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Abstract

The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project

is to autonomously navigate a small robot using stereo vision as the main sensor.

At the end of three years, the system we developed outperformed all 9 other teams

in final blind tests over previously-unseen terrain. In this paper we describe the

system, as well as the two learning techniques that led to this success: online path
learning and map reuse.

1 Introduction

The DARPA LAGR project began in Spring 2005 with the ambitious goal of achieving vision-only

autonomous traversal of rough terrain. Further, the participating teams were to be tested “blind” –

sending in code to be run on a robot at a remote, unseen sight. The hope was that by using learning

algorithms developed by the teams, significant progress could be made in robust navigation in dif-

ficult off-road environments, where tall grass, shadows, deadfall, and other obstacles predominate.

The ultimate goal was to achieve better than 2x performance over a Baseline system already de-

veloped at the National Engineering Research Consortium (NERC) in Pittsburgh. All participant

teams used the same robotic hardware provided by NERC (Figure 1(a)); testing was performed by

an independent team on a monthly basis, at sites in Florida, New Hampshire, Maryland, and Texas.

Although work in outdoor navigation has preferentially used laser rangefinders (Montemerlo and

Thrun, 2004; Bellutta et al., 2000; Guivant et al., 2000), LAGR uses stereo vision as the main



sensor. One characteristic of the vision hardware is that depth perception is good only at fairly

short range – its precision deteriorates rapidly after 7m or so. Even where good stereo information

is available, it is often impossible to judge traversability on the basis of 3D form. For example, tall

grass that is compressible can be traversed, but small bushes cannot, and they might have similar

3D signatures. The robots would often slip on sand or leaves, and be unable to climb even small

grades if they were slippery. These conditions could not be determined even at close range with

stereo vision.

Another area that the testing team was keen on developing was the ability of the robots to make de-

cisions at a distance. Many of the tests had extensive cul-de-sacs, dead ends, or paths that initially

led towards the goal but then turned away. Here, the robot could not rely on local information to

find a good way out. The expectation was that the teams would cope with such situations using

long-range vision sensing, that is, be able to tell from the appearance of the terrain whether it was

traversable or not.

Throughout the project life, we evaluated the potential of learning methods and appearance-based

recognition. The emphasis was always on general methods that would work well in all situations,

not just artificial ones designed to test a particular ability, like bright orange fencing that could

easily be recognized by its distinctive color. In the end, we converged on the following basic

capabilities, which constitute our novel contributions to the problem of autonomous navigation

with vision.

Online Color and Texture Segmentation

It became clear from the early stages of the project that color-only methods for recognizing

vegetation or terrain were not sufficient. We concentrated on developing fast combined

color/texture methods that could be used online to learn segmentations of the image. These

methods advance state-of-the-art in appearance-based segmentation, and are the key to our

online path-finding method. This method reliably finds paths such as the one in Figure

1(b), even when the particular appearance of the path is new.

Precisely Registered Maps

If the robot’s reconstruction of the global environment is faulty, it cannot make good plans

to get to its goal. After noticing navigation failures from the very noisy registration pro-

vided by GPS, we decided to give high priority to precise registration of local map infor-

mation into a global map. Here, we developed realtime visual odometry (VO) methods

that are more precise than existing ones, while still being computable at frame rates. To our

(a) LAGR Robot (b) LAGR Robot

Figure 1: (a) LAGR robot with two stereo sensors. (b) Typical outdoor scene as a montage from

the left cameras of the two stereo devices.



knowledge, this is the first use of VO as the main registration method in an autonomous nav-

igation system. VO enabled us to learn precise maps during a run, and so escape efficiently

from cul-de-sacs. In the last stage of the project, we also discovered that the precision of

VO made it possible to reuse maps from a previous run, thereby avoiding problem areas

completely. This run-to-run learning was unique among the teams, and on average halved

the time it took to complete a course.

Efficient Planner and Controller

The LAGR robot was provided with a “baseline” system that used implementations of

D* (Stentz, 1994) for global planning and Dynamic Window Approach (DWA) (Fox et al.,

1997) for local control. These proved inadequate for realtime control – for example, the

planner could take several seconds to compute a path. We developed an efficient global

planner based on previous gradient techniques (Konolige, 2000), as well as a novel local

controller that takes into account robot dynamics, and searches a large space of robot mo-

tions. These technqiues enabled the robot to compute optimal global paths at frame rates,

and to average 85% of its top speed over most courses.

In the end, the teams were tested in a series of courses (Tests 25–27). Over these tests, we averaged

about 4x the score of Baseline, the best of any team. In every test, our score beat or tied the best

other team; and in the aggregate, we score almost twice as high as the best other team.

1.1 System overview

This work was conducted as part of the DARPA Learning Applied to Ground Robotics (LAGR)

project. We were provided with two robots (see Figure 1, each with two stereo devices encom-

passing a 110 degree field of view, with a baseline of 12 cm. The robots are near-sighted: depth

information degrades rapidly after 6m. There is also an inertial unit (IMU) with angular drift of

several degrees per minute, and a WAAS-enabled GPS. There are 4 Pentium-M 2 GHz computers,

one for each stereo device, one for planning and map-making, and one for control of the robot and

integration of GPS and IMU readings. In our setup, each stereo computer performs local map mak-

ing and visual odometry, and sends registered local maps to the planner, where they are integrated

into a global map. The planner is responsible for global planning and reactive control, sending

commands to the controller.

In the following sections, we first discuss local map creation from visual input, with a separate sec-

tion on learning color models for paths and traversable regions. Then we examine visual odometry

and registration in detail, and show how consistent global maps are created. The next section dis-

cusses the global planner and local controller. Finally, we present performance results for several

tests in Spring 2006.

2 Related work

There has been an explosion of work in mapping and localization (SLAM), most of it concentrating

on indoor environments (Gutmann and Konolige, 1999; Leonard and Newman, 2003). Much of

the recent research on outdoor navigation has been driven by DARPA projects on mobile vehicles



(Bellutta et al., 2000). The sensor of choice is a laser rangefinder, augmented with monocular or

stereo vision. In much of this work, high-accuracy GPS is used to register sensor scans; exceptions

are (Guivant et al., 2000; Montemerlo and Thrun, 2004). In contrast, we forego laser rangefinders,

and explicitly use image-based registration to build accurate maps. Other approaches to mapping

with vision are (Rankin et al., 2005; Spero and Jarvis, 2002), although they are not oriented to-

wards realtime implementations. Obstacle detection using stereo has also received some attention

(Rankin et al., 2005).

