal meaning depends on both anterior and pos-
terior heteromodal cortical systems within the temporal lobe. The grounding of



actions and motoric primitives is associated with the activity in dorsal stream
and premotor cortex [6].

How the language could be developed in an unsupervised manner is also the
important task in developmental robotics as the most of the language acquisition
in human is fully unsupervised. One of the main long-term objectives of many
teams worldwide is building the conversational robots, which will be able to par-
ticipate in cooperative tasks mediated by a natural language. It has been shown
how robots can learn new symbols using already grounded ones and their com-
bination [4] and how to transfer knowledge between agents [47]. Cangelosi [4] has
presented their research on language emergence and grounding in sensorimotor
agents and robots. This model was further extended by Tikhanoff [44], who did
iCub simulation experiments and focused on integration of speech and action.
Grounding of higher order concepts in action was also explored by Stramandinoli
at al. [39], who made use of recurrent neural networks. Sugita and Tani [40] in
their paper describe the experiment dealing with semantic compositionality –
the capability of a robot to use the compositional structure to generalize novel
word combinations. The current state-of-the-art on grounding variable length
sentences is very restricted and deals only with static scenes [32,25].

In this paper, we present our research in the area of language acquisition using
a real-world robotic scenario. We implement an hierarchical cognitive architec-
ture for language acquisition that includes both visual and language processing.
Particularly, we chose to extend current models of cross-situational learning by
allowing vision-to-language mapping in the case of non-equal number of classes
and by taking into account situation-time dynamics.

This is accomplished by replacing one-shot mapping with sequential mapping
and adding inhibitory mechanisms to the connections. The best mapped classes
are gradually eliminated and the clusterization is adaptively changed. We see our
work as an extension of the McMurray model [25] and we compare it with other
single step mapping models. The mapping strategy presented in this article, was
shown to be very robust as it can not only find the mapping under circumstances
of very noisy real-world input, but also increase the clustering accuracy of both
modalities. Recently, we have tested the proposed algorithm also on the task of
clustering body parts from simultaneous tactile and linguistic input [38]. In that
case, sequential mapping shown slower degradation with increasing noise level
in linguistic input and outperformed one-step mapping for all data set sizes and
all levels of noise.

The rest of the paper is structured as follows: In Section 2 we compare dif-
ferent mapping algorithms used in cross-situational learning. Particularly, in
subsection 2.2 we provide a mathematical formulation of the newly proposed se-
quential mapping algorithm and in Section 2.3 we describe the whole cognitive
architecture which incorporates unimodal processing of vision and language and
finding their association through mapping algorithm. Performance of the pro-
posed method on data from iCub humanoid robot and from iCub simulator is
evaluated in Section 3. Finally, results are discussed in Section 4 with an outlook
for a future work.



2 Materials and Methods

In this section, we will first present one-step and newly proposed sequential
mapping algorithms (Sections 2.1 and 2.2). Afterwards, we described in a detail
the whole cognitive architecture used to process data from individual modalit-
ies (vision and language). Finally, we describe iCub robotic platform and iCub
simulator in Section 2.4 and provide a description of evaluation in Section 2.6.

2.1 One-step mapping in cross-situational learning

In most of the cross-situational learning models, word-to-referent mapping is
found by directly using frequencies of referent and meaning co-occurrences, that
is, the ones with the highest co-occurrence are mapped together [35,34,49]. These
models suppose availability of the ideal associative learner who can keep a track
and store all co-occurences in all trials, internally memorizing and representing
the word–object co-occurrence matrix of input. This allows the learner to sub-
sequently choose the most strongly associated referent [50,51]. These models do
not see the mapping as dynamic competition but operate only with the static
state. Even though some of them are using likelihoods of different words and ref-
erents to perform Bayesian inference [13,49], they do not take into account how
the similarity of two word forms can affect learning although it has been shown
that it affects learning in children [31]. Another shortcoming of these strategies
is that they don’t address how these similarities will affect learning in a dynamic
competition.

The simplest one-step word-to-referent learning algorithm simply accumu-
lates word-referent pairs co-occurences. This can be viewed as Hebbian learning:
the connection between a word and an object is strengthened if the pair co-
occurs in a trial. To extend this basic edea we can enable also forgetting by
introducing a parameter η, which can capture the memory decay. This so called
dumb associative-learning model (DAM) was implemented by Yu in [51]. Sup-
posing that at each trial t we observe an object ont and hear a corresponding
word wn

t (Nt possible associations), we can describe the update of the strength
of the association between word model L(i) and object model K(j) as follows:

A(i, j) =

T
∑

t=1

η(t)

Nt
∑

n=1

δ(wn
t , i)δ(o

n
t , j), (1)

where T is the number of trials, δ is the Kronecker delta function (1 when both
arguments are equal and 0 otherwise), wn

t and ont indicate the nth word–object
association that the model attends to and attempts to learn in the trial t and η(t)
is the parameter controlling the gain of the strength of association. This para-
meter η can capture different cognitive mechanisms such as memory decay [51].

