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Abstract

Background: In Côte d’Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the

country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide

control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria

infection risk in children aged <16 years in Côte d’Ivoire at high spatial resolution.

Methods: Using different data sources, a systematic review was carried out to compile and geo-reference survey data

on Plasmodium spp. infection prevalence in Côte d’Ivoire, focusing on children aged <16 years. The period from 1988

to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk.

Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-

stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of

separate stationary processes in each ecological zone. The best fitting model based on the deviance information

criterion was used to predict Plasmodium spp. infection risk for entire Côte d’Ivoire, including uncertainty.

Results: Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged

<16 years were extracted. Most data points (n= 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-

stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature

identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled

locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were

located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west

between two high prevalence areas.

Conclusion: The malaria risk map at high spatial resolution gives an important overview of the geographical

distribution of the disease in Côte d’Ivoire. It is a useful tool for the national malaria control programme and can be

utilized for spatial targeting of control interventions and rational resource allocation.

Background
In 2004, Côte d’Ivoire was ranked at position number 14

with regard to the global burden of malaria with an

estimated 767,000 disability-adjusted life years (DALYs)

[1]. According to the 2009 World Malaria Report, the

estimated population at risk of malaria in Côte d’Ivoire

was 21 million people; hence 100% of the population.

There were an estimated 1.8 million suspected malaria

cases, 33,000 in-patient cases and 18,000 deaths due to

malaria [2]. The coverage with insecticide-treated nets

(ITNs) has been estimated at only 13% in Côte d’Ivoire,

with 6% of the households possessing at least one ITN and

4% of children aged under five years sleeping under an

ITN. Although the artemisinin-based combination therapy

(ACT) policy has been adopted by the country, these treat-

ments are not yet available free of charge for children aged

under five years. Strikingly, due to the post-election crisis

starting in late 2010 [3], there was a provisional stopping
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and Malaria (Global Fund in short), and hence the planned

interventions by the national malaria control programme

could not take place. Indeed, the lack of access to appro-

priate treatment emerged as an urgent public health issue.

With the end of the crisis in mid-2011 and the stability of

the country slowly returning [3], the national malaria con-

trol programme has re-started its activities, and there is a

pressing need for tools that can be implemented rapidly

and cost-effectively to mitigate the burden of malaria. High-

resolution predictive risk maps can assist authorities to

spatially target interventions according to local needs. Such

risk maps are typically based on regression models employ-

ing climatic and other environmental factors as covariates

due to their important role in malaria transmission. A num-

ber of studies have shown that Plasmodium infections are

influenced by environmental factors such as temperature,

rainfall, humidity and elevation [4-8]. These factors directly

or indirectly influence the development and occurrence of

Anopheles mosquitoes, the malaria vectors, and hence,

affect the geographical distribution of malaria.

Standard statistical modelling approaches assume inde-

pendence between survey locations and neglect potential

spatial dependency between neighbouring locations due to

unobserved common exposures. Geo-statistical models

take into account spatial correlation by additional

location-specific random effect parameters. These models

have already been applied to model malaria risk at

different geographical scales in sub-Saharan Africa [5,9-19].

In Côte d’Ivoire, there is considerable climatic variation

from north to south, leading to the sub-division of the

country into different ecological zones. Isotropic geo-

statistical models assume that spatial correlation is a func-

tion of distance between locations irrespective of locations

themselves. However, spatial correlation might vary across

the country due to the presence of different ecological

regions, variation in health system performance, socio-

economic differentials or intervention coverage, introducing

non-stationarity. Non-stationary models had previously

been applied to model malaria risk in western Côte d’Ivoire,

Mali and western sub-Saharan Africa [12-14].

Given the need and the lack of contemporary national

malaria surveys in Côte d’Ivoire (i.e. malaria indicator

surveys – MIS), this work used a geo-statistical modelling

approach for point-prevalence data from a wide array of

sources for children under the age of 16 years to predict

malaria risk in Côte d’Ivoire, including uncertainty mea-

sures. The modelling approach was adjusted for key envir-

onmental risk factors.

