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[1] Satellite observations of CO2 offer new opportunities to improve our understanding
of the global carbon cycle. Using such observations to infer global maps of atmospheric
CO2 and their associated uncertainties can provide key information about the distribution
and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions
predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with
atmospheric transport models. Ideally, these maps should be at temporal resolutions that
are short enough to represent and capture the synoptic dynamics of atmospheric CO2.
This study presents a geostatistical method that accomplishes this goal. The method can
extract information about the spatial covariance structure of the CO2 field from the
available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions,
and provides estimates of the uncertainties associated with these maps. The method
does not require information about CO2 fluxes or atmospheric transport, such that the
Level 3 maps are informed entirely by available retrievals. The approach is assessed
by investigating its performance using synthetic OCO-2 data generated from the PCTM/
GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target
spatial resolution of 1� latitude � 1.25� longitude. Results show that global CO2 fields
from OCO-2 observations can be predicted well at surprisingly high temporal resolutions.
Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2

distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to
four days result in the best performance for a wide range of investigated scenarios,
providing maps at an order of magnitude higher temporal resolution relative to the monthly
or seasonal Level 3 maps typically reported in the literature.
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1. Introduction

[2] Atmospheric carbon dioxide (CO2) is the most impor-
tant anthropogenic greenhouse gas [Forster et al., 2007].
While data from the existing CO2 monitoring network have
been crucial to gaining important insights into the function-
ing of the carbon cycle, the mechanisms controlling the inter-
annual variability and the spatial distribution of carbon uptake
and emissions are still not fully understood [e.g., Feng et al.,
2009; Heimann, 2009; Nevison et al., 2008; Yang et al.,
2007]. The accurate prediction and mitigation of climate
change requires a better understanding of these processes and
the carbon cycle in general [Friedlingstein et al., 2006].
[3] Satellite observations of CO2, because of their global

coverage and high measurement density, offer new

opportunities to improve this understanding. Observations
from several satellites are already being used to infer atmo-
spheric CO2 concentrations, including the Japanese Green-
house Gases Observing Satellite (GOSAT) [Hamazaki et al.,
2004], which is the first satellite dedicated to the measure-
ment of greenhouse gases. NASA’s Orbiting Carbon Obser-
vatory 2 (OCO-2) is the first American mission designed
specifically for making high precision measurement of CO2

[Crisp et al., 2004], and is expected to be launched in 2015.
[4] Despite their high measurement density, however,

satellite CO2 observations have gaps due to their orbit con-
figurations and due to geophysical limitations such as cloud
cover and are subject to substantially higher measurement
uncertainties relative to in situ observations. Using statistical
techniques to leverage the spatial correlation in the CO2

concentration field and to predict full-coverage global CO2

concentration distributions from satellite observations (i.e.,
creating Level 3 data products) is one way to gain new
information about the carbon cycle.
[5] Once derived, such maps can be used for comparison

studies with carbon flux estimates coupled with an atmospheric
transport model to generate modeled CO2 fields, or with
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other available atmospheric measurements. If the satellite-
derived Level 3 products were to include rigorous uncer-
tainty measures, such comparisons could be conducted
probabilistically, making it possible to assess whether and
where, for example, a given set of flux estimates coupled
with a specific transport model differ significantly from the
satellite-derived Level 3 maps. Such Level 3 products are not
intended to be used in inversion studies directly, but instead
provide a useful complement to such studies. Beyond point-
wise comparisons with individual observations, comparisons
with global CO2 concentration distributions make it possible
to identify spatially continuous areas of mismatch, providing
indicators for potential discrepancies with other data sets and
their dependence on the atmospheric or surface character-
istics. Ideally, such comparison studies should be done at
high temporal resolution, so that mismatches are not missed
through temporal averaging and so that the underlying cau-
ses for any mismatches can be tracked in detail. Such com-
parison studies could, among other applications, inform the
growing need to verify and track reported CO2 emissions
[National Research Council, 2010; Nisbet and Weiss, 2010].
[6] There are currently several approaches for creating