Visual odometry systems use structure-from-motion methods to estimate the relative position of

two or more camera frames, based on matching features between those frames. There have been

a number of recent approaches to visual odometry (Nister et al., 2004; Olson et al., 2000). Our

visual odometry system (Konolige et al., 2007; Agrawal and Konolige, 2006; Agrawal and Kono-

lige, 2007) is most similar to the recent work of Mouragnon et al. (Mouragnon et al., 2006) and

Sunderhauf et al. (Sunderhauf et al., 2005). The main difference is the precision we obtain by the

introduction of a new, more stable feature, and the integration of an IMU to maintain global pose

consistency. Our system is also distinguished by realtime implementation and high accuracy using

a small baseline in realistic terrain. It is the only system known to the authors that has been in

regular use in demonstrations for over two years.

Our segmentation algorithm uses a compact descriptor to represent color and texture. In a seminal

paper, Leung and Malik (Leung and Malik, 2001) showed that many textures could be represented

and re-created using a small number of basis vectors extracted from the local descriptors; they

called the basis vectors textons. While Leung and Malik used a filter bank, later Varma and Zisser-

man (Varma and Zisserman, 2003) showed that small local texture neighborhoods may be better

than using large filter banks. In addition, a small local neighborhood vector can be much faster to

compute than multichannel filtering such as Gabor filters over large neighborhoods.

Our planning approach is an enhanced reimplementation of the gradient technique (Konolige,

2000), which computes a global navigation function over the cost map. A similar approach is

used in wavefront planning (Latombe, 1991), although wavefront planners usually minimize Man-

hattan or diagonal distance, whereas we minimize Euclidean distance. Level sets (Kimmel and

Sethian, 1998) offer an equivalent method for computing paths that minimize Euclidean distance.

The underlying computation for all such planners is a variation on dynamic programming (Bell-

man, 1957). For reasons of efficiency, our planner treats the robot as a holonomic cylinder with

no kinodynamic constraints. These constraints could be incorporated into the planner by use of

sampling-based algorithms such as rapidly-exploring random trees (RRTs) (LaValle, 2006).

We enforce kinodynamic constraints in our local controller. Control algorithms such as DWA (Fox

et al., 1997) compute local controls by first determining a target trajectory in position or velocity

space (usually a circular arc or other simple curve), then inverting the robot’s dynamics to find

the desired velocity commands that will produce that trajectory. We instead explore the control

space directly, and simulate and evaluate the resulting trajectories, in a manner reminiscent of the

controller used in the RANGER system (Kelly, 1994), with the key differences being the definition

of the state space and the trajectory evaluation function. The Stanley controller (Thrun et al., 2006)

also rolls out and evaluates possible trajectories, but divides them into two categories (“nudges”

and “swerves”), based on their expected lateral acceleration. Howard et al. (Howard et al., 2007)

present a more general approach to constraining the search for controls by first sampling directly
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Figure 2: Visual processing. In (a), the paths from visual input depict the processing flow in

constucting the local map. The interpretation of stereo data points is in (b): nearby points (out to

6m) contribute to the ground plane and obstacle detection; further points can be analyzed to yield

probably freespace (“sight lines”) and extended ground planes.

in the vehicle’s state space.

3 Local map construction

The object of the local map algorithms is to determine, from the visual information, which areas

are freespace and which are obstacles for the robot: the local map. Note that this is not simply a

matter of geometric analysis – for example, a log and a row of grass may have similar geometric

shapes, but the robot can traverse the grass but not the log.

Figure 2(a) is an outline of visual processing, from image to local map. There are four basic

trajectories. From the stereo disparity, we compute a nominal ground plane, which yields free

space near the robot. We also analyze height differences from the ground to find obstacles. Via the

technique of sight lines we can infer freespace to more distant points. Finally, from color and path

analysis, coupled with the ground plane, we determine paths and traversability of the terrain.

3.1 Stereo analysis and ground plane extraction

We use a fast stereo algorithm (Konolige, 1997) to compute a disparity image at 512x384 resolution

(Figure 3, left). In typical outdoor scenes, it is possible to achieve very dense stereo results, The

high resolution gives very detailed 3D information for finding the ground plane and obstacles.

Each disparity image point [u, v, d] corresponds to a 3D point in the robot’s frame.

Output from the stereo process is used in a number of ways – the diagram in Figure 2(b) summa-

rizes them. Most of our analysis is biased towards finding freespace, especially in areas that are

further from the robot. This strategy stems from the high cost of seeing false obstacles, closing off

promising paths for the robot.

The most important geometric analysis is finding the ground plane. Although it is possible to



Figure 3: Left: disparity image from the left view of the robot in Figure 1. Closer pixels are lighter.

Middle: extracted ground plane, in green overlay. Limit of ground plane is shown by green bar;

sight line has a red bar. Right: Ground plane overlayed on original image, in green. Obstacles are

indicated in purple.

detect obstacles using local variation in height [ref], using a ground plane simplifies processing

and yields more stable results. To extract a ground plane, we use a RANSAC technique (Fischler

and Bolles, 1981), choosing sets of 3 noncollinear points. Hypothesized planes are ranked by the

number of points that are close to the plane. Figure 3 shows an example, with a green overlay

indicating the inliers. Points that lie too high above the ground plane, but lower than the robot’s

height, are labeled as obstacles. This method is extremely simple, but has proven to work well

in practice, even when the ground has modest dips and rises; one reason is that it only looks out

to 6m around the robot. A more sophisticated analysis would break the ground plane into several

segments or model more complex shapes.

3.2 Sight lines

Although we cannot precisely locate obstacles past 6-8m, we can determine if there is freespace,

using the following observation. Consider the interpreted image of Figure 3, middle. There is a

path the goes around the bushes and extends out a good distance. The ground plane extends over

most of this area, and then ends in a distant line of trees. The trees are too far to place with any

precision, but we can say that there is no obstacle along the line of sight to the trees. Given a

conservative estimate for the distance of the trees, we can add freespace up to this estimate. The

computation of sight lines is most efficiently accomplished in disparity space, by finding columns

of ground plane pixels that lead up to a distant obstacle (red line in Figure 3 middle). Note that the

example sight line follows the obvious path out of the bushes.

