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Abstract

Background: Improved maps of species distributions are important for effective management of wildlife under increasing
anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for
mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use
in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in
predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate
deciduous forests of New Hampshire, USA.

Methodology and Principal Findings: A set of 104 predictor variables describing vegetation vertical structure and
variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested
the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed
more than 30% predictive power with radar models having the lowest and multi-sensor synergy (‘‘fusion’’) models having
highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density
from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed
different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent
with known habitat preferences for the bird species.

Conclusion and Significance: Our results highlight the potential of integrating multiple remote sensing data sets using
machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated
from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at
both stand and landscape level.
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Introduction

Improved maps of species distributions are critical for

implementing effective conservation plans under increasing

habitat loss from anthropogenic perturbations [1–3]. While

environmental and climatic variables affect wildlife habitats in

several ways, vegetation structure is one of the most important

factors influencing habitat use, particularly in bird species [4,5].

Vegetation structure influences foraging behavior [6], food

abundance, nesting patterns and breeding success, which contrib-

ute to long-term persistence of bird populations. Structural

characteristics in forests consistently occupied by bird species

may therefore be indicators of habitat quality [1,7,8]. Manage-

ment efforts to adequately conserve high quality habitats across

landscapes consequently require extensive spatial information on

forest structural characteristics and floristics. With advances in

remote sensing technology, newer data with complementary

attributes are increasingly available [9]. The simultaneous use of

these data in physical or statistical models is commonly termed

‘‘multi-sensor fusion’’ [10] and has emerged as a promising

approach for optimizing existing remote sensing capabilities to

improve forest structure and habitat mapping [9,11].

Multispectral data have long been used to map habitat

preferences by relating species occurrence/abundance to the

spatial distribution of vegetation across landscapes. These

vegetation characteristics have commonly included land cover

[12], phenology [13], patch size, and fragmentation [12,14] and

are mostly related to vegetation class (e.g. deciduous and conifer)

and their spatial attributes. However, in situ field and other studies

have postulated that vertical characteristics of the forest, such as

canopy height, foliar profiles, and layering, are of equal or greater

importance in explaining the abundance and diversity of species

[4,5]. This vertical dimension is difficult to obtain from

multispectral data such as Landsat or MODIS [15].
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Light detection and ranging (Lidar) provides accurate measure-

ments of vertical vegetation structure and is of considerable value in

ecological applications [16–18]. Lidar instruments essentially record

the time taken by a laser pulse to reach the earth’s surface or canopy

top from an airplane/spacecraft and return. The laser beam interacts

with canopy elements and topography to produce a record of the

vertical distribution of canopy surfaces from which habitat character-

istics can be derived [15,19]. Synthetic Aperture Radar (SAR,

hereafter ‘radar’) instruments record backscattered radiation from the

Earth’s surface in the microwave region of the electromagnetic

spectrum. Radar sensors, depending on the wavelength used, are

sensitive to larger elements of the canopy, such as branches and boles,

and can be correlated to canopy volume, basal area, and biomass

between 100–150 tons/ha (50–75 tons C/ha) [20,21]. Radar data are

also effective for mapping spatial variability in landcover and detecting

disturbances. Lidar provides exquisite vertical canopy characteriza-

tion, but only over spatially limited areas; radar provides large-area

mapping of canopy volume but in the case of SAR only scant

information on height and the vertical leaf distribution. Importantly,

radar data can be obtained over large areas quickly and can be used

regardless of cloud cover, in contrast to current capacity lidar. Fusion

of lidar with radar and multispectral data may increase our ability to

map vegetation structure, which is important for habitat studies at

landscape scales. However, analyses of the efficacy of metrics derived

from these data, their accuracies and combined use for mapping

species habitats are needed [9].

A major obstacle in assessing multi-sensor fusion for habitat

studies has been the lack contemporaneous remote sensing data

that are coincident with spatially explicit wildlife data. Recently an

experiment in support of NASA’s DESDynI (Deformation

Ecosystem Structure and Dynamics of Ice) mission was conducted

at the Hubbard Brook Experimental Forest (HBEF) in New

Hampshire to assess multi-sensor fusion for aboveground biomass

estimation. This experiment utilized a suite of new and existing

remote sensing data that had been obtained over the forest

including radar, lidar, and multispectral imagery. Additionally,

long-term, quantitative data on bird abundances and distributions

from this study site were available for comparisons. Forest bird

populations, most of which are Neotropical migrants, have been

monitored at the HBEF since the late 1960s. Bird community

composition, guild structure [22], foraging behavior [6,23] and

long-term trends have been extensively studied for several species

[24,25]. The availability of wildlife data along with the wide range

of remote sensing data provides an unparalleled opportunity to

explore multi-sensor fusion for habitat mapping and this fusion is

the central goal of the research presented here.