Level 3 products from CO2 satellite observations, ranging
from simple methods such as spatial and temporal averaging
[e.g., Crevoisier et al., 2009; Kulawik et al., 2010; Tiwari
et al., 2006] to sophisticated data assimilation approaches
[Engelen et al., 2009]. Spatial and temporal averaging entails
binning and averaging the data to relatively coarse spatial
and temporal grids to obtain smoother maps and to aver-
age out the measurement errors. Temporal averaging over
months or seasons is commonly applied to satellite data
representing properties that vary on seasonal or interannual
timescales, such as land cover and phenology. The impact of
such temporal averaging on atmospheric CO2 concentra-
tions, which vary on synoptic timescales, has not been
explored. It is obvious, however, that any of the dynamic
information, operating at time scales shorter than the tem-
poral averaging time step, is lost. The same applies to spatial
variability at scales smaller than the resolution of the spatial
averaging grid. Another disadvantage of binning and aver-
aging the data is that the uncertainties associated with the
binned data are typically not quantified, which eliminates the
option of making probabilistic comparisons.
[7] Data assimilation approaches, on the other hand, require

boundary conditions such as carbon flux estimates and trans-
port models to obtain full-coverage global atmospheric CO2

concentrations. While incorporating this additional informa-
tion can be powerful, it also implies that the assimilated
atmospheric CO2 fields are sensitive to any misspecification in
these prior assumptions. This strong dependence on prior
assumptions can especially affect comparison studies: it can
be difficult to establish the degree to which apparent similar-
ities or differences between the data-assimilation-derived
CO2 distributions and, for example, coupled biospheric- and
atmospheric-transport-model derived CO2 concentrations are
based on similar or dissimilar prior assumptions.
[8] This paper presents and evaluates an alternative

method for generating global Level 3 CO2 products from
satellite observations. The method leverages the fact that
atmospheric CO2 concentrations exhibit spatial correlation,
by characterizing this spatial correlation and using this
information to statistically derive global CO2 concentrations

and their associated uncertainties. This proposed geostatistical
approach accounts for measurement errors and does not
require estimates of fluxes or an atmospheric transport model,
which is advantageous for comparison studies because the
Level 3 products can serve as independent validation data sets.
[9] We use OCO-2 as a prototypical example application

for evaluating the method, because making the best use
of future OCO-2 observations will represent an important
challenge. While the observations will have high precision
and a small field of view, their spatial coverage for a given
day will be limited. As a result, the length of the time period
over which observations are aggregated represents a trade-
off between the spatial coverage that the observations can
provide and the loss of any information about temporal
variability that is masked by combining observations over
longer periods. Finding a balance between these effects, and
being aware of the consequences of the choice of the length
of the aggregation time period, is critical to creating and
interpreting global CO2 maps based on the anticipated data
from OCO-2. The presented sample application therefore
quantifies the quality of global CO2 Level 3 products based
on simulated OCO-2 observations for time periods ranging
from 1 to 16 days.

2. Mapping Methodology

[10] The geostatistical mapping method applied in this
study accounts for and exploits the spatial correlation of CO2

between different locations [e.g., Cressie, 1993; Gelfand,
2010; Chiles and Delfiner, 1999]. First, it infers the spatial
covariance structure of the CO2 concentrations. Second,
CO2 concentrations and associated uncertainties are pre-
dicted globally, using the available observations and the
spatial covariance structure inferred in the first step. Note
that in this study, prediction specifically refers to spatial
interpolation of available data, not to temporal prediction.
[11] Alkhaled et al. [2008] showed that global CO2 con-

centrations exhibit spatial nonstationarity, such that the
expected degree of spatial variability in the CO2 field itself
varies across the globe. For example, CO2 concentrations
over oceans are generally correlated over longer distances
than over land. Exploratory analysis of the modeled CO2

concentrations used here further supports this conclusion,
and, as a result, the approach presented here uses a nonsta-
tionary statistical framework. The framework chosen is
similar to moving window kriging [Haas, 1990], which is,
among spatial statistical methods to treat nonstationarity,
a rather simple and straightforward approach. From a theo-
retical point of view, a drawback of moving window kriging
is that it does not enforce a globally valid spatial model [e.g.,
Zhu and Wu, 2010; Chen et al., 2006], but is based on
covariance functions that are only valid locally. From a
computational point of view, the chosen framework is
efficient, as both the estimation of the covariance structure
and the prediction of the CO2 concentrations and their
associated uncertainties is executed locally and can be
implemented using parallel computing approaches.

2.1. Estimation of Nonstationary Covariance Structure

[12] The global nonstationary covariance structure is esti-
mated using a local semivariogram analysis based on the
assumption of local stationarity. The method is similar to
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the approach taken by Alkhaled et al. [2008]. The spatial
covariance structure specific to each location is estimated
by using observations in a local neighborhood surrounding
this location. The local neighborhood is defined here as a
region within 2000-km of each location, following Alkhaled
et al. [2008], who found such areas to be large enough
to capture most of the variability, while being small enough to
preserve local phenomena. Further analysis of the neighbor-
hood size conducted in this study confirmed these findings.
[13] Variogram analysis is a tool for quantifying spatial

variability as a function of the separation distance between
observations. As a first step the raw variogram is calculated:

y hð Þ ¼ 1

2
y xið Þ � y xj

� �� �2
; ð1Þ

where h is the separation distance between locations xi and
xj, defined as the great circle distance

h xi; xj
� � ¼ r cos�1 sinφi sinφj þ cosφi cosφj cos li � lj

� �� �
;