Methods
Study area

Côte d’Ivoire is located in West Africa and has an area

of 322,462 km2. It borders the countries of Liberia and

Guinea in the west, Mali and Burkina Faso in the north

and Ghana in the east. The total population is estimated

at 21 million. The climate of Côte d’Ivoire is generally

warm and humid, ranging from equatorial in the

southern coasts and tropical in the centre to semi-arid in

the far north. There are three seasons: warm and dry

(November to March), hot and dry (March to May), and

hot and wet (June to October). The temperature averages

between 25°C and 32°C and ranges from 10°C to 40°C.

The south-eastern part of Côte d’Ivoire is marked by

coastal inland lagoons that start at the Ghanaian border

and stretch 300 km along the eastern half of the coast. The

southern region, especially the south-west, is covered with

dense tropical moist forest. The Guinean forest-savannah

mosaic belt extends across the middle of the country from

east to west. The northern part of Côte d’Ivoire belongs to

the West Sudanian savannah.

Data sources

A systematic search was carried out on PubMed to identify

all surveys that reported Plasmodium spp. prevalence data

for Côte d’Ivoire. The authors’ own bibliographies were also

systematically searched. Additionally, a broad-based search

of grey literature was conducted, including local journals,

MSc and PhD theses from national universities and libraries

of research institutes, Ministry of Health (MoH) reports and

personal communication. The period covered was between

1988 and 2007. In case geographical coordinates of malaria

point prevalence data were missing from the literature, the

locations were searched on a map and the respective coordi-

nates extracted. Whenever possible, authors were contacted

for provision of supplementary information on the reported

data. Given that most of the studies focused on children, it

was decided that for modelling purposes, only prevalence

data for children aged <16 years were to be assembled. In

case older age groups were also sampled in a particular

study, the authors were asked to provide individual level

data, so that the prevalence for the target age group (i.e.

<16 years) could be extracted. For each data point, the age-

specific number of children examined and the percentage

tested positive for Plasmodium spp. infection were extracted.

Additionally, the year when the survey was carried out was

recorded. The prevalence data used in this study are avail-

able upon request from the authors.

Elevation (altitude above sea level, expressed in m) was

obtained from USGS EROS data centre digital elevation

model (DEM) at a spatial resolution of 1 km. Distance to

the nearest water body (in m) was computed based on the

Health Mapper data files for rivers, lakes and wetlands.

Summarized estimates for eight-day maximum land sur-

face temperature (LST) and 16-day normalized difference

vegetation index (NDVI) were obtained from Moderate

Resolution Imaging Spectroradiometer (MODIS) at a

spatial resolution of 1 km during the period from 2000 to

2008. Ten-day rainfall data were obtained from the Africa
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Data Dissemination Service (ADDS) at a spatial resolution

of 8 km. At each location the mean annual maximum

temperature, mean annual rainfall, elevation and distance

to water bodies were extracted.

Ecological zones were derived by importing rainfall,

elevation, NDVI, land cover and maximum temperature

data into ERDAS Imagine 9.3 software. An unsupervised

classification via the iterative self-organizing data analysis

technique (ISODATA) was used on the above ecological

factors to create three different ecological zones based

on between-class similarities. Centroids of each eco-

logical zone in Côte d’Ivoire were derived via ArcMap

version 9.2 (ESRI) for subsequent modelling purposes.