3.3 Learning color and texture models

Our learning algorithm for color and texture models consists of two stages. In the first stage, we

cluster color and texture vectors over small local neighborhoods to find a small set of basis vectors

(textons (Leung and Malik, 2001)) that characterize different scene textures. In the second stage,

we cluster histograms of these textons over larger areas to find more coherent regions with the same

mixture of textons using k-means as our clustering algorithm. We use the CIE*LAB colorspace to

represent colors because it is more perceptually uniform. Texture information is incorporated by

taking the difference between a center pixel intensity and surrounding pixel intensities in a local

3x3 neighborhood. For the second stage, histograms can be constructed efficiently (irrespective of

window size) using integral images (Viola and Jones, 2001).



(a) (b)

(c) (d)

Figure 4: Various steps of our segmentation algorithm on a typical outdoor image. (a) The image

from one of the stereo cameras. (b) Each pixel assigned to a texton. (c) Each histogram of textons

gets assigned to a histogram profile. In this particular example, the path is composed of two

segments. (d) A path is recognized (in yellow)

We use our segmentation algorithm to learn and subsequently recognize both natural and man-

made paths in outdoor images. Paths are characterized by their color, texture and geometrical

properties. Training samples for a path can come from tele-operation or from a priori knowledge

that the robot is starting on a path. The robot can also search for paths by trying to identify

image clusters that have the geometry of a path. We deal with over-segmentation in the image

(wherein a path is split into multiple segments due to possibly differing textures) by grouping

multiple segments based on their overall geometry. We compute geometrical properties of the path

composed of grouped segments such as width, length and spatial continuity in order to verify if it

geometrically resembles a path. Once a path is identified, the robot learns the texton histograms of

the component segments as a model for the path.

For classification, the different clusters of the segmented image are compared to the learnt model

of the path using Euclidean distance on the cluster histograms. Clusters that are within a certain

threshold are identified as potential paths. A final geometrical analysis makes sure that these

potential path regions have the right geometry.

The learning process runs at 1Hz for training on a single image and is typically performed at the

beginning (although it could be performed at regular intervals to update the path model). Classi-

fication based on the learnt model runs at around 5Hz. Figure 4 shows the various steps of our

algorithm on one of our test runs. The path between bushes is identified in yellow in Figure 4(d).

For more details, please consult (Blas et al., 2008).



Figure 5: Reconstruction on a 130m autonomous run. Yellow is recognized path, black is

freespace, and purple, gray and white are obstacles.

3.4 Results of local map construction

The combined visual processing results in local maps that represent traversability with a high

degree of fidelity. Figure 5 shows the results of an autonomous run of about 130m, over a span

of 150 seconds. We used offline learning of mulch paths on a test site, then used the learned

models on the autonomous run. The first part of the run was along a mulch path under heavy

tree cover, with mixed sunlight and deep shadows. Cells categorized as path are shown in yellow;

black is freespace. Obstacles are indicated by purple (for absolute certainty), and white-to-gray for

decreasing certainty. We did not use sight lines for this run.

The path did not lead directly to the goal, and there were many opportunities for the robot to head

cross-country. About two-thirds of the way through the run, no more paths were available, and the

robot went through heavy grass and brush to the goal. The robot’s pose, as estimated from filtered

visual odometry (see Section 4.2), is in green; the filtered GPS path is in yellow. Because of the

tree cover, GPS suffered from high variance at times.

A benefit of using visual odometry is that wheel slips and stalls are easily detected, with no false

positives (Section 6.4). For example, at the end of the run, the robot was caught on a tree branch,

spinning its wheels. The filtered GPS, using wheel odometry, moved far off the global pose, while

the filtered visual odometry pose stayed put.

4 Constructing consistent global maps

In this section we provide solutions to two problems: representing and fusing the information

provided by visual analysis, and registering local maps into a consistent global map.



4.1 Map representation

For indoor work, a standard map representation is a 2D occupancy grid (Moravec and Elfes, 1985),

which gives the probability of each cell in the map being occupied by an obstacle. Alternatives

for outdoor environments include 2.5D elevation maps and full 3D voxel maps (Iagnemma et al.,

1999). These representations can be used to determine allowable kinematic and dynamic paths for

an outdoor robot in rough terrain. We choose to keep the simpler 2D occupancy grid, foregoing any

complex calculation of the robot’s interaction with the terrain. Instead, we abstract the geometrical

characteristics of terrain into a set of categories, and fuse information from these categories to

create a cost of movement.

We use a grid of 20cm x 20cm cells to represent the global map. Each cell has a probability of the

belonging to the four categories derived from visual analysis (Secion 3): obstacle, ground plane

freespace, sight line freespace, and path freespace. Note that these categories are not mutually

exclusive, since, for example, a cell under an overhanging branch could have both path and obstacle

properties. We are interested in converting these probabilities into a cost of traversing the cell. If

the probabilities were mutually exclusive, we would simply form the cost function as a weighted

sum. With non-exclusive categories, we chose a simple prioritization schedule to determine the

cost. Obstacles have the highest priority, followed by ground plane, sight lines, and paths. Each

category has its own threshold for significance: for example, if the probability of an obstacle is low

enough, it will be ignored in favor of one of the other categories. The combination of priorities

and thresholds yields a very flexible method for determining costs. Figure 5 shows a color-coded

version of computed costs.

4.2 Registration and visual odometry

The LAGR robot is equipped with a GPS that is accurate to within 3 to 10 meters in good sit-

uations. GPS information is filtered by the IMU and wheel encoders to produce a more stable

position estimate. However, because GPS drifts and jumps over time, it is impossible to differen-

tiate GPS errors from other errors such as wheel slippage, and the result is that local maps cannot

be reconstructed accurately. Consider the situation of Figure 6. Here the robot goes through two

loops of 10m diameter. There is a long linear feature (a low wall) that is seen as an obstacle at the

beginning and end of the loops. Using the filtered GPS pose, the position of the wall shifts almost

2m during the run, and obstacles cover the robot’s previous tracks.