ð2Þ

where r is the radius of the Earth and φi and li are the lati-
tude and longitude of location xi, and y(xi) is the CO2 value
at location xi. The local variogram analysis is implemented
by including all the pairs of observations, where both
observations fall within 2000-km of a given location, and a
subset of the pairs for which one observation is within
2000-km and the other is further away. The number of pairs
in the subset was chosen such that the number of outside
observations was a quarter of the number of inside obser-
vations. This number is based on a sensitivity analysis for
the effect of the selection of outside observations to ensure
that the variogram parameters are robustly estimated and do
not vary as a function of the randomly selected subset of
outside points.
[14] In the second step, a parametric function, the theo-

retical variogram, is fitted to the raw variogram using non-
linear least squares. The function fitted was the exponential
variogram function combined with a nugget-effect vario-
gram model given by:

g hð Þ ¼
0 for h ¼ 0

s2 1� exp � h

l

� 	� 	
þ s2

nug for h > 0

( )
; ð3Þ

where s2 and l are the variance and correlation length
parameters of the exponential variogram, and snug

2 is the
nugget variance, which is representative of the retrieval/
measurement errors. The choice of the exponential vario-
gram was based on earlier analysis by Alkhaled et al. [2008].
The nugget-effect component accounts for the random noise
added to the observations in this synthetic-data study to
represent the measurement noise (see section 3.2). This
variance component is fixed to the variance of the noise
added to the observations, and represents the variance of
retrieval errors for real data applications. Variogram para-
meters were estimated for each location on a 1� � 1.25�
global grid to match the resolution of the model data used in
the analysis (section 3.1), but any convenient resolution
could be used with real data from OCO-2 as long as the
resolution was sufficiently fine to capture the variability
of the data.

[15] The exponential variogram parameters can be used to
define an exponential covariance function:

C hð Þ ¼ s2 exp � h

l

� 	
; ð4Þ

where the parameters s2 and l are as defined previously,
such that the estimated parameters of the variogram specify
the covariance function.

2.2. Local Kriging

[16] Kriging is a minimum variance linear unbiased pre-
diction method for spatial data. Linear refers to the fact that
the predicted value at a given location is expressed as a
linear combination of the values observed at sampled loca-
tions. A notable feature of kriging, differentiating it from
simpler interpolation methods such as inverse distance
weighting, is that an observation is not only weighted as a
function of its distance to the prediction location, but also as
a function of its location relative to those of other observa-
tions. As such, clustered observations that provide redundant
information receive comparatively less weight. Another
attractive feature of kriging is that it can account for mea-
surement error. Finally, kriging quantifies the uncertainty in
the predicted value.
[17] The linear system that is solved to obtain the weights

l for a single prediction location given observations at n
locations is

Qþ R
1T

1
0


 �
l
n

����
���� ¼ q

1

����
����; ð5Þ

where Q is an n � n covariance matrix among the n obser-
vation locations, as defined in equation (4), R is an n � n
measurement error covariance matrix among the n observa-
tion locations, l is a n� 1 vector of weights, n is a Lagrange
multiplier and q is the n� 1 vector of the spatial covariances
between an individual prediction location and the obser-
vation locations, also defined using equation (4). If the
measurement errors are assumed independent between
observation locations, as is the case in this work, then R is a
diagonal matrix with the measurement error variance snug

2 on
the diagonal. The predicted value, ŷ, and the prediction
uncertainty, sŷ

2, at the location are:

ŷ ¼ lTy ð6Þ

sŷ
2 ¼ s2 � lTq� v; ð7Þ

where y are the observations at the n locations and s2 is the
variance as shown in equation (4).
[18] ‘Local’ refers to the fact that the covariance para-

meters used to calculate the spatial covariances are specific
to each prediction location, and that only observations
within a given neighborhood of the prediction location are
considered [e.g., Haas, 1990; Kitanidis, 1997]. As described
in section 2.1, the covariance parameters are derived at each
prediction location. Only observations within 2000-km
were used in the kriging step, motivated by the shielding
effect [Wackernagel, 2003]. The validity of the assumption
that observations at more than 2000 km have a negligible
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influence on the predicted value was verified by comparing
the predicted values for increasingly larger neighborhoods
(results not shown).
[19] In a small number of cases (less than 0.1% of the

prediction locations on average), no observations were
available within 2000 km, and the kriging procedure could
not be applied. In these cases a simple imputation technique
was applied using the predicted value and uncertainty of the
closest location where the local kriging procedure could
be executed.