Now let’s assume that the word w(i) is modeled by the model Li in the
language domain and object (referent) o(j) is modeled by the model Km(i) in
the visual domain. Our goal is to find the corresponding model Km(i) from visual



subdomain for each model Li from language domain to assign them together.
Indices m(i) are found as follows:

∀i : m(i) = argmax
i

A(i, j), (2)

where A is the co-occurence matrix computed in the Eq. 1 (element A(i, j)
captures co-occurence between the word w(i) and object o(j)).

In Fig. 1, one-step mapping is visualized as it was implemented in this paper.

Figure 1: One-step mapping: (a) In the first stage, weights between objects (refer-
ents) and words are changed using the Hebbian learning: the connection between
a word and an object is increased if the pair co-occurs in a trial [51]. (b) After-
wards, word-to-referent mapping is found in one-step - objects and words with
the highest co-occurence are mapped together. The number on each connection
between word w(i) and object o(j) refers to the number of co-occurences of the
o(j) and w(i). In this example we suppose that there are 30 occurences of each
word.

Modifications of the basic above-mentioned model includes e.g. work of Re-
gier [31]. He proposes the model of mapping, which stems from competition
models and incorporates two-way associations between words and referents. This
enables model to capture both selective attention to individual words and refer-
ents as well as provide probability distribution over associated referents/words.
Regier also shows in the article that for his model, learning of a novel word is
most effective when memory interference is minimized [31].

2.2 Proposed sequential mapping

Since we know that learning is not static but it is rather a dynamic process, it
seems reasonable to extend the basic idea of one-step cross-situational learning
by incorporating dynamic competition mechanisms between words and referents
to the model. This should be achieved by additional inhibitory connections. In



this case, the process of finding word-referent associations resembles a Hebbian
learning with inhibitory connections - once the word is associated to correspond-
ing object (referent), links from this referent to other words are inhibited. This
idea also corresponds to the fact that children prefer mapping where object has
only one label to multiple labels - so called mutual exclusivity bias [22]. The in-
hibitory mechanisms and situation-time dynamics were already to some extend
included into the model of cross-situational learning proposed by McMurray [25].

Even though our model shares some similarities with the model proposed
by McMurray, it stems from different computational mechanisms. The proposed
sequential mapping is able to capture both non-discrete assignment to individual
clusters as well as dynamic competition mechanisms. The first mechanism is
incorporated into the model by considering likelihoods that the observed data
were generated by a given model instead of 1/0 assignment to models. In this way,
similarities of individual meanings and referents as well as the likelihood of their
recognition in each trial is taken into account. The second mechanism (dynamic
competition) facilitates the sequential mapping as the best mapped classes are
gradually justified with inhibitory connections to other classes (i.e. after a reliable
assignment between a language and tactile model is found, inhibitory connections
among this tactile model and all other language models are added). Thanks
to this mechanism, mutual exclusivity principle (the fact that children prefer
mapping where object has only one label to multiple labels [22]) is guaranteed.

The assignment between visual models Kj and language models Li is found
using a following iterative procedure:

1. Visual and language data are clustered separately and the corresponding
posterior probabilities are found:

p(Li|w
n
t ) =

p(wn
t |Li) ∗ p(Li)

∑

i′ p(w
n
t |Li′) ∗ p(Li′)

, (3)

∀i ∈ {1, 2, ..., I}, ∀t ∈ {1, ..., T}, ∀n ∈ {1, 2, ..., Nt}.

p(Kj |o
n
t ) =

p(on
t |Kj) ∗ p(Kj) ∗ k(j)

∑

j′ p(w
n
t |Kj′) ∗ p(Kj′)

, (4)

∀j ∈ {1, 2, ..., J}, ∀t ∈ {1, ..., T}, ∀n ∈ {1, 2, ..., Nt},

where I is the number of language models, J is the number of visual models,
T is the number of trials and Nt is the number of possible object-word
associations in the trial t.

2. For each datapoint the most probable visual and language clusters are se-
lected and the datapoint is assigned to these clusters:

ant = argmax
i

p(Li|w
n
t ), (5)

bnt = argmax
j

p(Kj |o
n
t ), (6)

∀t ∈ {1, ..., T}, ∀n ∈ {1, 2, ..., Nt}.