Our solution to the registration problem is to use visual odometry (VO) to ensure local consistency

in map registration. Over larger regions, filtering VO with GPS information provides the necessary

corrections to keep errors from growing without bounds. We describe these techniques in the next

two sections.

The LAGR robot presents a challenging situation for visual odometry: wide FOV and short base-

line make distance errors large, and a small offset from the ground plane makes it difficult to track

points over longer distances. We have developed a robust visual odometry solution that functions

well under these conditions. We briefly describe it here; for more details consult (Agrawal and

Konolige, 2006; Konolige et al., 2007).



Figure 6: Three stages during a run using GPS filtered pose. Obstacle points are shown in white,

freespace in black, and the yellow line is the robot’s path. The linear feature is marked by hand in

red in all three maps, in its initial pose.

For each new frame, we perform the following process.

1. Distinctive features are extracted from each new frame in the left image. Standard stereo

methods are used to find the corresponding point in the right image.

2. Left-image features are matched to the features extracted in the previous frame using our

descriptor. We use a large area, usually around 1/5 of the image, to search for matching

features.

3. From these uncertain matches, we recover a consensus pose estimate using a RANSAC

method (Fischler and Bolles, 1981). Several thousand relative pose hypotheses are gen-

erated by randomly selecting three matched non-collinear features, and then scored using

pixel reprojection errors.

4. If the motion estimate is small and the percentage of inliers is large enough, we discard the

frame, since composing such small motions increases error. A kept frame is called a key
frame. The larger the distance between key frames, the better the estimate will be.

5. The pose estimate is refined further in a sparse bundle adjustment (SBA) framework (En-

gels et al., 2006; Triggs et al., 2000). SBA is a nonlinear batch optimization over camera

poses and tracked features. An incremental form of SBA can reduce the error in VO by a

large factor at very litle computational overhead. A feature that is long lived, that is, can be

tracked over more frames, will give better results.

Precise VO depends on features that can be tracked over longer sequences. Hence, the choice of

a feature detector can have a large impact in the performance of such a VO system. Harris corner

features are widely used for VO. We have found that although Harris corners give good results and

are very efficient to compute, they fail in a lot of situations in outdoor environments. In addition,

these features are not very stable resulting in very short track lengths. Other widely used feature

detectors such as SIFT (Lowe, 2004) and SURF (Bay et al., 2006) work well but are not suitable

for a real time system. We have developed a novel feature (named CenSurE) (Agrawal et al.,

2008) that has improved stability and is inexpensive to compute. While the basic idea of CenSurE

features is similar to that of SIFT, the implementation is extremely efficient, comparable to Harris.

Details of our CenSurE feature detector are described in (Agrawal et al., 2008). Figure 7 shows

the CenSurE features tracked over several frames.

The IMU and the wheel encoders are used to fill in the relative poses when visual odometry fails.



Figure 7: CenSurE features tracked over several frames.

This happens due to sudden lighting changes, fast turns of the robot or lack of good features in the

scene(e.g. blank wall).

4.3 Global consistency

Bundle adjusted incremental motions between consecutive frames are chained together to obtain

the absolute pose at each frame. Obviously, this is bound to result in accumulation of errors and

drifting. We use GPS and the IMU to correct the pose of the vehicle. We perform two types of

filtering.

1. Gravity Normal – the IMU records tilt and roll based on gravity normal, calculated from the

three accelerometers. This measurement is corrupted by robot motion, and is moderately

noisy.

2. GPS Yaw – the IMU yaw data is very bad, and cannot be used for filtering (for example,

over the 150 m run, it can be off by 60 degrees). Instead, we used the yaw estimate available

from the LAGR GPS. These yaw estimates are comparable to a good-quality IMU. Over a

very long run, the GPS yaw does not have an unbounded error, as would an IMU, since it is

globally corrected; but for LAGR test courses it has enough noise that this is not a concern.

To maintain globally consistent maps, we have turned off any position filtering based on GPS. We

completely ignore position estimates from the GPS in calculating our pose. In addition, to limit the

effect of velocity noise from GPS on the heading estimate, GPS yaw is used only when the GPS

receiver has at least a 3D position fix and the vehicle is travelling 0.5 m/s or faster. Our filter is

a simple linear filter that nudges the tilt/roll (for gravity normal) and yaw (for GPS yaw) towards

global consistency, while maintaining local consistency.

The quality of the registration from filtered VO, shown in Figure 8, can be compared to the filtered

GPS of Figure 6. The low wall, which moved almost 2m over the short loops when using GPS,

is much more consistent when VO is employed. And in cases where GPS is blocked or degraded,

such as under heavy tree cover in Figure 5, VO still produces maps that are locally consistent. It

also allows us to determine wheel slips and stalls with almost no false positives – note the end

of the run in Figure 5, where the robot was hung up and the wheels were slipping, and wheel



Figure 8: VO in the same sequence as Figure 6. GPS filtered path in yellow, VO filtered path is in

green.

odometry produced a large error.

4.4 Results of visual odometry

In Test 17, the testing team surveyed a course using an accurate RTK GPS receiver. The ‘Canopy

Course’ was under tree cover, but the RTK GPS and the LAGR robot GPS functioned well. Sixteen

waypoints were surveyed, all of which were within 10 cm error according to the RTK readout (one

waypoint was deemed inaccurate and not included). The total length of the course was about 150

meters. Subsequently, the LAGR robot was joysticked over the course, stopping at the surveyed

points. The robot was run forward over the course, and then turned around and sent backwards to

the original starting position.

The course itself was flat, with many small bushes, cacti, downed tree branches, and other small

obstacles. Notable for VO was the sun angle, which was low and somewhat direct into the cameras

on several portions of the course. Figure 9 shows two images acquired by the robot. The left image

showa a good scene in the shadow of the trees, and the right image shows a poor image where the

sun washes out a large percentage of the scene. (The lines in the images are horizon lines taken

from VO and from ground plane analysis). The uneven image quality makes it a good test of the

ability of VO under realistic conditions.

Figure 9: Images from the Canopy dataset.