Statistical analysis

Binomial regression models were fitted in STATA/IC

version 10.1 (StataCorp LP; College Station, TX, USA) to

assess the relation between ecological predictors and

Plasmodium spp. prevalence. Significant ecological fac-

tors, based on likelihood ratio test (LRT) with signifi-

cance levels of 15%, were included as covariates in

further analyses. Bayesian non-spatial and geo-statistical

logistic regression models were fitted in OpenBUGS ver-

sion 3.0.3 (Imperial College and Medical Research Coun-

cil; London, UK). Spatial dependency was modelled

assuming stationary (i.e. spatial correlation was modelled

as a function of distance between locations only), as well

as non-stationary (i.e. spatial correlation was modelled as

a function of distance between locations and position

within the study area) latent spatial processes.

Model formulation

Let Ni be the number of children tested at location si (i =1,

. . ., n) and Yi the number of those found with Plasmodium

parasites in a blood sample. It was assumed that Yi arises

from a binomial distribution, that is Yi~Bin(Ni, pi), with pi
measuring malaria risk at location si. The relation between

the malaria risk and the m associated environmental covari-

ates Xi at location si, Xi= (Xi1, Xi2, . . ., Xim)
T, was modelled

via the logistic regression logit(pi) =Xi
T ß, where ß= (ß1, ß2,

. . ., ßp)
T are the regression coefficients. Exchangeable

random effects εi were added on the logit scale, such as

logit(pi) =Xi
T ß+ εi.

Spatial correlation was introduced on location-specific

random effect parameters φi, that is logit(pi) =Xi
Tß+φi, as-

suming that φ= (φ1, φ2, . . ., φn)
T~MVN(0,Σ) with

variance-covariance matrix Σ. It was further assumed that

spatial process is isotropic and decays exponentially with

distance, i.e. Σij= σ
2exp(−ρdij), where dij is the Euclidean

distance between villages si and sj; σ
2 is the geographic

variability known as sill, and ρ is a smoothing parameter

that controls the rate of correlation decay with increasing

distance. The spatial range is defined as the minimum

distance at which spatial correlation between locations is

below 5%, and is calculated as 3/ρ for the exponential

correlation structure.

To take into account non-stationarity, the study area was

partitioned into three ecological sub-regions (K=3), assuming

local independent stationary spatial processes ωk=(ωk1, ωk2,

. . ., ωkN)
T in each ecological sub-region (k=1, . . ., K). The

spatial processes were assumed to be multi-variate normally

distributed, ωk~MVN(0,Σk), with variance-covariance ma-

trixes Σk defined by (Σk)ij=σ
2
k exp(ρk dij). It was further consid-

ered that the spatial correlation φi at location si in the study

area is a mixture of the independent spatial processes modelled

as weighed average, such as φi ¼
KP

k¼1

aikωik , where the weights

aik are decreasing functions of the distance between location

si and the centroids of the sub-regions k [20,21]. Under these

specifications, φ follows a multivariate normal distribution, φ~

MVN(0, KP

k¼1

AT
k ΣkAk), where Ak=diag(a1k, a2k, . . ., ank).

In a Bayesian modelling framework, specification of prior

distributions of all model parameters is required. Vague nor-

mal priors with large variance were assumed for the β para-

meters, while inverse gamma priors were chosen for σ2 and

σk
2 and uniform priors for ρ and ρk. Markov chain Monte

Carlo (MCMC) simulation was employed to estimate the

model parameters [22]. A single chain sampler with a burn-

in of 2,000 iterations was run for around 100,000 iterations.

Convergence was assessed by inspection of ergodic averages

of selected model parameters. The deviance information cri-

terion (DIC) was used to assess the goodness-of-fit of the

models without and with exchangeable random effects, and

the stationary and non-stationary geo-statistical models [23].

The smaller the DIC, the better the model fit. Finally, Bayes-

ian kriging was used to generate smooth risk maps for Plas-

modium infection prevalence based on the parameter

estimates of the best fitting model [24].