3. Co-occurence matrix A(i, j) is computed:

A(i, j) = ζ(i, j) ∗
K
∑

t=1

η(t)

Nt
∑

n=1

δ(ant , i)δ(b
n
t , j), (7)

where ζ(i, j) is the matrix storing the strength of the connections between
visual model Kj and language model Li, η(t) is the parameter controling
the gain of the strength of association.

4. The best assignment is selected:

[im, jm] = argmax
i

argmax
j

A(i, j). (8)

5. Inhibition connections are added between the assigned visual model Kjm

and all language models Li, where i 6= im (mutual exclusivity):

ζ(i, jm) = ζ(i, jm) ∗ (1− z1), ∀i 6= im, (9)

where zi is the parameter capturing the strength of the inhibition (in our
experiment set to 1, which corresponds to total inhibition of the given con-
nection).

6. Inhibition is added to the assigned visual model Kjm (a prior probability of
the model is changed):

k(jm) = k(jm) ∗ (1− z2), (10)

where z2 is the parameter capturing the inhibition of the assigned visual
model (in our experiment is this parameter set to 1, which corresponds to
total inhibition of the given model). It is possible to

7. The assigned points (datapoints which belong to both Kjm and Lim) are
deleted from the dataset:

X = X\

{

(on
t ,w

n
t ) | argmax

j

p(Kj |o
n
t ) == jm ∧ argmax

i

p(Li|w
n
j ) == im

}

(11)
8. Repeat (1)-(7) until X ∈ ∅ (dataset is empty) or ‖k‖ > 0 (some of the visual

models are not totally inhibited)

The proposed algorithm where words are assigned to corresponding referents
in a sequential manner is visualized in the Fig. 2.

In the ideal case, the unambiguous mapping between the two clusterizations
will be found. In the real case (where clusterizations in visual and language layer
are not optimal), none or more than one model from visual layer will be assigned
to one cluster Li in language layer or vice versa.

2.3 Specific architecture

Our multimodal hierarchical architecture consists of multimodal and unimodal
part. The unimodal part has two layers performing separate processing of localist
inputs - visual objects and auditory word-forms. Both unimodal layers are sub-
sequently mapped one to each other in the upper multimodal layer (see Fig. 3).



Figure 2: Sequential mapping: The toy example of sequential mapping is shown
to clarify the mechanism of finding object-word assignment. In this example we
suppose that there are 30 occurences of each word. Dotted line marks the inhib-
itory connection between the object o(j) and word w(i), black line corresponds
to the already found mapping. The number on each connection between word
w(j) and object o(i) refers to the number of co-occurences of the o(j) and w(i).
Objects o(j) and words w(i) are assigned to corresponding models based on the
given clustering mechanism.

Visual layer Each datapoint (object on

t
) can be considered as a triplet of

continuous-valued vectors for each visual feature: on

t
= (xsize

t,n ,xcolour
t,n ,xshape

t,n ).

This enables us to write the visual dataset as: Xvis = [XsizeXcolourXshape] and
process data for each visual feature separately. For processing visual data was
used Gaussian mixture model, which is a convex mixture of d-dimensional Gaus-
sian densities l(xk|θk

j ), where k ∈ {size, colour, shape}. In this case, each visual

model Kk
j is described by a set of parameters θk

j . The posterior probabilites

f(θk
j |x

k) are computed as following:

f(θk
j |x

k) =

Jk
∑

j=1

rkj l(x
k|θk

j ), (12)



Figure 3: Proposed multimodal architecture

l(xk|θk
j ) =

1
√

(2π)d
√

|Sk
j |

exp[−
1

2
(xk −mk

j )
T (Sk

j )
−1(xk −mk

j )], (13)

where k ∈ {size, color, shape}, xk is a set of d-dimensional continuous-valued
data vectors, rkj are the mixture weights, Jk is the number of visual models

for each visual feature k, parameters θk
j are cluster centers mk

j and covariance

matrices Sk
j .

Mixture of Gaussians is trained by the EM algorithm [7]. An output of this
layer for each data point xk

i is the vector yk
i of Jk output parameters describing

the data point (the likelihood that the data point belongs to each individual
cluster in a mixture). This corresponds to the fuzzy memberships (distributed
representation).

For simpler evaluation we made use of localist representation (Winner-takes-
all), where only the cluster with the highest cluster membership probability is
considered for further processing (see Eq. (5)-(6)):

M(Kk
j |O) =

{

1 if j = argmaxj′ f(K
k
j′ |O)

0 if j 6= argmaxj′ f(K
k
j′ |O)

(14)

where k ∈ { size, color, shape}, j ∈ {1, 2, ..., Jk}.