Since the initial heading of the robot is unknown, we used an alignment strategy that assumes

there is an initial alignment error, and corrects it by rotating the forward VO path rigidly to align

the endpoint as best as possible. This strategy minimizes VO errors on the forward path, and may

underestimate them. However, for the return path, the errors will be caused only by VO, and can

be taken as a more accurate estimate of the error.



For this test, our CenSurE features were not ready and we were able to match frames along the

whole route using Harris corners. Figure 10 (a) shows the RMS error between VO (with different

filters) and the RTK waypoints, on the return path. As noted above, the forward VO path of the

robot has been aligned with the RTK path. As can be seen, the best results are obtained using

bundle-adjusted VO with gravity normal and GPS yaw filtering. In this case, the errors between

waypoints is very small, amounting to < 1% of distance traveled. Without filtering, the results are

worse (Figure 10(b)), amounting to about 3% of distance traveled. At some points in the middle of

the return trip, the VO angle starts to drift, and at the end of the backward trip there is about a 10m

gap. Note that this effect is almost entirely caused by the error in the yaw angle, which is corrected

by GPS yaw. It is also worth mentioning that the use of CenSurE features substantially improves

the performance of VO although we do not have results of using CenSurE on this dataset.

(a) (b)

Figure 10: Results of VO on the Canopy dataset. (a) RMS error between VO (with different filters)

and the RTK waypoints, on the return path. (b) Trajectory of bundle adjusted VO (without any

filtering) compared to RTK groundtruth.

We present results of VO with CenSurE features on two other large outdoor datasets collected

with a larger robot. These datasets have frame-registered ground truth from RTK GPS, which is

accurate to several cm in XY and 10 cm in Z. For these datasets, the camera FOV is 35 deg, the

baseline is 50 cm, and the frame rate is 10 Hz (512x384), so there is often large image motion.

We took datasets from Little Bit (9 km trajectory, 47K frames) in Pennsylvania, and Ft Carson (4

km, 20K frames) in Colorado, to get variety in imagery. The Ft Carson dataset is more difficult for

matching, with larger motions and less textured images. In the experiments, we use only CenSurE

features, which failed the fewest times (0.17% for Little Bit, 4.0% for Ft Carson).

The VO angular errors contribute nonlinearly to trajectory error. On the two datasets, we compared

RMS and max XYZ trajectory errors. In the case of matching failure, we substituted IMU data for

the angles, and set the distance to the previous value. In Table 1, the effects of bundle adjustment

and IMU filtering are compared.

In both datasets, IMU filtering plays the largest role in bringing down error rates. This isn’t surpris-

ing, since angular drift leads to large errors over distance. Even with a noisy IMU, global gravity

normal will keep Z errors low. The extent of XY errors depends on how much the IMU yaw angle

drifts over the trajectory - in our case, a navigation-grade IMU has 1 deg/hr of drift. Noisier IMU



Table 1: Trajectory error statistics, in meters and percent of trajectory
RMS error in XYZ Max error in XYZ

Little Bit VO No SBA 97.41 (1.0%) 295.77 (3.2%)

VO SBA 45.74 (0.49%) 137.76 (1.5%)

VO No SBA + IMU 7.83 (0.08%) 13.89 (0.15%)

VO SBA + IMU 4.09 (0.04%) 7.06 (0.08%)

Ft Carson VO No SBA 263.70 (6.9%) 526.34 (13.8%)

VO SBA 101.43 (2.7%) 176.99 (4.6%)

VO No SBA + IMU 19.38 (0.50%) 28.72 (0.75%)

VO SBA + IMU 13.90 (0.36%) 20.48 (0.54%)

yaw data would lead to higher XY errors.

The secondary effect is from SBA. With or without IMU filtering, SBA can lower error rates by

half or more, especially in the Ft. Carson dataset, where the matching is less certain.

4.5 Map Reuse

VO and IMU/GPS filtering enable us to construct consistent maps on a single run. These maps

are useful for getting out of traps and cul-de-sacs in the environment, which occurred quite fre-

quently. In fact, the testing team was interested in long-range sensing capabilities, and would use

natural or constructed traps as a way of rewarding robots that could detect them from a distance.

Unfortunately, the vision sensors on the robots were not very capable at a distance (see Section 7

and Figure 14(a)). So, our strategy was to use map information learned in the first run to compute

an optimal path for the second and subsequent runs. This type of learning, run-to-run learning,

turned out to be the most powerful form of learning for the tests, and the key to performing better

than any other LAGR team.

Our first successful test of map learning and reuse was in Test 25 at the end of the project (Figure 11

and Figure 14(a)). The direct line to the goal was through a small copse of trees, where there were

barriers of deadfall and tall grass. In the first run, the robot wandered through this area, eventually

finding a way out to the goal. In the second run, the robot started with the map constructed on

the first run, and headed around the problem area. Note that the robot actually started into the

cul-de-sac, then decided to go around. The planner had a finite horizon of about 40m, and only

recognized the blockage at that point. In subsequent tests we extended the horizon of the planner

to the goal.

Our map-reuse technique is simple: at the start of a run, match the robot’s view to the start of

the previous run, using the same method as for matching frames in VO. If a good match is found,

the map from the previous run is brought in and adjusted to the robot’s current position. From

this point the robot’s position on the old map is “open loop,” that is, there is no re-registration or

localization of the robot within the map. Since VO performance is generally within 1% over 100m,

this strategy was overwhelmingly successful during the tests. Still, a true visual SLAM algorithm

would work better in more difficult conditions, and we have made significant progress here, closing

loops over 5 km datasets (Konolige and Agrawal, 2008); but unfortunately this research was done



(a) Test 25 Initial Run

(b) Test 25 Second Run

Figure 11: Map reuse during Test 25. The global map in (a) shows the first run: dark green is

freespace, light green is sightlines, red are obstacles. The robot path estimated from VO is the

green line; the yellow line is the (noisy) GPS. Starting position of the robot is the left side of the

screen; goal is on the right. Note the many extended concave obstacles and cul-de-sacs. Image

(b) shows the robot’s trajectory for the second run, bypassing the cul-de-sac obstacles and heading

around to the right.

too late to incorporate into the LAGR system.