Our objective is to evaluate statistical fusion of multi-sensor data

in predicting multi-year bird detections (hereafter, ‘‘prevalence’’) for

eight migratory songbird species in the HBEF. Forest structural

attributes, such as height and cover, as well as a suite of other habitat

parameters either known or hypothesized to be important for these

species are derived from remote sensing data. We test predictive

capabilities of the different data sets individually and in combination

with each other using machine-learning methods. We further

analyze the importance of these predictor variables to determine

which are most useful in describing bird habitat characteristics.

Finally, we map prevalence across the landscape and compare

spatial patterns with known habitat preferences for each species.

Methods

Study Area & Bird Observations
The HBEF is a bowl-shaped watershed located in the White

Mountains of New Hampshire, USA covering an area of 3,160 ha

with elevations ranging from 220 m to 1,015 m [26]. Slopes are

predominantly north and south facing with an average slope of

16%. Dominant deciduous tree species at lower elevations include

beech (Fagus grandiflora) and sugar maple (Acer saccharum). At higher

elevations, forests are dominated by birch (Betula sp) and conifers

such as balsam fir (Abies balsamica) and red spruce (Picea rubens).

Understory vegetation includes saplings of dominant trees, striped

maple (Acer pensylvanicum), mountain maple (Acer spicatum), hobble-

bush (Viburnum alnifolium), many herbs, and ferns. The HBEF is a

long-term ecological research (LTER) site and is representative of

northern hardwood forests. Detailed site characteristics can be

found in [25].

Bird observation data were collected between 1999 and 2008

[7] over a grid of 371 plots laid out in north south transects across

the study area (Fig. 1) [27]. Bird sightings were recorded for

10 minutes within a radius of 50 m around each plot center (0.79

ha area), two or three times every year during the peak breeding

season, following point count monitoring methods [28]. Bird

counts were then used to calculate multi-year detection (preva-

lence) over the 9-year time interval. Prevalence values ranged from

0 for no detection to 9 for detection in all years. We focused on 8

bird species (Table 1) where preliminary analyses showed strong

relationships between lidar metrics and bird prevalence (more than

30% variance explained by lidar). These included the blackpoll

warbler (BLPW), black-throated blue warbler (BTBW), magnolia

warbler (MAWA), yellow-rumped warbler (MYWA), ovenbird

(OVEN), red-eyed vireo (REVI), dark-eyed junco (DEJU), and the

yellow-bellied flycatcher (YBFL). Detailed descriptions of habitat

characteristics and bird data collection may be found in [22]and

[29].

Remote Sensing Data
Multispectral Data. Landsat ETM+ images acquired in

August 1999 and late October 2000 were corrected for Earth-Sun

distances and solar zenith angle variations, converted into top-of-

atmosphere reflectance and geo-referenced [30]. The Normalized

Difference Vegetation Index (NDVI) was calculated for both

images. We used the NDVI as a measure of greenness and the

difference between NDVI from leaf-on and leaf-off seasons as a

measure of deciduousness. These variables were found to be

important in determining habitat quality for the black-throated

blue warbler in a previous study [1].

Lidar Data. Lidar data can be classified as discrete return

or waveform digitizing based on the number of energy returns

recorded by the sensor. Discrete return lidar instruments (DRL)

record two or more returns, namely one from the ground, one

from the top of the canopy and some number in between [15].

Full waveform digitizing lidar instruments record the entire

outgoing and return signal to provide a waveform with

amplitudes proportional to the vertical distribution of canopy

material within a footprint [15]. Both DRL and waveform lidar

data have been used to map canopy height, cover and

aboveground biomass, in addition to sub-canopy topography

[16,31–34]. Many recent studies have also shown the potential

of the two types of lidar in mapping habitat characteristics but

few have compared their relative efficacies in such mapping

efforts.