Language layer The linguistic input are spoken sentences describing the image
in the format: <size> <color> <shape> (eg. ”Small red triangle”). Afterwards,
individual word-forms are extracted from the audio input and compared to pre-
learned language models - the log-scale scores p(wn

t |Li) of the audio matching
the model is computed. Based on these data, posterior probability can be com-
puted:

p(Li|w
n
t ) =

p(wn
t |Li) ∗ p(Li)

∑

i′ p(w
n
t |Li′) ∗ p(Li′)

, (15)

∀i ∈ {1, 2, ..., I}, ∀t ∈ {1, ..., T}, ∀n ∈ {1, 2, ..., Nt},

where I is the number of language models, T is the number of trials (sentences)
and Nt is the number of word-forms in the trial (sentence) t.

An output of this layer for each data point wn
t is the vector yi of I output

parameters describing the data point (the likelihood that the data point belongs
to each individual language model). This corresponds to the fuzzy memberships
(distributed representation). Linguistic and visual inputs are processed simul-
taneously.

Mapping - Model 1 and Model 2 After both visual and language data are
clustered, the mapping between the two layers must be found. For each cluster Li

in the language layer a corresponding cluster Kk
j in visual layer (for each feature

k ∈ {size, colour, shape}) is found. The mapping is found as following: for each j
and k we find cluster Lkmaxjk

from language layer which will be assigned to the

cluster Kk
j from the visual layer. In the paper, we compare two different models

how to find indices kmaxjk. We compared one-step mapping (see Section 2.1)
and newly proposed sequential mapping (see Section 2.2).

The exact algorithm used to find mapping between visual and language mod-
els in a sequential manner is described in the detail in the Algorithm 1. Indices
m(i) are found sequentially. In each step, the best mapped data are excluded
and the rest of data is reclustered using Gaussian mixture models. Afterwards,
one-step mapping is performed (see Alg. 1). An extension of the algorithm for a
variable length sentence is described in the Appendix.

2.4 iCub robotic platform and iCub simulator

For the experiment we used a simulated [43] and a physical [26] iCub robot. The
iCub (Fig. 1 (c)) is an open-source humanoid robot with the size of a three and
a half year-old child, fully articulated hands as well as a head-and-eye system
which makes him ideal for cognitive experiments. The iCub simulator has been
designed to reproduce, as accurately as possible, the physics and the dynamics of
the robot and its environment [43]. The simulator and the actual robot have the
same interface supporting YARP [27] which is a robot platform for interprocess
communication and control of the physical and simulated robot in a real-time.



Algorithm 1 Sequential mapping: fixed grammar

Inputs:

language clusters Li (i ∈ 1 : I), visual clusters Kk
j ∼ N(mk

j ,S
k
j ),

j ∈ 1 : Jk, input data x
k for each feature k ∈ {size, colour, shape},

number of clusters Jk for each feature k
Output:

mapping between all visual classes Kk
j and language classes Li

for k ∈ {size, colour, shape} do
NCl← Jk

while NCl > 0 and x
k is not empty do

assign each data point from x
k to visual and language cluster (Winner-takes

all, see Eq. (14))
for j = 1 : NCl do

for i = 1 : I do

Aij ← how many times was class i actually classified as j
end for

end for

[im, jm]← argmaxi argmaxj Aij

x
k
del ← data points assigned to both Kk

jm and Lim

Θ
k
newNCl

← N(xk
del) learn Gaussian on the to be deleted data

X
k ←X

k\ Xk
del delete all data points assigned to both Kk

jm and Lim

NCl← NCl − 1
relearn Kk ∼ N(mk,Sk) on new data x

k with NCl number of clusters
end while

end for

cluster visual data using new Θ
k
new parameters (cluster centres m

k and covariance
matrices Sk and perform One-step mapping (Model 1)

2.5 Input data description and preprocessing

The input to our model consisted of visual and language data. The visual scene
was composed of an object in a center of the scene with a variable position.
Visual features (size, shape and color) of an object also varied. We developed
two separate datasets for training and testing purpose. Real-world dataset has
visual sensory data acquired from the cameras of the physical iCub robot who
observed simple objects placed on the white board in front of his eyes (see Fig. 4,
(c) and (d)) (204 instances, 3 sizes, 5 colors and 7 shapes). Simulated dataset is
made in iCub simulator (see Fig. 4, (a) and (b)) as a Blender generated virtual
objects (432 instances, 3 sizes, 6 colors and 6 shapes).

The spoken language input were sentences pronounced by a non-native Eng-
lish speaker describing the image in the format: <size> <color> <shape> (eg.
”Small red triangle”) and were processed simultaneously with the visual input.

Speech recognition CMU Sphinx (an open-source flexible Markov model-
based speech recognizer system) was used for speech recognition [20]. Sphinx



(a) iCub simulator (b) Blender object (c) physical iCub (d) Real object

Figure 4: Experiment design and corresponding input data

itself offers large vocabulary, but we created our own task-specific smaller vocab-
ulary using online IMtool that produces a dictionary based on a CMU dictionary
and matches its language model.