3. Study Design and Data

[20] The study was designed to evaluate how well global
CO2 concentrations can be reconstructed from satellite
observations using a geostatistical mapping method. The
specific emphasis was on recreating global CO2 concentra-
tions based on future OCO-2 observations for short time
periods ranging from 1 day to one repeat cycle (i.e.,
16 days).
[21] OCO-2 is scheduled for launch in 2015, and is a

replacement for OCO, which failed upon launch, and was to
be NASA’s first satellite mission dedicated to observing
atmospheric CO2. Some of the most noteworthy features of
OCO-2 are the sensitivity to the near-surface CO2 abun-
dance, the measurement footprint of about 3 km2, and an
anticipated measurement precision of 1 ppm once soun-
dings are averaged over regional scales [Crisp et al., 2004].
OCO-2 will be part of NASA EOS Afternoon constellation
(A-train) [L’Ecuyer and Jiang, 2010], which flies in a sun-
synchronous polar orbit with a 16-day repeat-cycle.

3.1. Simulated OCO-2 CO2 Observations

[22] The atmospheric CO2 field is simulated using the
PCTM/GEOS-4/CASA-GFED (referred to simply as PCTM
in the discussion that follows) atmospheric model coupled
with biospheric, biomass burning, oceanic, and anthropo-
genic CO2 flux estimates [Kawa et al., 2004, 2010]. This
model uses analyzed meteorological fields to drive both
the biospheric flux and atmospheric transport. The model
grid is 1� � 1.25� � 28 vertical levels with hourly output.
The PCTM/GEOS-4 model has been widely tested, and
has shown good results in carbon cycling comparison
studies [e.g., Kawa et al., 2004; Law et al., 2008; Parazoo
et al., 2008]. CO2 mixing ratios in the lowest 20 vertical
layers of the model (up to 40 mbar) were pressure-averaged
to simulate the vertical sensitivity of OCO-2. Prospective
OCO-2 sounding locations were determined by overlaying
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) [Winker et al., 2003] track on the
CO2 field for each day within a given repeat-cycle. The
CALIPSO track was used because this satellite is also part of
NASA’s A-train constellation, and CALIPSO flies only
minutes apart from the orbit planned for OCO-2. Differences
in the OCO-2 slant path and glint location offset were
not accounted for, so the CALIPSO track is only a close
approximation to the true OCO-2 track.
[23] The presence of clouds and aerosols will impede

the retrieval of atmospheric CO2 concentrations, leading to
gaps in the OCO-2 observations along the satellite track.
To represent the presence of these gaps in a realistic manner,
the combined cloud and aerosol optical depth (532 nm) from

the version 2.01 5-km CALIPSO data was used to identify
locations on the track where the total cloud and aerosol
optical depth was below 0.3, which is a conservative esti-
mate of the maximum optical depth that will allow for
the successful retrieval of CO2 [D. M. O’Brien, personal
communication, 2011]. Using this approach to account
for clouds and aerosols has the advantage of matching the
CALIPSO data with the PCTM output in time, which allows
for a more realistic representation of the cloud-aerosol-CO2

distribution relative to using probabilistic cloud and aerosol
masks based on seasonal averages. The CALIPSO along-
track horizontal resolution of 5 km was matched with the
coarser PCTM 1� � 1.25� horizontal resolution by consid-
ering a model grid box visible if at least one CALIPSO
measurement with a combined optical depth of less than
0.3 fell within the grid box. Figures 1d–1f show typical
patterns and amounts of visible locations (at the PCTM grid
resolution) for 1-day, 4-day and 16-day time periods.
[24] OCO-2’s footprint of approximately 3 km2 will be

much finer than the PCTM horizontal resolution used in
this study, and the simulated OCO-2 observations used
here therefore most closely resemble a setup where the true
observations would be pre-averaged to the PCTM/GEOS
resolution of 1� � 1.25�. This setup has implications for the
measurement error characteristics. Having multiple OCO-2
soundings within a PCTM grid box reduces the measure-
ment error associated with the average CO2 value in the
grid box relative to the uncertainty of a single sounding. The
relative reduction of the measurement error is a function
of the number, spatial configuration, and measurement error
correlation of the soundings within a grid box. The proce-
dure and the assumptions made to account for multiple
soundings within a grid box and characterize the measure-
ment error associated with a grid box are described in detail
in section 3.2.
[25] Some other features associated with the finer resolu-

tion of the true OCO-2 observations are not directly assessed
in this study; namely, the computational aspects associated
with the number of OCO-2 observations, and the possibility
of capturing CO2 variability on very fine scales. OCO-2’s
fine resolution leads to a large total number of observations,
up to hundreds of thousands each day, which could cause
computational problems for traditional geostatistical gap-
filling methods. The local covariance estimation and kriging
setup described here (section 2), however, are well suited to
handling a large amount of observations, and have been
specifically designed to do so.