We used DRL data collected over the study area in September

2009 with at least one shot per sq. m and up to four vertical

returns. First returns from lidar point cloud data were interpolated

to create a digital surface model (DSM) of canopy top with a

resolution of 0.5 m. Similarly, last returns were isolated and

interpolated to obtain a digital elevation model (DEM) at the same

resolution. A canopy height model (CHM) was derived by

Multisensor Fusion for Habitat Mapping
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subtracting ground elevation from the digital surface model. The

high spatial resolution of the CHM made it possible to identify

dominant and co-dominant tree crowns. We used an adaptive

‘local maxima’ filtering algorithm (TreeVaW) [35] to identify trees

from the CHM and obtain crown radii and height. The algorithm

was calibrated using field measurements of canopy height and

crown radii collected over the HBEF in 2009. Individual trees

identified by the algorithm were used to calculate stem density per

hectare. Crown area-weighted height for each plot was then

calculated as follows:

Cawght~

Xn

i~1

Cai �Hi

Xn

i~1

Cai

Ca = crown area of each tree, H = height of each tree from DRL data

and n = number of trees in each plot. This metric is analogous to basal

area weighted height (Lorey’s height) measured in the field [36].

Figure 1. DRL canopy height map showing bird census plot locations (small circles) and canopy height model showing individual
tree crowns.
doi:10.1371/journal.pone.0028922.g001

Table 1. Common and scientific names of songbird species at HBEF.

Common Name Code Scientific Name General Habitat Requirements

blackpoll Warbler BLPW Dendroica striata Coniferous forests, wide altitudinal gradient [29].

black-throated blue Warbler BTBW Dendroica caerulescens Deciduous forests in low elevation areas with well developed understory [1,3,22,29].

magnolia warbler MAWA Dendroica magnolia Coniferous spruce-fir forests. Broad tolerance for size class, narrow tolerance for cover type [5,29].

yellow-rumped warbler MYWA Dendroica coronata Coniferous forests and deciduous with presence of some conifers, particularly red spruce [29].

ovenbird OVEN Seiurus aurocapillus Low elevation deciduous forests, undisturbed mature stands, ground forager [5,29].

red-eyed vireo REVI Vireo olivaceus Low elevation deciduous forests [29].

dark eyed junco DEJU Junco hyemalis Coniferous forests, higher elevation [29].

yellow-bellied flycatcher YBFL Empidonax flaviventris Coniferous forests, higher elevation [29].

doi:10.1371/journal.pone.0028922.t001
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In contrast, the Laser Vegetation Imaging sensor (LVIS) is a

medium-footprint (25 m diameter), full-waveform digitizing lidar

developed at NASA’s Goddard Space Flight Center [37]. LVIS

data were acquired over New Hampshire in the summer of 2009

with trees in leaf-on condition. Canopy top was detected by

finding the lidar return greater than the noise threshold at the top

of the waveform. Comparisons between DRL data and LVIS

waveforms showed that DRL data provided accurate measure-

ments of ground elevation but underestimated canopy top

elevations. We therefore used ground elevation from high-

resolution DRL data to account for potential ground finding

errors in LVIS algorithms but retained LVIS canopy top heights

to calculate waveform metrics. Canopy height (RH100) was

calculated by subtracting the average DRL ground elevation

within each LVIS footprint from the canopy top height. Quantile

energy metrics i.e. heights of 25% (RH25), 50% (RH50) and 75%

(RH75) energy return were calculated from the waveform in a

similar manner [38]. The correlation between LVIS canopy

heights and maximum DRL height within LVIS footprints

increased by 25% (R2 = 0.78, RMSE = 2.09 m, n = 150554

footprints) after ground correction of LVIS data. Total canopy

cover was calculated from the normalized cumulative laser energy

return following methods in [39]. We hypothesized that

quantifying the amount of foliage at different levels within the

canopy possibly could explain bird occurrence/prevalence better

than other waveform metrics. We therefore calculated canopy

cover at 5 m height intervals from the cumulative energy return

between ground and 40 m, resulting in 8 metrics that approx-

imated the foliage profile.