There is a probabilistic output from the CMU Sphinx. The 10 best hypothesis
for a matching model with corresponding scores were saved for each utterance
(those are log-scale scores of the audio matching the model). Because the scores
for hypothesis of each word in the sentence were needed for further evaluation,
the words were pronounced with the large pauses and the end of the sentence
was marked by the word ”STOP”. An output of the language layer is a I-
dimensional continuous valued vector, where I is a number of language clusters
(corresponding to the number of possible utterances). This vector contains 10
non-zero values and the rest is zero.

Image processing The image inputs are processed using standard MATLAB
functions. First, the image is morphologically opened with a disk-shaped struc-
turing element (imopen) to remove the noisy background of an image, then all
grayish pixels are removed and the image is converted from the true color RGB
to the grayscale intensity image by eliminating the hue and saturation inform-
ation while retaining the luminance (rgb2gray). Finaly, the intensity image is
converted to a binary image using the threshold computed by Otsu’s method
(threshold). Example of the preprocessed image is shown in the Fig. 5.

Afterwards, the properties of image regions are measured using the function
regionprops. Individual visual features (shape, color, size) are subsequently pro-
cessed separately. Following features have been used: Color (3 features: Average
RGB of the selected region), Size (6 features: Parimeter of an object, distance
from the centroid to the left corner of the bounding box, width and length of
the bounding box), Shape (13 features: Area, centroid, major axis length, ec-
centricity, orientation, convexArea, FilledArea, EulerNumber, EquivDiameter,
Solidity, Extent, Perimeter). To obtain shape features we automatically cropped
and resized the image to equalize the size of objects.



Figure 5: Image processing - original image, removal of the background, convert-
ing to BW image and filling the holes

In spite of the fact that our visual model is mainly mathematical and imple-
mented in a very ’machine vision’ sort of way, the bases of its processing follow
biological correlates of mammal vision. More specifically, from the neuroana-
tomical point of view, this corresponds to the processing of the visual input in
the separate higher visual centra in the brain, specifically to the independent
processing of the information about position and indentification of an object in
the ventral (”what”) and dorsal (”where”) neural pathways respectively [28].
Individual object properties are identified in the separate visual centra of the
occipital lobe.

2.6 Evaluation

In order to evaluate performance of clusterisation of visual data achieved by
unsupervised GMM, we compare our results to supervised version of the GMM
algorithm. Furthermore, we provide comparison with SOM algorithm and GWR
algorithms as state-of-the-art alternatives to our approach.

In a case of supervised GMM algorithm, GWR and SOM, data were divided
to training and validation dataset in the ratio 70:30 For unsupervised GMM,
HMM and k-means algorithms, we computed the accuracy in a different man-
ner. After performing the clustering of the data, each cluster is assigned to the
class that appears most frequently in the cluster, and then the accuracy of this
assignment is measured by counting the number of correctly assigned data points
(compared to manual true labels) and dividing this by the total number of data
points.

3 Experimental results

The first part of the results is dedicated to the performance of our model in the
real-world scenario. The robot interacts with a human in noisy condition that
distorts speech input.

3.1 Vision

At the first stage we evaluated the Vision subpart of our model. There were
several algorithm compared, namely the GMM algorithm, supervised GMM



algorithm, k-means, SOM and GWR (growing when required neural gas) al-
gorithm [1]) [23]. Both SOM and GWR had 100 nodes. The results for real-world
dataset and simulated dataset with Blender objects can be seen in the Table 1.
Even though SOM and GWR are considered to be unsupervised algorithms,
we adopted technique for labeling inputs, so they should be compared with su-
pervised algorithms. There is also overestimated number of clusters (number of
nodes corresponds to the number of clusters). It indicates that these algorithms
are partly overfitting the data so we divided the set to testing and validation
data.

Real-data Blender
Accuracy [%] Size Colour Shape Size Colour Shape

GMM sup. 83.3 ± 0.0 99.0 ± 0.0 81.4 ± 0.0 98.6 ± 0.0 97.9 ± 0.0 93.1 ± 0.0
GMM unsup. 76.2 ± 6.8 76.1 ± 9.1 56.1 ± 6.2 74.2 ± 10.1 60.9 ± 9.0 64.3 ± 7.2
K-means 67.8 ± 6.2 81.2 ± 1.1 53.1 ± 4.2 66.3 ± 0.2 77.1 ± 10.7 72.8 ± 6.9
SOM 69.6 ± 5.6 78.9 ± 6.8 54.2 ± 4.1 66.1 ± 4.2 81.7 ± 7.6 59.3 ± 6.2
GWR 89.9 ± 2.1 99.5 ± 0.4 76.6 ± 1.4 88.9 ± 0.7 98.1 ± 0.9 94.2 ± 0.6

Table 1: Comparison of clusterization and classification accuracy of visual data.
The mean and standard deviation from 100 repetitions is visualised.