3.2. Experimental Setup

[26] The primary goals of the experiment were to evaluate
(1) the overall performance of the proposed approach, and
(2) how the temporal resolution, which is the length of the
time period over which observations are accumulated to
make a single map, affected the quality of the resulting map.
The quality of the obtained maps was evaluated by com-
paring these maps and their inferred uncertainties to the full
model data, which were time-averaged over the period of the
observations used to create the maps. The details of the
comparison measures are discussed in sections 4.2 and 4.3.
The experiment was specifically designed to assemble
observations in a manner that is realistic for satellite obser-
vations: the simulated observations were not taken from a
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time-averaged CO2 concentration field, but were sampled
from individual days at the hour nearest the local overpass
time (approximately 1330 h). For example, the observations
shown in Figure 1f are sampled from 16 different days of
PCTM output, corresponding to the actual day for each
sounding. This way of simulating observations results in a
field that represents an aggregation of observations from
different days rather than temporally averaged observations.
The true field, however, is the full 3-D model output time-
averaged over the aggregation period. Figures 1a–1c provide
an example of the 1-day, 4-day and 16-day true fields.
[27] In addition to the temporal resolution, the season,

measurement noise level, and data used in the covariance
estimation were also varied to evaluate the approach.
[28] The temporal resolutions evaluated were 16-day, 8-day,

4-day, 2-day and 1-day intervals. These lengths were chosen
to 1) identify the shortest time period for which meaningful
global CO2 maps can be obtained from OCO-2 observations
and to 2) quantify the effect of temporal resolution, and
thereby the amount of data and temporal variability within
the time period, on prediction performance.
[29] To explore the impact of seasonality on the heteroge-

neity of the atmospheric CO2, cloud and aerosol distributions,

one month was used as representative of each season (January,
April, July, September). For example, April and July featured
higher variability in the CO2 concentration field than January
and September.
[30] A range of assumed measurement error levels was

selected based on the expected performance of OCO-2. The
levels of measurement noise are based on a single sounding
expected OCO-2 measurement error standard deviation of
1.5 ppm [Crisp et al., 2004; D. M. O’Brien, personal com-
munication], but accounting for the fact that a single model
grid box may contain multiple OCO-2 soundings. Because
nearby OCO-2 observations will likely have correlated
errors, the effective measurement error at the grid scale will
be higher relative to a case with independent measurement
errors. The effective measurement error standard deviation
at the grid scale is a function of the number of soundings
and their spatial configuration within the grid cell, as well as
the spatial scale over which the measurement errors are
correlated. The number and spatial configuration of OCO-2
soundings was estimated by examining the range of the
number, and the spatial configuration, of CALIPSO mea-
surements with optical depths of less than 0.3 falling within
a PCTM grid box. Simulated OCO-2 observations and

Figure 1. PCTM/GEOS-4 CO2 model output (“Truth”), simulated OCO-2 observations (“Observa-
tions”), gap-filled predictions (“Prediction”) and estimated prediction uncertainties (“Uncertainty”)
expressed as a standard deviation for a 1-day, a 4-day and a 16-day time period in April 2006. The obser-
vation locations and values are derived by overlaying CALIPSO track and cloud and aerosol information
on PCTM/GEOS-4 CO2 from individual days in the repeat cycle. The gap-filled predictions are shown for
the medium measurement noise scenario with the covariance estimated from observations.
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measurement error correlation ranges from a few kilometers
to a few hundred kilometers were used in a side study to
determine the effective measurement noise at the scale of the
PCTM model. Based on these results (not shown), a range of
grid-scale measurement error standard deviations was
applied, which were 0.2 ppm for the low level, 0.5 ppm for
the medium level and 1 ppm for the high level. For all noise
levels, the measurement errors were assumed to be inde-
pendent zero-mean and normally distributed when applied at
the scale of the model (1� � 1.25�), and a random sample of
such errors was added to the observations drawn from
PCTM/GEOS-4. The nugget variance snug

2 , and therefore the
diagonal elements of the matrix R, defined in section 2.1
was thereby equal to the variances of these measurement
errors (i.e., (0.2 ppm)2, (0.5 ppm)2 and (1 ppm)2).
[31] The fourth factor in the experimental setup was the

data used in the covariance estimation (see section 2.1). Two
cases were investigated. In the first case, the time-averaged
full model data (e.g., Figures 1a–1c), i.e., the “truth,” were
used to derive the covariance parameters. In the second case,
only the available observations (e.g., Figures 1d–1f) were
used. Using the time-averaged full-model data represents an
idealized, but not possible scenario, where the covariance
structure could be derived from the full time-averaged CO2

concentrations. Clearly, having the true concentrations
available to estimate the covariance structure for gap-filling
CO2 is not feasible and would defy the need to gap-fill, but
this choice has been made to serve as an upper bound for any
possible improvement over the observation-based covari-
ance structure. The idea is that any alternative to using the
observations themselves to quantify the covariance structure
would be at best as good as having the “truth.”