5 Planning

The LAGR robot was provided with a “baseline” system that used implementations of D* (Stentz,

1994) for global planning and Dynamic Window Approach (DWA) (Fox et al., 1997) for local

control. Using this system, we (as well as other teams) had frequent crashes and undesirable

motion. The main causes were the slowness of the planner and the failure of the controller to

sufficiently account for the robot’s dynamics. The D* planner is optimized for very large-scale

environments. It uses dynamic programming to compute the minimum-cost potential to the goal at

each cell; it needs significant resources to maintain the indices necessary to unravel the minimum-

cost computations incrementally. In our environments (100m x 200m, 20 cm2 cells) it would take

many seconds to compute a plan, even when only a small portion of the map was filled. For large-

scale maps this may be acceptable, but we need much faster response to tactical maneuvers over

smaller scales (e.g., cul-de-sacs).

Instead, we re-implemented a gradient planner (Konolige, 2000; Philippsen and Siegwart, 2005)



that computes optimal paths from the goal to the robot, given a cost map. The gradient planner

is a wavefront planner that computes the cost of getting to a goal or goals at every cell in the

workspace. It works by using a local neighborhood to update the cost of a cell. If the cell’s cost

is higher than the cost of a neighbor cell plus the local transit cost, then it is updated with the new

cost. The overall algorithm starts by initializing the goal with a zero cost, and everything else with

a very large cost. All goal cells are put onto an “open” list. The algorithm runs by popping a cell

of the open list, and updating each of the cell’s neighbors. Any neighbor that has a lowered cost is

put back onto the open list. The algorithm finishes when the open list is empty.

There are many variations on this algorithm that lead to different performance efficiences. Our

algorithm has several unique modifications.

• Unlike other implementations, it uses a true Euclidean metric, rather than a Manhattan or

diagonal metric, in performing the update step (Kimmel and Sethian, 1998). The update

can be performed on the four nearest neighbors of a cell. Generally speaking, the two

lowest-cost neighbors can be used to determine the direction of propagation of the cost

potential, and the cell updated with an appropriate distance based on this direction.

• The algorithm computes the configuration space for a circular robot, and includes safety

distances to obstacles. This is one of the interesting parts of the gradient method. Since

there is already a method for computing the distance transform from a set of points, the

configuration space can be computed efficiently. The obstacle points are entered as goal

points, and the update algorithm is run over each of these points, generating a new open

list. Each open list is processed fully, leading to a sequence of open lists. At the end of n
cycles, the distance to obstacles has been determined up to n ∗ c, where c is the cell size.

Usually this is done to a distance of 3 or 4 times the robot radius, enough to establish a

safety cushion to the obstacle. Finally, a cost is associated with the distance: an infinite

cost within the robot radius to an obstacle, and a decreasing cost moving away from this.

• The queue handling is extremely efficient, using threshold-based queues, rather than a

best-first update, which has high overhead for sorting. Instead, we use a 2-priority-queue

method. A threshold shuttles new cells to one queue or the other, depending on whether

their cost is greater or less than the threshold. The low-cost queue is always processed first.

When no more cells remain in it, the threshold is increased, the second queue becomes the

low-cost queue, and a new high-cost queue is initialized. This queue strategy is the key to

the good performance of the algorithm: each update step happens very rapidly. Although

the complexity of the algorithm is the order of the area to be covered, and there is no “best

first” search from the goal to the robot position, still the extreme rapidity of each step makes

it possible to cover reasonable areas (e.g., 80m x 80m) in several tens of milliseconds.

• Rapid switching of global paths is avoided by including hysteresis - lowering the cost along

the path. There is a tradeoff between sticking to the current path, and exploring some new

path if current readings indicate it might be better. We lower the cost enough so that it takes

a significant amount of new information to turn the path aside.

Typically we run the global planner within a subregion of the whole map, since the robot is con-

tinuously moving towards the goal and encountering new areas. On longer runs, up to 200m, we

use an 80m x 80m area; the global planner runs in about 30 ms in this region. Unless there is a

large cul-de-sac, longer than 80m, this area is sufficient to maneuver the robot tactically around



Figure 12: Line goals for a robot in a 200m environment. The line goal is placed 60m ahead of the robot, and its extent varies
with the distance to the goal.

obstacles. For more global planning, which occurs when starting a run with a previously-made

map, we run the planner over the whole area, which can take up to 100 ms for a large 100m x

200m map.

The global planner is optimistic in assuming the robot to be circular, with a diameter equal to the

width of the robot. Also, it does not take into account the nonholonomic nature of the robot’s

motion. Instead, we rely on a local controller to produce feasible driving motions (Section 6).

5.1 Line goals

One of the problems encountered in directing the robot towards a point goal is that the plans tend

to constantly urge the robot towards the center of the map. This is not necessarily an efficient

strategy, because, for example, the robot will prefer to run near vegetation on the side of a path

that does not point directly towards the goal. Instead, when the robot is far from the goal, we

posit a relaxed virtual goal line that allows the robot to pursue more indirect paths to the goal

(Fig. 12). In experiments, the robot is able to navigate more than 50m off the center line to the

goal, and consequently find easily traversed paths that would have been difficult to find if it had

headed directly to the goal (Fig. 5).

6 Control

Given the global cost information produced by the gradient planner, we must decide what local

controls to apply to the robot to drive it toward the goal.

6.1 Trajectory generation

We take an approach that is opposite to techniques such as DWA. Instead of searching the space

of feasible trajectories, we search the space of feasible controls. As is the case with most

differentially-driven platforms, the LAGR robot is commanded by a pair (ẋ, θ̇) of desired transla-



(a) (b) (c)

Figure 13: The controller generates trajectories by sampling feasible velocities and simulating their application over a short
time horizon. Generated trajectories are purple, the chosen trajectory is yellow, the desired global path is cyan, and obstacles are
red. As shown in (a) and (b), the trajectories are smooth but not easily parameterizable as they depend on the vehicle’s current
velocity and its acceleration limits. When forward motion is not possible, backward trajectories are considered (c).

tional and rotational velocities.1 Thus we have a 2D space of possible commands to consider.

This space is bounded in each dimension by velocity limits that reflect the vehicle’s capabilities.