Radar Data. The Uninhabited Aerial Vehicle Synthetic

Aperture Radar (UAVSAR) is an airborne L-band polarimetric

radar system developed at the Jet Propulsion Laboratory [40]. L-

band (23 cm wavelength) radars have greater penetrating

capabilities and sensitivity to tree trunks than smaller

wavelengths. Fully polarimetric capabilities i.e., the ability to

record four combinations of transmitted and received polarized

signals make this data set particularly useful for studying surface

and volume scattering from vegetation as well as structural

properties such as Leaf Area Index (LAI), basal area and biomass

[41–43]. While many studies have suggested the use of

polarimetric L-band radar data by itself and in combination

with lidar for habitat mapping, few studies have actually tested

them. Here, we used co-polarized [horizontal transmitted,

horizontal received HH], [vertical transmitted, vertical received

VV] and cross-polarized [horizontal transmitted, vertical received

HV] data. Raw data were processed into backscatter images at

5 m nominal spatial resolution, orthorectified with digital

elevation models and corrected for topographic slope (i.e. area

projection in the line of sight). We converted backscatter values

into power, applied a (363) gamma filter to reduce fine-scale

variations, and calculated average statistics for HH, VV, and HV

bands within bird plots [44]. In addition, band ratios HH/VV,

HV/VV HV/HH and normalized difference band ratios [HH-

VV/HH+VV], [VV-HV/VV+HV], and [HH-HV/HH+HV]

were calculated [45].

All datasets were brought into a common frame of reference

using the UTM 19 N projection and WGS 84 datum. Landsat

ETM+ data and UAVSAR were geo-referenced using DEMs

while DRL and LVIS data were geolocated using GPS and inertial

navigation units. The geolocation error of each dataset was

evaluated individually and found to be less than 1 pixel i.e.

Landsat ETM+ was less than 30 m, DRL data was within 0.5 m,

LVIS was less than 25 m and UAVSAR was less than 5 m. While

shifts between datasets of varying resolutions were unavoidable,

they were well within the bird plot scale of 0.79 ha. Averaging

remote sensing data attributes over 88.8 m pixels (0.79 ha area)

further minimized errors. One bird plot was excluded because of

no co-incident LVIS data and another because of high DRL

crown delineation error leaving 369 bird plots and 104 predictor

variables (Table 2) for analyses. Prevalence was calculated as the

total number of years a bird was detected in a plot out of the 9

years observed, i.e., the lowest prevalence was zero and maximum

was 9. Prevalence was predicted as a continuous variable following

[1].

Analysis
Machine learning algorithms such as decision trees and neural

networks do not make any assumptions about the relationships

between explanatory and response variables and are well suited for

analyzing complex non-linear and possibly hierarchical interac-

tions in large ecological data sets [46]. Decision/regression trees

[47] for example, partition the data into two homogenous sets

based on the best explanatory variable. The binary tree is further

subdivided recursively using decision rules until a terminal node is

reached, providing a mean value for the response variable.

Random Forests, RF [48] introduces randomness in the selection

of the best split by testing a random subset of predictors at each

node, generally 1/3 the total number of variables [49]. A large

number of such regression trees are constructed using bootstrap

samples of the dataset for each tree and random subsets of

variables at each node, hence the name ‘‘Random Forests.’’ The

remaining 37% of the data after bootstrapping form the ‘‘out-of-

bag’’ (OOB) observations. These observations are run through

each regression tree to predict responses and calculate out-of-bag

error estimates [48,50]. Because OOB observations are not used to

construct trees, they essentially provide cross-validated errors and

by averaging errors over hundreds of trees, the possibility of over-

fitting is considerably reduced. Predictions from RF models are

often more accurate than other methods and are increasingly used

in ecological applications such as modeling species distributions

Table 2. Predictor variables calculated from the different
remote sensing data sets.

Metrics used (Min.,Max.,Mean.,Std.deviation)

Radar HV, HH, HV backscatter

HH/VV, HV/VV, HV/HH ratios

[HH-VV/HH+VV] index

[HH-HV/HH+HV] index

[VV-HV/VV+HV] index

Landsat NDVI (only Mean,Std.deviation)

NDVI change (only Mean,Std.deviation)

LVIS Elevation (only Mean,Std.deviation)

RH metrics (RH25, RH50,RH75,RH100)

Total Canopy Cover

Canopy cover at 5 m intervals from 0 to 35 m

DRL Height of individual trees identified with TreeVaW

Crown diameters of individual trees

Stem density (stems/ha)

Crown area weighted height

Product of height and crown diameter

doi:10.1371/journal.pone.0028922.t002
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[51,52] and bird habitat quality [1]. We constructed 5 RF models

(Random Forests R package) for each bird species with predictor

variables from radar, Landsat, DRL, LVIS, and fusion resulting in

a total of 40 models predicting prevalence for all species. We

compared the decrease in mean residual error with increasing

number of trees (100 to 8,000) and found that 800 trees gave the

best predictions. Growing more than 800 trees did not improve

predictive power for any species. The number of variables sampled

at each node split was set to the default of one-third the total

variables in each model as changing this parameter did not

significantly improve the variance explained by the model.