4. Results and Discussion

4.1. Qualitative Features of the Spatial Predictions

[32] The characteristics of the Level 3 maps as a function
of the length of the examined time period, amount of mea-
surement noise, and data used in the covariance estimation
were similar across seasons (Figure 2). As expected, seasons
with smoother CO2 fields yielded better Level 2 maps. The
large-scale features of the global CO2 fields could be
reproduced for all examined scenarios. It is surprising and
encouraging that, even for the 1-day periods, the information
content of the observations is sufficient to recover the main
characteristics of the CO2 field (Figure 1).
[33] Figures 1g–1i provide an example of gap-filled esti-

mates for 1-day, 4-day and 16-day periods in April, which
was the season with the most heterogeneous CO2 field.
As expected, some small-scale features are lost, especially
in the 1-day maps, if they are not captured by observations.
For example, the area of high CO2 values over the northern
part of South America is not well portrayed in the 1-day
Level 3 map (Figure 1g). However, as is discussed in detail
in section 4.3, the prediction uncertainties for the shorter
time periods adequately reflect the true uncertainty of these
predictions. So, while the predictions cannot recreate the
small-scale features in areas missing observations, the
associated prediction uncertainties are higher in these areas,
and therefore reflect this lack of information.
[34] The smoothness of the predicted fields varies as a

function of the length of the examined time period. The 1-day

and 2-day predictions are generally smoother than the truth,
whereas for the longer time periods, most notably the 16-day
periods, the predictions are less smooth than the truth. This
can be seen in the undulating structure of the 16-day predic-
tion map for April (Figure 1i). There are two different causes
for this change of smoothness with temporal resolution. The
reason for which the 1-day and 2-day maps appear smoother
than the true fields is a general consequence of interpolating
sparse data. The reason for which prediction maps for longer
time periods appear less smooth than the truth is a conse-
quence of unaccounted-for temporal variability in the CO2

field, as reflected in the available observations. For the longer
time periods, this effect dominates because the data density is
relatively high, as is the amount of temporal variability that
is captured by these observations. This temporal variability
is introduced into the gap-filled maps because they combine
observations from different days (see section 3.2). The
amount of temporal variability that is captured by the obser-
vations increases with the time span over which observations
are combined, and its effect therefore becomes more pro-
nounced for longer time periods. In a spatial-only (compared
to a spatiotemporal) geostatistical setup such as the one used
here, the temporal variability translates to a perceived spatial
variability on small-scales (Figures 1h and 1i). In contrast,
the corresponding true fields shown in Figures 1b and 1c
represent the temporal average over the examined time
period and are smoother. The strength of this effect is further
affected by the degree of measurement noise: the undulating
structure is less pronounced in high measurement noise
scenarios, where the measurement noise masks the temporal
variability (see section 4.2).

4.2. Prediction Accuracy

[35] Figure 2 presents the Root Mean Square Prediction
Error (RMSPE) for all modeled scenarios. RMSPE is a
measure of the difference between the true and predicted
CO2 values. The overall range of RMSPE was 0.20 to
0.63 ppm CO2; the lowest value resulted from a 16-day
period in September and the highest from a 1-day period
in July. Longer time periods and seasons with lower CO2

variability generally had better prediction accuracies, i.e.,
lower RMSPE. These overall trends, however, depend
on the level of measurement noise. For the 1-day periods,
prediction accuracies improve as the measurement noise
decreases. This ordered relationship is less evident in the
2-day periods, where the low and medium noise scenarios
have similar prediction accuracies. For the 4-day periods,
the medium measurement noise cases have the best pre-
diction accuracies, but the differences are less pronounced
than for other temporal resolutions. For the 8-day periods,
the relationship between measurement noise and predic-
tion accuracies starts to reverse: lower measurement noise
is associated with worse prediction accuracies. This effect
becomes fully evident in the 16-day periods, where higher
measurement noise scenarios consistently feature the best
prediction accuracies for all seasons, because temporal
variability dominates the error. Overall, higher measure-
ment noise decreases the prediction accuracies for shorter
time periods, but, counter-intuitively, improves them for
longer time periods.
[36] This effect is due to the presence of temporal vari-