Because we are seeking good, as opposed to optimal, control, we sample, rather than exhaustively

search, this rectangular region of allowed velocities. We take a regular sampling (∼25 in each

dimension, ∼625 total), and for each sample simulate the effect of applying those controls to the

robot over a short time horizon (∼2s). The simulation predicts the robot’s trajectory as a sequence

of 5-dimensional (x, y, θ, ẋ, θ̇) states with a discrete-time approximation of the vehicle’s dynamics.

Of significant importance in this simulation are the vehicle’s acceleration limits. While the LAGR

robot can achieve a speed of 1.3 m/s, its low-level motor controller (which we cannot modify)

follows a trapezoidal velocity profile that limits the translational acceleration to approximately

0.5 m/s2 (we determined this value empirically). Thus more than 2 seconds may elapse between

commanding and achieving a desired velocity. We found that the ability to accurately predict the

LAGR robot’s future state depends vitally on appropriate integration of these acceleration limits.

We expect this to be the case for any vehicle with a similarly large ratio of maximum velocity to

maximum acceleration.

The generated trajectories, projected into the (x, y) plane, are smooth, continuous 2-dimensional

curves that, depending on the acceleration limits, may not be easily parameterizable. For the LAGR

robot, the trajectories are generally not circular arcs (Fig. 13).

6.2 Trajectory evaluation

Each simulated trajectory t is evaluated by the following weighted cost:

C(t) = αObs + βGdist + γPdist + δ
1

ẋ2
(1)

1We could instead work in terms of left and right wheel velocities; the two velocity spaces are equivalent, being related by a
simple geometric transformation.



where Obs is the sum of grid cell costs through which the trajectory passes (taking account of the

robot’s actual footprint in the grid); Gdist and Pdist are the estimated shortest distances from the

endpoint of the trajectory to the goal and the optimal path, respectively; and ẋ is the translational

component of the velocity command that produces the trajectory. We choose the trajectory for

which the cost (1) is minimized, which leads our controller to prefer trajectories that: (a) remain

far from obstacles, (b) go toward the goal, (c) remain near the optimal path, and (d) drive fast.

Trajectories that bring any part of the robot into collision with a lethal obstacle are discarded as

illegal.

Note that we can compute C(t) with minimal overhead: Obs is a simple summation over grid cell

costs, Gdist and Pdist were already computed by the planner for all map cells, and ẋ is a known

constant for each trajectory.

6.3 Supervisory control

We could generate, evaluate, and compare all potential trajectories. However, given the kinematic

design (driven wheels in front, passive casters behind) and sensor configuration (forward-facing

cameras and forward-mounted bumper) of the LAGR robot, we found it useful to add supervisory

logic to direct the order in which candidate velocities are simulated and evaluated.

All forward velocities (ẋ > 0) are tried first; if any legal forward trajectory is found, the best

one is selected. If there are no legal forward velocities, then the controller tries in-place rotations

(ẋ = 0), and then backward velocities (ẋ < 0). This preference ordering encourages the robot to

make forward progress whenever possible, and discourages driving backward (during which the

robot is essentially blind). If no legal trajectory is found, the default behavior of the robot is to

move slowly backward.

6.4 Slip handling

Because the robot may have to traverse rough, steep terrain, it is necessary to detect and react

to conditions in which the wheels slip or become stuck. We employ two mechanisms to handle

these situations. In both cases, we are comparing the motion reported by the wheels to the motion

estimated by visual odometry (VO), which is sufficiently accurate to be treated as ground truth

(Section 4.2).

First, the controller continuously compensates for the slip in each wheel by reducing its maximum

speed. Our approach is similar to automotive traction control. For each wheel, we monitor the slip

ratio s, defined as (Angelova et al., 2006):

s =
ωr − v

ωr
∈ [0, 1] (2)

where ω is the measured angular velocity of the wheel, r is the wheel radius, and v is the actual

linear velocity of the wheel. We obtain ω directly from the wheel encoders. To compute v, we

difference sequential VO poses to produce translational and rotational velocities for the vehicle,

then use the vehicle geometry to distribute these velocities between the two wheels. When the

slip ratio s for a wheel exceeds a minimum threshold (∼0.25), we compensate by proportionally



reducing the maximum allowable speed for that wheel, which produces better traction on most

terrain. Importantly, the controller takes account of the current speed limits, ensuring that predicted

trajectories will be achievable under these limits. The slip ratios and speed limits are recomputed

at the frequency of VO pose estimation (∼15Hz).

While continuous slip compensation improves performance, there are situations in which the robot

can become truly stuck, and require explicit escape mechanisms. The robot usually becomes stuck

because of extremely slippery soil (e.g., sand), or ground clutter (e.g., fallen branches). We detect

these conditions by looking for significant, time-extended disparities among the velocities that are:

commanded by the controller, reported by wheel odometry, and estimated by VO (we maintain a

running window of each velocity). If a slip or stall is detected, or if the front bumper is triggered,

the robot enters a stochastic finite state machine of preprogrammed escape maneuvers (e.g., drive

forward, turn in place, drive backward). These maneuvers are executed blindly, on the assumption

that the vision system failed to identify the terrain as dangerous and so is unlikely to yield good

advice on how to escape it.

7 Performance

For the LAGR program, the government testing group ran monthly blind demos of the perception

and control software developed by the teams, and compared their performance to a baseline system

(see XXX in this issue). The target for the last series of tests at the end of the 3-year program was

to do better than 2x the baseline performance. We show here tests 25 through 27, the last three,

because our system was essentially complete at this time. On each test, the robot was given 4 runs,

and the best 3 were taken to give a combined score. The highest achievable score is 1.0, calculated

by measuring the shortest path to the goal, and assuming the robot could move at maximum speed

(1.3 m/s) over this path. There are also penalties for not getting to the goal within a cutoff time.

7.1 End-of-project Tests

The tests themselves were through different types of terrain, and with different degrees of difficulty.

Here is a summary of the courses.

25 83m straight-line distance to the goal, through a copse of trees with a cul-de-sac and tall

grass (Figure 14(a)). Ideal behavior was to go around the copse.

26a (93m) Narrow paths through tall bushes, with several false turns that might lead more

directly to the goal. Desired behavior was to avoid the false turns.