3.2 Mapping

The performance of one-step mapping (vision and language are mapped in one
step based on the frequency of co-occurrence) and sequential mapping (see
Alg. 1) is shown in Table 2. We calculated accuracy both for real-world data
from physical iCub and for Blender objects placed in the iCub simulator. Lan-
guage accuracy for Blender dataset is much higher compared to the real-world
data as tutor was speaking directly to the microphone.

Real-data Blender
Accuracy [%] Size Colour Shape Size Colour Shape

Vision 76.2 ± 6.8 76.1 ± 9.1 56.1 ± 6.2 74.2 ± 10.1 60.9 ± 9.0 64.3 ± 7.6
Language 70.6 ± 0.0 82.4 ± 0.0 77.5 ± 0.0 98.1 ± 0.0 96.5 ± 0.0 98.1 ± 0.0

One-step mapping 54.1 ± 4.1 58.2 ± 10.3 52.2 ± 4.9 67.3 ± 8.2 56.2 ± 6.1 61.9 ± 3.2
Sequential mapping 74.2 ± 15.1 87.1 ± 10.2 72.9 ± 5.1 96.1 ± 31.2 95.2 ± 1.2 92.1 ± 0.9

Table 2: Comparison of One-step mapping and Sequential mapping for data from
iCub simulator (Blender) and physical iCub (real-data). The mean and standard
deviation from 100 repetitions is visualised.

Tolerance of the sequential mapping to noise in the language data is visu-
alized in the Fig. 6 for visual data from iCub simulator in combination with



language data processed by Sphinx 4. The noise to the language data is added
subsequently and evenly to all classes (given proportion of language inputs was
randomly changed to the random word). The noise was added artificially, but
can be interpreted either as a noise in the data or mistakes in labeling perceived
objects. We grouped them together into a misclassification variable. The visual
data are let intact so the only cause of the observed variations in the accuracy is
initialization. As can be seen, the accuracy of sequential mapping remains very
stable even though the accuracy of language decreases and outperforms both
language and vision for almost all values of the misclassification.

Figure 6: Dependence of mapping accuracy on the misclassification in the lan-
guage data for fixed length sentence (mean values over 50 repetitions are visu-
alized). Different colours correspond to different visual features (red – size, blue
– colour, green – shape). Visual data are generated in Blender and acquired
through iCub simulator, language data are processed using Sphinx 4.

4 Discussion and Conclusion

Current models of vision-to-language mapping often make use of cross-situational
learning while relying directly on statistical co-occurrence of meaning-referent
pairs - the ones with the highest co-occurrence are mapped together (e.g. [35]).
This approach show poor performance in cases of higher number of objects or
noise. Therefore we extended this basic model and introduced a new more robust
and noise-resistant mapping procedure. Our approach incorporates situation-
time dynamics, mutual exclusivity and is able to deal with non-equal number of
classes in individual subdomains.

Mathematical formulation of the newly proposed mapping is provided (see
Section 2.2) and results on both simulated and real-world data from iCub robot
are compared to one-step mapping (see Table 2). It was shown, that the method



Figure 7: Sequential mapping procedure on real-world visual data from physical
iCub robot. Data are plotted in the space of first two principal components.
Individual colours distinguish separate clusters found at each iteration. Subfig-
ures (A)-(E) show sequential elimination of data points. Initial clusterisation of
visual data and clusterisation after sequential mapping can be seen in subfigure
(A) and (F) respectively. For visualisation purposes, only 100 datapoints were
plotted.

is able to find mapping between language and vision, it improves the accuracy of
both individual subdomains and shows very good resistance to noise or misclassi-
fication in language (see Fig. 6). How to map in an unsupervised manner several
clusterings (e.g. for vision, action, language) is not only important question in
cognitive modeling, but also in general machine learning, where data acquired
from different sensors or in different situations can be independently clustered
and mapped one to each other. More detailed discussion of the results follows.

The trivial one step mapping can be imagined as a basic Hebbian learning.
Our extension, can be liken to the Hebbian learning with inhibitory connections.
In recent years, few approaches to find an alternative way to the basic approach
appeared [52,25]. Our model partially stems from McMurray approach, who
showed that associative learning can be sufficient for language acquisition and
that the main components of this type of learning are online competition of
models and pruning incorrect associations which makes it possible to gradually
improve associations between models.