Results
Identified studies and description of georeferenced

survey data

The systematic and broad-based search revealed a total of 29

data sources (17 peer-reviewed articles, six theses, four

reports and two personal communications) for a 20-year

period starting in 1988. A total of 235 data points with mal-

aria prevalence data for individuals aged <16 years (at 170

unique survey locations) were extracted, of which 53 (22.6%)

pertained to surveys carried out between 1988 and 1999,

and the remaining 182 data points (77.4%) were collected

between 2000 and 2007. A third of the data points (n=80,

34.0%) were located in the region of Man in western Côte

d’Ivoire arising from two large cross-sectional surveys

carried out in 2001 and 2003/2004. Figure 1 shows the

spatial distribution of data points within Côte d’Ivoire and

the extent of the derived ecozones in the background,

stratified by survey year. Ecozone III had considerably
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fewer data points, most of which were concentrated at the

southern border of the zone. In contrast, in ecozones I and

II, data points were well distributed across the regions.

Plasmodium spp. prevalence

For subsequent logistic regression analyses, data on

Plasmodium spp. prevalence were used. Surveys with missing

information on Plasmodium spp. was assumed as Plasmodium

falciparum prevalence since other species, i.e. Plasmodium

ovale and Plasmodium malariae, are much less frequent in

Côte d’Ivoire [25-30]. The Plasmodium prevalence in children

<16 years ranged from nil to 100% with a mean prevalence of

54.1%. The observed prevalence at the data points distributed

over the country is shown in Figure 2. In south Côte d’Ivoire,

Plasmodium prevalence is generally lower compared to

the rest of the country. Indeed, when subdividing Côte d’Ivoire

into three equally large strata from lowest to highest

latitude, namely south, central and north, the mean prevalence

of Plasmodium was 37.3%, 61.5% and 61.0%, respectively.

Non-spatial regression analysis

Table 1 shows the results of the non-spatial and spatial

logistic regression analyses. The non-spatial multivariate

model (model 1) revealed that elevation and distance to

closest rivers were significantly positively associated with

Plasmodium spp. prevalence, while rainfall and max-

imum LST were negatively associated. When introducing

exchangeable random effects (model 2), model perform-

ance based on DIC estimates improved considerably

(9,974 vs. 1,501). The random effect had also an influ-

ence on the regression parameters of the covariates. As-

sociation with distance to rivers became non-significant,

while stronger negative effects of the covariates rainfall

and maximum LST on the outcome were observed.

Figure 1 Geographical distribution of Plasmodium spp. surveys locations based on compiled data on children aged <16 years between

1988 and 2007 in Côte d’Ivoire. The data were stratified in two categories: survey carried out before and since the year 2000. The extent of three major

ecozones in the country, which was derived from various satellite data, is displayed in the background. Centroids of the ecozones are given as black symbols.
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Spatial regression analysis

The introduction of location-specific stationary random

effect parameters into the model (model 3) showed a

strong leverage on model performance and parameter

estimates compared to model 2. Elevation became non-

significantly related to the outcome, leaving the model

with only rainfall and maximum LST as significant cov-

ariates. The model fit based on DIC estimates improved

considerably (1,485). When looking at the results of the

non-stationary model (model 4), the DIC decreased fur-

ther (1,479), suggesting that this is the best model. Of

note, for model 4 the covariates elevation and distance

to closest rivers were non-significant as well, whereas

rainfall and maximum LST remained significant, as it

had been observed for the other models.

Model 3 estimated a larger geographic variability σ2

compared to the non-spatial model 2 (2.37 vs. 1.59). The

geographic variability σ2
2 estimated for ecozone II from

the non-stationary model was particularly large compared

to σ1
2 and σ3

2. The estimated spatial range (above which

spatial correlation drops below 5%) from the stationary

model 3 was about 151 km. However, taking into account

non-stationarity, the spatial range varied between 8 km

(ecozone I) and 193 km (ecozone II).

Figure 2 Map of Plasmodium spp. prevalence obtained from surveys on children aged <16 years carried out between the years 1988

and 2007 in Côte d’Ivoire.
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Risk mapping

Figure 3 shows the predicted malaria risk map for Côte

d’Ivoire as obtained from the best fitting model, namely

the non-stationary logistic regression model (model 4).