Prediction accuracies were assessed using percent variance in bird

prevalence explained by each model. Variance explained, also

known as pseudo-r2 was calculated as r2~1{MSE=var(y) where

MSE is the mean square error between observed values (y) and

out-of-bag predictions [48,53]. In addition to the pseudo-r2,

variable importance was calculated from RF models as the

increase in MSE error on removing a predictor variable from out

of bag predictions. If the increase in error on removing a variable

was large, it indicated high importance and vice versa [48]. The

frequency of occurrence of a radar, lidar, or Landsat metric within

the 10 most important variables in each fusion model was

recorded to determine which variables were more useful in

predictions. We then predicted prevalence across the landscape for

the 8 bird species and compared spatial variations with known bird

habitat preferences.

Results

Radar metrics alone explained more than 30% variance in

prevalence for all species, with higher accuracies for magnolia

warbler (50%) and blackpoll warbler (48%) (Fig. 2a). Landsat

metrics outperformed radar (35% to 65%) and were better than

lidar in the case of the magnolia warbler. Lidar metrics from LVIS

and DRL predicted prevalence with more than 50% accuracy for

all species (54%–71%), except for the black-throated blue warbler.

Fusion explained between 52% and 75% variance in prevalence

and improved the predictive power of radar by 25% (Fig. 2b),

Landsat by 15%, and lidar by 4% on an average. A combined

pseudo- r2 was calculated using the prediction errors (MSE) from

all fusion models. Results showed that fusion explained more than

77% variance in the combined prevalence for all the birds (Fig. 3).

Next, we analyzed the frequency of variable selection among the

10 most important predictors for each species (Fig. 4). Stem

density and crown metrics derived from DRL were selected as

important variables in all models. The NDVI change or

deciduousness metric from Landsat was the best predictor for

the magnolia warbler and important for 7 out of 8 species. Radar

metrics were rarely selected when used in combination with other

datasets. When selected, co-polarized backscatter ratios, particu-

larly the HH/VV ratio, the (HH-VV/HH+VV) index and the

HV/VV metric were more important than other radar metrics.

These indices were also correlated with LVIS heights and crown

characteristics from DRL (Fig. 5). LVIS relative height (RH)

metrics were useful predictors in all models. RH75 in particular

was strongly related to DRL crown weighted height.

Contrary to our expectations, canopy cover metrics from LVIS

waveforms were not as useful as RH metrics in predicting

prevalence. We did, however, note variations in prevalence with

canopy cover (Fig. 6). For example, prevalence in the yellow

Figure 2. Random Forests accuracies for all models (a). Comparison of lowest accuracy [radar] and highest accuracy [fusion] models (b).
doi:10.1371/journal.pone.0028922.g002

Figure 3. Predicted prevalence for all species from fusion.
Combined pseudo-r2 calculated from out of bag errors = 77%.
doi:10.1371/journal.pone.0028922.g003
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rumped warblers was positively correlated with canopy cover

between 5–10 m and 10–15 m and negatively correlated below

5 m and above 15 m. Similar variations were observed for

blackpoll warbler, magnolia warbler, dark- eyed junco and the

yellow-bellied flycatcher. The ovenbird, on the other hand,

showed negative correlation with canopy cover between 5–10 m

and 10–15 m and positive correlation below 5 m and above 15 m.

The red-eyed vireo and black-throated blue warbler (BTBW)

showed similar variations with canopy cover, although relation-

ships were much weaker in the case of the BTBW. The correlation

between prevalence and canopy cover was significant (p = 0.05) at

all height intervals.