ability in the observations. As discussed in sections 3.2
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and 4.1, temporal variability in the CO2 distribution is cap-
tured by the observations by combining measurements from
multiple days. This variability, however, is not accounted for
directly by the spatial mapping approach presented here,
which treats observations from different days as if they had
been sampled from a static field. As a result, predictions may
follow observations too closely to accurately represent the
averaged field. This effect is alleviated in cases with high
measurement noise, because the geostatistical modeling
framework provides leeway for the predictions to deviate
from the observations to a degree consistent with the mea-
surement error. In this way, accounting for high measure-
ment noise implicitly also allows the method to cope with
observed temporal variability. There is also an interaction
between measurement error and the heterogeneity of the
CO2 field. Seasons with more spatial heterogeneity also
exhibited more temporal variability. As a result, seasons
with smoother CO2 fields also yielded better prediction
accuracies for longer time periods and lower measurement
noise, relative to more heterogeneous seasons.
[37] A second measure of prediction accuracy is the per-

centage of locations where the predicted values deviate from
the truth by more than 1 ppm, with results (Figure 3) con-
sistent with the RMSPE results. The lowest percentage was
observed for the 16-day period with high measurement error
in September, where only 0.2% of the predicted CO2 values
deviate from the truth by more than 1 ppm, and the highest
percentage was for a 1-day period with high measurement
error in July, where 9% of the predicted values deviated
from the truth by more than 1 ppm. As seen previously,
lower measurement noise improved the prediction accuracy
for short periods, whereas higher measurement noise
improved accuracies for long periods. For all cases, how-
ever, the percentages are quite low, indicating high accuracy
predictions by the proposed method.
[38] Surprisingly and encouragingly, whether the covari-

ance structure was derived from the model data averaged
over the examined time period, i.e., the truth that we are

trying to estimate (e.g., Figures 1a–1c), or from the available
observations (e.g., Figures 1d–1f), had little impact on the
prediction accuracies (see Figure 2). This indicates that good
predictions can be obtained without the need for prior
information about the covariance structure of the underlying
field. This was surprising especially for the shorter time
periods, which had more limited observations, and indicated
that data over short periods still contain enough information
about the spatial variability of the underlying field to yield
accurate predictions. The only scenarios where deriving the
covariance structure from the full model output (i.e., from
prior information other than the observations) improved the
prediction accuracies were some of the longer time periods;
namely the 8-day and 16-day time periods for July and
September. As described in detail in section 3.2, the aver-
aged field over the time period investigated was defined as
the truth, while the observations were aggregated from
individual days, and thus did not come from an averaged
field. Therefore, the observations come from a more vari-
able field than the truth, and that variability is reflected in
the estimated covariance structures, which translates into
somewhat less accurate prediction accuracies for the longer
time periods.

4.3. Prediction Uncertainty

[39] An attractive feature of geostatistical mapping is that
each predicted CO2 value is accompanied by a prediction
uncertainty that is quantified without knowledge of the
true distribution. The prediction uncertainty for a given
location is a function of the location and number of obser-
vations surrounding the location, and the degree of spatial
variability in the CO2 field in the vicinity of the estimation
location (equations (5) and (7)). In general, more homoge-
neous areas with dense observations will have lower pre-
diction uncertainty.
[40] Figures 1j–1l provide an example of the prediction

uncertainties, as obtained from the approach implemented
here, for the 1-day, 4-day and 16-day periods for April.

Figure 2. Root mean square prediction error (RMSPE) for 1-day, 2-day, 4-day, 8-day and 16-day maps
for January, April, July and September 2006. Symbols of different colors and shapes represent different
seasons. Symbol sizes indicate different measurement noise levels (see section 3.2). Filled and empty
symbols represent results obtained when the covariance structure is derived from the true field or from
the available observations, respectively.
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The 1-day prediction uncertainties show clear evidence of
the dependence of the prediction uncertainties on the loca-
tion of observations. Locations that lie close to the satellite
orbit path feature low uncertainties, while areas further
away from the satellite paths have increasingly larger
uncertainties. The 16-day period, which has a large number
of observations distributed over the globe, features overall
lower prediction uncertainties compared to the shorter time
periods. Even for a temporal resolution of 16-days, however,
some areas with few observations, such as West Africa and
the polar regions, have higher prediction uncertainties.
[41] Accurately assessing the uncertainty associated with