Highest malaria prevalence (>70%) was predicted in the

north-central part and in the western part of Côte

d’Ivoire. In contrast, low prevalence estimates (≤30%)

were predicted for the following areas: (i) in the north at

the country border, (ii) in the north-east, (iii) in the

south-east around the economic capital Abidjan, and (iv)

in the central-west between two high prevalence areas.

Noteworthy, model prediction of the largest low preva-

lence area occurred in the north-east, but the model esti-

mates in this area were based on a single data point.

Uncertainty of the malaria risk map for Côte d’Ivoire

The standard deviation map of the predictive posterior

distribution obtained from model 4 is given in Figure 4.

As expected, it depicts low prediction error around the

survey locations. For instance, in the north-eastern part

of Côte d’Ivoire where low prevalence of Plasmodium

spp. was predicted, the error rapidly increases with in-

creasing distance from survey locations. This area in the

north-east of Côte d’Ivoire has only few survey data, and

hence standard deviations were overall high.

Discussion
Most malaria-related deaths, morbid sequelae and eco-

nomic losses could be averted through implementation of

control measures with a proven track record, such as

ITNs, indoor residual spraying (IRS) and access to prompt

diagnosis and treatment using ACT to those populations

in highest need [31]. Since 2007 and until the post-election

crisis that emerged in November 2010, malaria control in

Côte d’Ivoire has been largely funded by the Global Fund.

However, much remains to be done to significantly reduce

the burden of malaria through large-scale implementation

of control interventions [2]. It is conceivable that the socio-

political conflict and unrest that prevailed for most of the

past 12 years, hindered progress on malaria control among

other pressing public health issues [3,32,33]. Indeed, during

the most recent armed conflict, malaria interventions were

interrupted altogether. Now that political stability has

resumed, there is a pressing need to re-establish and

strengthen health systems, preventive measures and disease

control programmes. The aim of this study was to provide a

country-wide map of the geographical distribution of

malaria risk that could help in the spatial planning of future

control interventions by the national malaria control

programme, readily adapted to local needs and current

capacities.

Previous efforts obtained global, regional or continent-

wide estimates, which included Côte d’Ivoire [5,10].

However, these previous estimates captured the variation

of malaria risk at large spatial scales, and the accuracy at

high resolution may be compromised. In fact, countries

with the same climatic conditions may not have the same

disease burden because country-specific factors (e.g. dif-

ferent intervention coverage, performance of health sys-

tems) may modify the risk. Indeed, in several areas of

Côte d’Ivoire, the health system was heavily affected or

partially interrupted in the last decade [32]. The malaria

Table 1 Parameter estimates based on logistic regression models for Plasmodium spp. prevalence in children aged <16

years in Côte d’Ivoire using compiled data from surveys carried out between 1988 and 2007

Model parameter Non-spatial model Non-spatial model with
exchangeable random effects

Stationary spatial model Non-stationary spatial model

(Model 1) (Model 2) (Model 3) (Model 4)

ORa BCIb ORa BCIb ORa BCIb ORa BCIb

Elevation 1.44 1.40, 1.48 1.07 1.01, 1.13 1.05 0.99, 1.11 1.05 0.98, 1.11

Distance to rivers 1.08 1.06, 1.11 1.02 0.94, 1.10 0.98 0.91, 1.06 0.98 0.91, 1.05

Mean rainfall 0.91 0.88, 0.94 0.73 0.67, 0.79 0.77 0.70, 0.83 0.76 0.70, 0.83

Mean maximum LSTc 0.89 0.86, 0.92 0.67 0.60, 0.74 0.72 0.65, 0.80 0.72 0.64, 0.79