26b (106m) A challenging course with man-made and natural obstacles, including a cul-de-sac

of parked cars; stacked pipes; hay bales; and rock piles (Figure 14(b)). The course to the

goal was indirect and involved narrow passageways, and finding it was a challenge.

27a (34m) A simple course on a grassy field with jersey barriers stretched directly across the

route (Figure 14(c)). Ideal behavior would be to avoid the barrier without getting close.

27b (34m) Similar to 27a, but using low hay bales for obstacles, with two gaps in the barrier

containing tall grass. The object was to identify the tall grass and push through it directly

to the goal.



(a) Test 25 (b) Test 26b (c) Test 27a

Figure 14: Views of three final tests. In (a), a robot’s-eye view of the beginning of Test 25. The

copse in the distance could be avoided on the right or left. The yellow line is the robot’s horizon

from a noisy INS, while the green line is the VO-stabilized horizon. In (b), a pipe corridor from

Test 26b – note the blocked left corridor. In (c), Test 27a shows the jersey barrier, with the goal

immediately behind.

Figure 15: Summary of results from the last 3 LAGR tests. Raw scores are given for the Base-

line software and the SRI system, where 1 is a perfect score (as fast as the robot can go). The

other scores are presented as a factor over Baseline; the target performance for the project was 2x

Baseline.

The first four tests were designed to reward behavior that could avoid paths that were temptingly

direct, but ultimately dead-ends. There were two methods of doing this – long-range perception

(>10m), and map memorization and re-use. For Test 26a, the narrow routes through the bushes

were easily detected by our online learning algorithms, and the path planner moved the robot

quickly along the center of the path. On the first run, the robot turned twice to look briefly at side

paths that could have been more direct, but then turned back to the main route. Figure 15 shows

the scores for this run. The Baseline score is 0.23, and SRI’s score is 0.83, which is better by a

factor of 3.6. In this test, since the long-range perception of paths worked well, the first run was

very good (2.9x Baseline), and subsequent map re-use only contributed a modest amount, by not

turning to examine the dead-end paths. In fact, our score could have been higher, but the fourth

run failed because of a map registration error in the middle of the run, closing off the narrow path.

In the other three tests (25, 26b, 27a), map re-use is the primary enabler of good performance –

it improved by almost a factor of 2 from the first run. For example, in Test 25, after wandering

through the copse and encountering the cul-de-sac and tall grass obstacles, the robot made its way

to the goal. On the second run, the robot avoided the copse entirely, choosing a path around it as

less costly.



Test 27b was a learning-by-example test. The robots were shown samples of the hay bales and tall

grass. Operators would drive the robots into the hay bales and over the grass, to give the robot

an idea of the traversability of each. Our online learning algorithms correctly picked out the grass

as driveable, based on primarily on its texture, since the color was similar to the hay bales. We

also learned that hay bales were obstacles; however, we had set the suppression of obstacles by

driveable objects a little too high, and the robot bumped the hay bales next to the grass area. After

a few bumps, it drove through the grass and onto the goal. In subsequent runs, of course, map

re-use allowed an optimal plan directly through the grass.

7.2 Analysis

There is no doubt that our system achieves both robustness and good performance, on a wide

variety of outdoor, unstructured terrain. Map building relies on VO to provide good localization,

efficient realtime stereo and robust ground-plane analysis for obstacle detection, and sight lines

to identify distant regions that are likely to be navigable. Online path learning helps in the very

common situation of tracks through vegetation, or man-made dirt and asphalt roads. Together these

techniques allow us to construct well-registered, precise maps that serve well during the first run

to get the robot reliably to the goal. Even more importantly, on subsequent runs, the path planner

is able to construct an optimal path to the goal from the start of the run.

Moving quickly is very important to achieving good performance, especially since many small

obstacles such as branches could be traversed at speed, but might hang up the robot if it was

moving slower. As described in Section 6, the path planner and local controller combined to give

the robot a very agile feeling. Our average speed was over 1.1 m/s, even while exploring unknown

terrain (top speed of the robot is 1.3 m/s).

The government team was very interested in creating scenarios to test the long-range perception

of the robot. Unfortunately, the robot’s vision sensors had very little resolution at distance. Depth

information from stereo was very uncertain after about 7m. Even using monocular information,

there were very few pixels available for long-range sensing. In Figure 14(left), a high-resolution

camera with a longer focal length clearly shows routes around the barrier. But with a similar

distance to the tree on the right image, looking through the robot cameras, there is very little to

show that the copse of trees could be avoided to the left – perhaps there are a few more vertical

pixels of brown-colored grass on that side. But this information is insufficient to reliably navigate

from the robot’s perspective, and teams that tried to do this would as often pick a bad way as a

good one.

What we could reliably learn is the map structure from the first run. With this in hand, subsequent

runs could be much more efficient. We had this technique working reliably only in the last tests

(25–27), and it was difficult for the government team to react and set up tests that would allow

long-range perception to do as well as map learning and re-use. It was also difficult for other teams

to adopt our technique, because it required very good map registration, and a badly-registered map

is worse than no map at all. In Test 26a, the narrow paths (≈2m wide) meant that even small

registration errors could cause a prior map to close off the current path, which happened to us in

the fourth run. Note that the map re-use was run open-loop: after registering with an initial image

at the beginning of the run, we relied on VO to keep the robot localized.



We compared our results with the published results of the other teams, both the average and the best

for each test (Figure 15. In all these tests, we had the best score (or tied for the best). Typically we

out-performed the average team by a factor of two. In the most difficult test, 26b, even our first-run

score was almost as good as the best overall team score; map re-use enabled us to do even better.

The controller, planner, and visual odometry system were used in the best-in-class NIST system

(see XXX in this issue), and in fact NIST was our closest competition in two of the tests, including

the difficult Test 26b.

8 Conclusion

We have demonstrated a complete autonomous system for off-road navigation in unstructured envi-

ronments, using stereo vision as the main sensor. The system is very robust - we can typically give

it a goal position several hundred meters away, and expect it to get there. But there are hazards that

are not dealt with by the methods discussed in this paper: water and ditches are two robot-killers.

Finally, we would like to use visual landmarks to augment GPS for global consistency, because it

would give finer adjustment in the robot’s position, which is critical for following routes that have

already been found.
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