Maps of prevalence (Fig. 7) at the landscape level showed that

predictions from both radar alone as well as from fusion were

consistent with known habitat characteristics [29,54] and showed

three general spatial patterns. The blackpoll warbler, magnolia

warbler, dark- eyed junco, and yellow-bellied flycatcher showed

highest prevalence around the perimeter of the Hubbard Brook

valley, corresponding to higher elevation coniferous forests with

high stem density and low canopy heights. The black-throated

blue warbler, red-eyed vireo, and ovenbird occurred more in the

central portions of the valley, characterized by deciduous forests

with tall trees, dense overstory canopy cover, and lower stem

density. A third intermediate and patchy pattern was noted in the

case of the yellow rumped warbler (Fig. 7). Other species not

considered here also show this broader pattern [29]. While spatial

patterns of low and high prevalence were similar from radar and

fusion (Fig. 7), there were considerable variations within each

prevalence class.

Lastly, we examined the uncertainty in RF models using

quantile regression. Although RF models can have high prediction

accuracies, they retain only the mean response for each

observation and these responses per se may not be sufficient for

ecological interpretation. Quantile regression is useful for

analyzing model uncertainties, detecting outliers, and exploring

causal relationships that may not be detected in mean responses

alone [55]. Quantile regression forests (QRF) is a generalization of

RF, where all observations are saved to provide a non-parametric

distribution of predicted values [56], and quantiles from this

distribution can be used to construct prediction intervals to assess

model spatial uncertainties. We predicted the 10th, 50th, and 90th

quantiles for the black throated blue warbler and magnolia

warbler using QRF (Quantile Regression Forests R Package) and

mapped the distributions over the HBEF (Fig. 8). Results showed a

wide range of predictions for BTBW prevalence. The 10th quantile

showed more predictions of low and medium prevalence but very

few areas with high prevalence. On the other hand, the 90th

quantile showed high prevalence over the entire study area with

only a few patches of medium prevalence along the perimeter. The

50th quantile map closely matched the mean predictions from RF

regression (Fig. 7 and Fig. 8). In the case of the magnolia warbler,

the 10th quantile showed little or no prevalence while the 90th

quantile showed high prevalence along the perimeter of the study

area.

Discussion

Our primary objective was to compare the efficacies of different

remote sensing data sets in mapping bird prevalence across a

forested landscape. Multi-sensor fusion explained variations in

prevalence with higher accuracies than from any one sensor alone

because each data set provided some complementary attributes

not available in the others. The pseudo-r2 (77%) for all species

together as an ensemble was higher than that for any one

individual species (52%–74%). This can occur because the

ensemble predictions cover the entire range of prevalence values,

increasing the overall variance explained. The predictive capabil-

ity of each sensor varied based on its sensitivity to vegetation

spatial and vertical structure as well as composition (which may be

indicative of habitat characteristics affecting prevalence).

Figure 4. Frequency of variable selection within the 10 most
important predictors for each bird species. Model used:
[Radar+Landsat+DRL+LVIS].
doi:10.1371/journal.pone.0028922.g004

Figure 5. Correlation between radar backscatter ratios and other remote sensing variables. Significant at p = 0.05.
doi:10.1371/journal.pone.0028922.g005
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RF models developed from radar data alone showed the lowest

prediction accuracies for all birds because radar backscatter ratios

were only moderately correlated with structural and compositional

metrics (inferred from the other sensors) (Fig. 5). Backscatter is

affected by several factors including steep terrain, variable soil

moisture, and high canopy density all of which were present at

HBEF and may have reduced the predictive capability of radar.

Aboveground biomass is an important indicator of age, succes-

sional status, and productivity of an ecosystem [9]. Average

aboveground biomass values in the HBEF are around 203.5 Mg/

ha and as low as 50 Mg/ha at higher elevations [57]. Radar

backscatter is sensitive to canopy structure for low biomass forests

but saturates in high biomass areas. This could possibly explain the

higher power of radar variables in explaining bird prevalence in

low biomass forests (e.g. blackpoll warbler, magnolia warbler and

yellow- bellied flycatcher) as compared to those in mature, high

biomass forests (e.g. black-throated blue warbler, ovenbird, and

red-eyed vireo).

Multispectral Landsat data outperformed radar data and were

comparable to accuracies from lidar for 4 out of the 8 species

studied. This was most likely because of the seasonal NDVI

change metric that accounted for the steep conifer-deciduous

gradient in the study area. This implies that deciduousness was as

important as structure for the bird species considered. However,

deciduousness is reflective of differences between coniferous and

deciduous forests that include plant species composition, abun-

dance of associated arthropod fauna (important as food for birds),

canopy structure, and other edaphic and climatic factors. We

cannot determine through our analyses here which of these were

important differentiators of habitat preference.