σ
2 1.59 1.20, 2.09 2.37 1.29, 4.74

σ
2
1 (ecozone I) 1.56 0.78, 2.67

σ
2
2 (ecozone II) 4.76 2.05, 10.49

σ
2
3 (ecozone III) 0.10 0.006, 0.40

ρ 1.98 0.70, 3.82

ρ1 (ecozone I) 39.44 12.02, 59.35

ρ2 (ecozone II) 1.55 0.52, 3.23

ρ3 (ecozone III) 27.61 2.30, 57.62

DIC
d 9,974 1,501 1,485 1,479

aOR Odds ratio; bBCI Bayesian credible interval; cLST Land surface temperature; dDIC Deviance information criterion.
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risk map presented in this article shows that there is

spatial variation in the prevalence of Plasmodium spp.

infection. This is also observed in the newly produced

global P. falciparum map, but differences are apparent,

especially with regard to zones where the present model

predicts low prevalence [34]. Another previous map pro-

duced at regional scale for West and Central Africa also

revealed spatial variation [5], but differences, especially

for low prevalence rates (<30%), can also be observed

with the current map.

Overall, 235 geo-referenced malaria prevalence survey

data points were obtained. Bayesian geo-statistical

methods were used to model the point prevalence data,

using logistic regression models with key environmental

covariates derived from remotely sensed data. Two non-

spatial and two spatial models were fitted with elevation,

distance to rivers, rainfall and maximum LST employed as

environmental covariates. For the spatial models, the as-

sumption of stationarity was extended to non-stationarity of

the spatial process, in line with previous work [11-14,21,35].

Ecological zoning was considered to partition the study area

into meaningful sub-regions with locally distinct ecological

characteristics. Indeed, the models employed here

confirmed that spatial correlation differed depending on the

Figure 3 Smoothed risk map of Plasmodium spp. infection for children aged <16 years in Côte d’Ivoire using a Bayesian non-stationary

logistic regression model.
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location (ecozone) and that the non-stationary spatial

model was superior to the remaining models in predicting

Plasmodium spp. prevalence.

In the spatial models, the covariates rainfall and maximum

LST were significantly associated with Plasmodium preva-

lence. These environmental factors had already been suc-

cessfully implemented in previous geo-statistical modelling

approaches employed in other African countries [5,8,13,36].

Côte d’Ivoire has spatially distinct climate conditions that

vary from equatorial in the south coast, to tropical in the

centre, and semi-arid in the north, with more rainfall in the

south compared to the north, and higher temperature ampli-

tudes in the north compared to the south, which might ex-

plain the significant contribution that these covariates had in

the spatial models. Although other environmental covariates

such as elevation and distance to rivers were significant in

the non-spatial models, they became non-significant in the

spatial models. This demonstrates the importance of

accounting for spatial correlation, when analysing geograph-

ical data in order to avoid over-estimation of the standard

errors of model covariates [37]. Topographically, Côte

d’Ivoire can be considered as a vast plateau, with exception

of the west of the country (Dix-Huit Montagnes region),

which has mountains with peaks of 1,000 m and above (the

highest elevation is Mount Nimba, 1,752 m above sea level,

located along the border with Guinea). Previous work from

this region demonstrated that elevation, rainfall and

temperature have no influence on the spatial distribution of

Figure 4 Map of the standard deviation of model-based predictions of Plasmodium spp. infection risk inferred from the Bayesian non-

stationary logistic regression model.
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Plasmodium prevalence at small scale [14]. The current

study confirms that the effect of elevation on malaria

prevalence at country-level is insignificant for Côte d’Ivoire.

However, rainfall and temperature were identified to be im-

portant drivers of Plasmodium spp. prevalence at a larger

scale. Of note, rainfall was found to drive Plasmodium para-

sitaemia also at small scale in the mountainous part of

western Côte d’Ivoire [13].