The mutual exclusivity principle is guaranteed in our method thanks to the
inhibitory connections which are gradually created among models. Once the
mapping between referent and meaning is found, the connection from a given



meaning to other referents is inhibited. Dynamic competition is addressed in
the following way: when any association of meaning and referent is found, other
models compete again for resources. Firstly, well mapped data are deleted, and
afterwards, the resting data are reclustered. Furthermore the likelihoods can as-
sociate each data point to many separate models instead of binary membership.
The similarity of two word forms can affect learning similar to children devel-
opment [31]. The algorithm also enables mapping together data in a case where
we have uneven number of clusters in both subdomains.

On the other hand, the principle of mutual exclusivity is not suitable for
further stages of language acquisition, namely learning of polysemic words. A
polyseme is a word or a phrase with different but related senses (e.g. wood as
a piece of tree or the area with trees). The homonyms are subset of the poly-
semes, but the difference between homonyms and polysemes is subtle and fuzzy.
Homonyms represent a group of words sharing similar spelling (homographs)
and the same sound (homophones) but have different and unrelated meanings,
e.g. homograph bank standing for embankment or place where money is kept.
The learning of polysemic words violates the principle of mutual exclusivity as
the dynamic competition does not allow to map two words to the same visual
model. We are aware of this problem and we would like to extend it in the
future iteration of the model. Similar to humans that has to learn polysemic
words as an exceptions we will incorporate this principle to the next version of
our architecture.

In the next part we analyze the ability of our architecture to deal with am-
biguous inputs. The mapping will find a reliable labeling for the visual input
data (more generally for data from any other modality) with a possibility to in-
corporate fuzziness of this mapping. For some concepts finding an unambiguous
mapping is very easy, for others it is much more difficult or impossible (such as
abstract words , e.g. the love has no dominating colour, but sky is usually blue).
Since the mapping is established only among the clusters where it makes sense,
dealing with a lot of redundant information is avoided. Similar idea is used in
classification algorithms which use sparse matrices (e.g. [9,10]). We also analyzed
strong and weak points of the algorithms adopted in our architecture. First, the
ability of different algorithms to classify unimodal visual data was compared. As
expected, for data which are well separated and mainly spherically distributed
(this is generally a case for simulated and artificially generated data), k-means
algorithm outperformed GMM algorithm. On the other hand for non-spherical
real data performed generally better GMM algorithm (see Table 1 for compar-
ison of performance on simulated data placed in an iCub simulator and data
from real iCub robot cameras). Since the unsupervised algorithms are highly de-
pendent on the initialization, it can be seen, that the standard deviation of data
is quite high even though 20 repetitions were averaged. We should conclude that
the performance of the algorithms in our tasks reflects both their fundamental
advances and limitations. We are still missing the algorithm that is able to cope
with highly variable datasets in term of their statistical properties.



Afterwards, we focused on the mapping between vision and language and
compared two different approaches: one-step mapping to sequential mapping
which in a stepwise manner finds the best mapped clusters while constantly
relearning clusterization of visual data. As can be seen on the results in Table 2,
the novel sequential mapping led to an improvement of effectiveness compared
to the method which maps vision to language in one step. This can be seen in
more accurate mapping which leads to better estimation of the clustered data
labels and consequently to the lower classification error for all of the evaluated
datasets and features.

The accuracy of multimodal mapping outperforms either vision, language or
both of them. This is an important finding, since the sequential mapping doesn’t
improve only accuracy of visual clustering, but can as well fix mistakes in the
language recognition, which provides the labels. Furthermore this result suggests
that we are able not only to find mapping between more clusterings, but we can
also improve clusterisation accuracy by combining individual classifiers. This is
not easily seen on the presented dataset as there is high recognition accuracy of
Sphinx software (especially in the case of sentences recorded for the simulated
dataset). Therefore we also tested whether the noise in the language data affects
the correct mapping between vision and language. The result can be seen in
the Fig.6. Even though the noise is added to the language data, the ability to
find the mapping remains nearly intact. The mapping accuracy decreases only
very slightly and remains around 90% since the accuracy of language recognition
drops from original approx. 95 % to approx. 70% (depends on the specific visual
feature).