We know that lidar metrics predicted prevalence with higher

accuracies than radar and Landsat for most species, which implies

that canopy height, canopy cover, and crown characteristics are

key habitat metrics for these species. There was little difference

between results from LVIS and DRL suggesting that large

footprint waveform data could be just as effective as high-

resolution discrete return lidar in explaining variations in habitats.

This is somewhat counter-intuitive; we expected that highly

detailed canopy structure information at the scale of individual

trees and gaps would have better predictive power than the LVIS

data. In one sense, this expectation was met: fewer DRL metrics

explained the same variations in prevalence as a large number of

metrics from waveform lidar suggesting an advantage of high-

resolution DRL data in habitat mapping. Note, however, that

waveforms from an instrument such as LVIS are generated from

photon interactions that occur at the finest scales and are

Figure 6. Variations in prevalence with canopy cover at different height intervals for the yellow rumped warbler [MYWA] and
ovenbird [OVEN]. Regression lines significant at p = 0.05. Note variable scaling of x-axis.
doi:10.1371/journal.pone.0028922.g006

Figure 7. Spatial predictions of bird prevalence from models with lowest [radar] and highest accuracies [fusion]. Refer to table 1 for
species codes.
doi:10.1371/journal.pone.0028922.g007
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aggregated at any height across a footprint. Thus, waveform

metrics are correlated with stand level canopy measures, such as

tree density, that are derived from canopy structures much finer

than the footprint resolution. For example, RH75 can be

correlated to basal-area weighted height (Lorey’s height) at the

plot level. So even though LVIS does not measure the number of

trees directly, which DRL can do, the waveform implicitly

captures this information. This has important implications for

habitat mapping from space-borne sensors with footprint sizes far

exceeding DRL. In any case, the question of the appropriate scale

(grain) of canopy measurement for habitat analyses is still an open

one that will require more study.

Our analyses using RF allowed us to assess the importance of

the individual remote sensing variables and thus habitat

characteristics in predicting prevalence. Out of 104 variables,

stem density and crown metrics from DRL data, seasonal NDVI

change from Landsat and LVIS quantile energy (RH) metrics were

selected more often than other variables. A previous study [3]

found that deciduousness from Landsat, canopy height metrics

from LVIS and elevation were important predictors of prevalence

for one species (the black-throated blue warbler) [1]. Our work is

consistent with this result and shows that these metrics were useful

for the other bird species as well. Identifying the most important

structural and compositional variables influencing habitat use as

demonstrated here provides a quantitative basis for identifying and

protecting existing high use sites as well as for managing habitats

for multiple species, especially under competing policy scenarios.

These important variables may further be used in a hierarchical

multi-species model to predict occurrence for species assemblages,

as shown by [58].

The availability of multi-dimensional habitat characteristics

from remote sensing at landscape scales can provide new

perspectives on habitat data. A novel finding in our study was

the variation in bird prevalence with canopy cover at 5 m height

intervals. Ovenbird and yellow-rumped warbler prevalence

showed exactly opposite relationships with canopy cover at each

interval suggesting preferences for dissimilar habitats. Variations in

red-eyed vireo and black-throated blue warbler prevalence were

similar to the ovenbird while those of the blackpoll warbler,

magnolia warbler, dark-eyed junco, and yellow-bellied flycatcher

were similar to the yellow- rumped warbler. While these species

are known to co-exist at the HBEF, our study supports a long-

standing hypothesized mechanism for coexistence, i.e. habitat

preferences based on vertical variations in cover [4].

Within the same species, birds showed opposite preferences for

cover between 5–15 m and 15–25 m indicating stratification

Figure 8. Quantile predictions for black-throated blue warbler [BTBW] and magnolia warbler [MAWA].
doi:10.1371/journal.pone.0028922.g008
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based on foliage density. Previous field-based studies [6] have

divided the canopy in the HBEF into three strata: canopy (15–

27 m), sub-canopy (2–14 m), and shrub (,2 m), based on vertical

foliage distributions. Foliage in the canopy stratum is relatively

dense while the sub-canopy stratum is open and sparse. The

positive correlation of ovenbird prevalence with cover in the 15–

25 m stratum suggests preference for dense overstory while

negative correlation between 5–15 m indicates preference for

open sub-canopy. The yellow-rumped warbler, on the other hand,

was more prevalent in dense sub-canopy and open overstory.