The present results are based on compiled survey data

assembled for Côte d’Ivoire covering a 20-year period

until 2008. There are several issues related to the use of

assembled data worth discussing. First, the distribution of

survey data was very rich, especially in the west (region of

Man), south and central part of the country, while data

availability was extremely sparse in the north-west and

north-east. Hence, the predicted prevalence estimates

should be interpreted with caution and in combination

with the map of uncertainty (Figure 4). For instance, the

model predicted low Plasmodium prevalence in the

north-east of Côte d’Ivoire based on only one data point

and, given the high spatial correlation and the scarcity of

data in this region (also due to low population density),

the model predicted a relatively large area with low preva-

lence, which might not reflect the real situation. Fortu-

nately, Bayesian geo-statistical modelling allows inferring

measures of uncertainties from the model-based predic-

tions, which can help in the interpretation of the risk

maps. Second, many of the surveys lack Plasmodium spe-

cies-specific information and therefore it was decided to

model Plasmodium spp. rather than species-specific

prevalence. Malaria, however, is not a single disease and

there are five Plasmodium species that cause human

malaria, which are transmitted by over 30 Anopheles

mosquito species [38]. This entails different disease spec-

tra in different population target groups from different

epidemiological settings, with implications for current

malaria control programmes [38]. Hence, future studies

need to make an effort to consistently and correctly

report species-specific information on Plasmodium preva-

lence in order to improve control. Despite this shortcoming,

it must be mentioned that in Côte d’Ivoire, P. falciparum is

the predominant species, as consistently shown across the

country [25-30]. Hence, the Plasmodium spp. risk map

presented here is closely imitating a P. falciparum risk map.

Third, the models were not adjusted for age although it is

well acknowledged that malaria prevalence differs between

age groups [39]. Therefore, future modelling should take into

account the age-prevalence-relation via mathematical trans-

mission models [40,41] converting age-heterogeneous survey

data to a common measure which is used for mapping

purposes [9,10]. Fourth, remotely sensed climate data (rain-

fall and maximum LST) were used to calculate mean values

over the period from 2000 to 2008, although obtained preva-

lence data dated back to 1988. This period was chosen

because MODIS data (maximum LST) were not available

before the year 2000, and alignment with historical

temperature data was not successful. Although it might be

expected that models with year-specific climate variables

could result in better model fits, the use of mean climatic

values reduces the effect of abnormal climatic conditions

that might have occurred during the study period, avoiding

artefacts in the parameter estimates.

Conclusion
Although the need for evaluating the value of detailed dis-

ease incidence and prevalence maps to inform program-

matic responses in evaluation and surveillance at a global

scale has been expressed, malaria risk mapping at national

level is crucial to support and plan interventions according

to local needs in countries where control or elimination

strategies are underway [42]. Côte d’Ivoire is currently

focusing efforts on scaling up malaria control interven-

tions. The current malaria risk map and future maps tak-

ing into account the latest prevalence data can provide

detailed information on transmission changes and assist in

monitoring and evaluation of current control activities of

the re-established malaria control programme.

In the past, at present and in the future, Plasmodium

spp. risk maps have guided and will continue to guide

decision makers in Côte d’Ivoire and elsewhere for

spatial targeting of malaria control activities, e.g. assist-

ing estimates on case management and related procure-

ment of ACT and rapid diagnostic tests and where to

prioritize ITN and IRS activities. Although risk maps

using historical data have to be interpreted with caution,

Bayesian geo-statistical risk mapping provides informa-

tion on the uncertainty of the model-based malaria risk

estimates. Nonetheless, the results indicate that there is

a need of more detailed malaria prevalence data in Côte

d’Ivoire, preferentially obtained from a national survey

on randomly selected locations, with species-specific

information. Furthermore, the usability of routine data

collected by a re-invigorated health system in Côte d’Ivoire

should be explored without delay. Future risk mapping

approaches might be improved by including information

on intervention coverage, vector distribution and human

population density, distribution and movement patterns.
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