We also analyzed how complexity of environment affects accuracy of our
architecture. We suppose that the performance of the one-step mapping will de-
crease with an increasing complexity of the task (more clusters, higher overlap
and higher dimensionality) as it is more difficult to find reliable clustering of the
data in. This hypothesis is supported by our preliminary results on clustering
body parts from simultaneous tactile and linguistic input [38] and by the results
presented in this paper in the Table 2. The quality of one-step mapping correlates
with quality of visual data clustering. For Blender data, the worst performance
was achieved for mapping words to visual feature Shape (52 ± 5 %) and for
physical iCub for feature Colour (62 ± 3 %). The feature Shape has the highest
number of clusters (10) and the feature Colour has the second highest number
of clusters (9) and the highest overlap of the clusters for the physical iCub.
Real-world tasks are much more complex and we can expect tens of different
object shapes. In that case, the performance of clustering is crucial and one-step
mapping wouldn’t be able to provide a reliable mapping. It can be seen from
our results, that the proposed mapping which enables gradual re-estimation of
models parameters and works in a dynamical fashion, achieves much higher ac-
curacy even for the cases where the one-step mapping fails. We suppose that the
mapping accuracy of the proposed method decreases slower with the decreasing
accuracy of clustering of individual modalities. Unfortunately this factor was
not studied in our restricted scenario but our preliminary results on mapping



tactile and linguistic input [38] support this hypothesis. We plan to investigate
this phenomenon more deeply in future research.

The language dataset differs considerably from the natural language. On the
other hand the dataset reflects some characteristics from the findings of Werker et
al. [48] as infant-directed words are usually kept short with large pauses between
words. Moreover Brent and Siskind [2] showed that frequency of exposure to a
word in isolation predicts better whether that word will be learned than the
total frequency of exposure to that word. Also Snow in her paper [36] found out
that mothers’ speech to 2-years-olds is much simpler and less redundant than
their speech to 10-years-old. Which indicates that young children have available
a sample of speech which is simpler, more redundant, and less confusing than
normal adult speech.

The proposed algorithm was tested on language to vision mapping and also
on language to tactile mapping [38], and it can be easily extended to language
to any other modalities mapping. The mapping between multiple modalities and
words was already researched in [42]. Fazly [11] proposed a probabilistic model of
cross-situational learning where he considered sentences containing both objects
and their motion. Monaghan [29] studied differences between cross-situational
learning of nouns and verbs on human participants as an extension of work of
Tomasello[45,33]. He consider learning of verbs same difficult as learning of as
nouns when presented in syntactic context. He noticed that nouns are learnt
quicker but both verbs and nouns can be acquired simultaneously.

It is worth notion that the main goal of our study is to analyze mapping
between modalities. Hence the processing of the individual modalities does not
stem from the state of the art algorithms. We keep them deliberatively simple
for better understanding of cross situational learning . We suppose that the
sequence mapping should be applied to any outputs from auditory and visual
subsystems.
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A Appendix

Here we describe an extension of the proposed algorithm presented in the Sec-
tion 2.2 for a case where we have sentence with variable structure. This mean,
that we cannot directly associate words from sentence to individual visual fea-
tures and therefore associations to all visual features must be taken into account.
The whole algorithm is described in Alg. 2 in a form of pseudocode.

The Algorithm 2 can be further extended when we incorporate language
model and corresponding probabilities of sequence of individual visual features.



Algorithm 2 Sequential mapping – variable sentence

Inputs:

language clusters Li (i ∈ 1 : I), visual clusters Kk
j ∼ N(mk,Sk),

j ∈ 1 : Jk for each feature k, visual input data xt = {x
1
t , . . . ,x

K
t }

and corresponding language data Wt = {w
1
t , . . . , w

Nt
t } for each

trial t, number of clusters Jk for each feature k
Output:

mapping between all visual classes Kk
j and language classes Li

while
∑

Jk > 0 and x is not empty do

lnt ← assign each word wn
t from each sentence t to a language cluster (Winner-

takes all, see Eq. (14), lnt = argmaxi(P (wn
t |Li))

for k ∈ {size, colour, orientation, texture, shape} do
vkt ← assign each datapoint xk

t to a visual cluster (Winner-takes all, see
Eq. (14), vkt = argmaxj(P (xk

t |K
k
j ))

for j = 1 : Jk do

for i = 1 : I do

T k
ij ← how many times did visual class i coocurred with language class

j (T k
ij =

∑
t;vk

t ==j

∑
n
δ(lnt , i)), where δ is Kroenecker delta

end for

end for

end for

[km, im, jm]← argmaxk argmaxi argmaxj T
k
i,j (the visual cluster K

km
jm is mapped

to the language cluster Lim)
x

km

del ← data points assigned to both Kkm
jm and Lim

Θk
new,Jk ← N(xk

del) learn Gaussian on the to be deleted data

X
km ←X

km\ Xkm
del delete all data points assigned to both Kkm

jm and Lim

Jkm ← Jkm − 1
relearn Kkm

j ∼ N(mk,Sk) on new data x
km with Jkm number of clusters

end while

cluster visual data using new Θk
new parameters (cluster centres m

k and covariance
matrices Sk) and perform One-step mapping (Model 1)