Changes in the relative densities of foliage in these layers during

forest succession have been proposed to be a major factor affecting

the abundance of bird species in the HBEF [24]. Our results

demonstrate these relationships can be quantified with lidar data

at fine vertical and spatial scales. Such information could be

exceptionally useful in understanding how forest succession and

resulting changes in foliage densities affect bird populations.

The patchiness and spatial variations in prevalence were similar

to patterns of bird abundance from a previous field-based study

[29] showing spatial heterogeneity. The distinct division of birds

into groups was noted both vertically, based on canopy cover

preferences and spatially based on deciduousness, stem density and

other habitat preferences. These results demonstrate the usefulness

of remote sensing in quantifying habitat heterogeneity as well as

mapping bird guilds.

According to [29], bird abundance patterns were spatially auto-

correlated for several species in the HBEF. We did not explicitly

model spatial autocorrelation in this study because the focus of our

study was an inter-sensor comparison. Analyses of correlograms

from RF model residuals showed markedly reduced autocorrela-

tion (from about 0.7 to 0.2 at the shortest lags) similar to [59].

However, Moran’s I co-efficients though small (and generally

monotonically decreasing) were statistically significant (p = 0.05) at

more than one lag distance suggesting that RF models may not

entirely account for spatial autocorrelation.

Characterizing the confidence of spatial predictions from

machine learning methods such as RF is a critical task, though

ignored in many studies. The quantile maps shown (Fig. 8) provide

a prediction interval that quantifies this model-based uncertainty

across the landscape. The 10th quantile gives a low (conservative)

estimate of prevalence (i.e. we see a lower prevalence value only

10% of the time). Thus, areas that score highly on the 10% map

are probably very good sites with regard to prevalence.

Conversely, the 90th quantile gives an optimistic view of

prevalence; if an area scores low on this map it is likely that this

is a poor site with respect to prevalence. For example, there is a

wide range of predictions for the black-throated blue warbler over

much of the HBEF indicating somewhat weak mean predictions

[55,56] (specific locations could be classified anywhere between

low and high prevalence). The magnolia warbler prediction

intervals, in contrast, are narrower suggesting stronger mean

predictions. The information available from quantile maps also

has implications for management. If limited management

resources are available for habitat preservation and protection,

the case could be made that these should be directed towards areas

of high prevalence where model predictions are most confident.

Maps produced solely from radar broadly identified general

patterns of prevalence but with lower accuracy as compared to

maps produced from fusion, which had higher accuracies and

captured subtle variations that were not detected by radar alone.

For example, radar maps showed little difference between

blackpoll warbler, dark eyed junco, magnolia warbler, and

yellow-bellied flycatcher prevalence (Fig. 7), whereas those from

fusion identified finer scale variations based on deciduousness, and

other forest structural characteristics. Predictions from radar

metrics were also similar for black-throated blue warbler, red-

eyed vireo, and ovenbird, but maps from fusion showed that

habitats with high black-throated blue warbler prevalence were

clearly different from those for red-eyed vireo and ovenbird. These

results suggest that radar data alone can be used to identify broad

scale habitat characteristics but finer differentiation likely requires

other types of remote sensing data, such as lidar.

Our results demonstrate the potential of multi-sensor fusion in

comprehensive habitat monitoring for wildlife species. Most

habitat studies are limited to fine scale field-based studies at stand

level and coarse predictions at landscape level. Lidar substantially

reduces the typical trade-off between spatial resolution and extent

of vegetation data in species distribution studies by providing high-

resolution habitat characteristics at both scales. While wall-to-wall

coverage of lidar data is preferred for ecological applications, in

practice, both waveform and discrete return lidar are sparsely

available. Radar data with larger cloud free coverage and

sensitivity to vegetation structure is an attractive alternative but

our results show that radar by itself may not be sufficiently

effective. Multispectral data and spatially sparse lidar samples

might be used to calibrate radar data to extensively map structural

characteristics [9]. The density of lidar samples required for

driving radar-based models still needs to be explored. In the

absence of lidar data, simple backscatter ratios from radar may be

also useful for rapid habitat assessment with lower accuracies.

Lastly, this study highlights the enormous potential of multi-

sensor fusion in advancing field- based ecological and habitat

studies. The multi-dimensional habitat characteristics generated

from lidar and fusion powerfully augment field-based studies and

can help ecologists explore questions on species-habitat relation-

ships in new and previously unexplored ways.
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