predictions is valuable regardless of the ultimate use of the
maps, but it is especially critical when the global gap-filled
CO2 predictions are compared to data from other sources
such as model predictions. Realistic prediction uncertainties
allow for probabilistic comparisons in addition to evaluating
the best estimates. In order to assess how representative
the prediction uncertainties were of the true uncertainty,
the percentage of estimation locations where the truth fell
outside of the estimated value +/�3 standard deviations
(as calculated from the prediction uncertainty) was evalu-
ated. The optimal percentage for this measure depends on
assumptions about the underlying statistical distribution of
the data. As a guiding value, under the assumption of a
normal distribution, this percentage should be approximately
0.3%. While achieving this exact value is not the goal, because
the approach does not assume that the underlying distribu-
tion is Gaussian, we have assessed whether the percentage
outside of +/�3 standard deviations is reasonably low.
[42] Figure 4 shows the percentage of locations falling

outside of +/�3 standard deviations of the prediction
uncertainty for all investigated scenarios. The most striking
feature of this figure is how the percentage dramatically
increases with the length of the examined time period for
low-noise scenarios, while the percentage stays low for high-
noise scenarios. This feature is in accordance with the

finding, discussed in detail in section 4.2, that high mea-
surement noise can mask the temporal variability that is not
otherwise accounted for by the spatial mapping. The 1-day
scenarios, where temporal variability is minimal, have their
lowest percentages for the low measurement noise cases.
Starting with the 2-day temporal resolution, however, low
measurement noise results in increasingly higher percen-
tages of true values falling outside of +/�3 standard devia-
tions. For the high measurement error cases, accounting for
the noise implicitly also accounts for the temporal variability
and the percentages falling outside of +/�3 standard devia-
tions remain low.
[43] The effect of the method used for deriving the

covariance on the prediction uncertainty depends on the
averaging time, but is overall small. For the 1-day periods,
using only the observations to derive the covariance struc-
ture is clearly suboptimal. This is reflected in the higher
percentage of locations falling outside of +/�3 standard
deviations (Figure 4). This is not such a clear-cut case,
however, for the longer time periods. While the truth-
derived covariance structure still has the advantage of being
based on a full field without gaps, it is possible that the
observation-derived covariance results in improved predic-
tion uncertainties by capturing some of the temporal vari-
ability present in the observations. This is indeed the case for
some of the 8-day and 16-day. These improvements, how-
ever, were rather small compared to the differences caused
by the varying degrees of measurement noise.
[44] Overall, the prediction uncertainties are able to

describe the true uncertainty accurately. This is an especially
encouraging finding for the short time periods, because it
indicates that satellite observations can be used to derive
global CO2 distributions with accurate uncertainties for time
periods as short as one day. For longer time periods and low
measurement noise scenarios, it is important to assess and
incorporate the temporal variability resulting from the
aggregation of observations to avoid an underestimation of

Figure 3. Percentage of locations where the predicted values deviate from the truth by more than 1 ppm
for 1-day, 2-day, 4-day, 8-day and 16-day time periods for January, April, July and September 2006.
Symbols of different colors and shapes represent different seasons. Symbol sizes indicate different
measurement noise levels (see section 3.2). Filled and empty symbols represent results obtained when
the covariance structure is derived from the true field or from the available observations, respectively.
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the uncertainty. This could be achieved by either calculating
the temporal variability and explicitly accounting for it in
a geostatistical model, or by developing a spatiotemporal
mapping approach.

4.4. Implications for the Generation of Level 3 Maps

[45] It is challenging to construct Level 3 CO2 maps that
represent an average over a given time period using obser-
vations obtained on individual days, because CO2 fields
change with time. Ideally, the temporal resolution at which
maps are obtained optimizes the mapping performance and
provides maps that are representative over the shortest time
period possible so as to capture the dynamics of the CO2

distribution. The choice of temporal resolution thus defines
a trade-off between having sufficient observations for ade-
quate spatial coverage, while minimizing the impact of
temporal variability. The findings described in sections 4.1
to 4.3 quantify this trade-off and provide guidance for
choosing a temporal resolution for creating Level 3 products
from satellite CO2 observations from OCO-2.
[46] When choosing a temporal resolution, results show

that a key question is how the measurement noise compares
to the temporal variability present in the estimated field.
As a general guideline, the larger the measurement noise,
the more advantageous it is to combine observations over a
longer time period. For observations with low measurement
noise, however, choosing a temporal resolution coarser than
four days leads to decreased overall prediction performance.
[47] Choosing a high temporal resolution, and thereby

sacrificing spatial coverage by observations in favor of
minimal temporal variability, can lead to surprisingly benign
consequences in prediction performance. Even for the 1-day
and 2-day periods, the RMSPE are only on the order of
0.5 ppm and 0.4 ppm, respectively. Furthermore, the
accompanying prediction uncertainties accurately reflect the
true uncertainty of the predictions.

[48] Overall, for OCO-2 like observations, a temporal
resolution of 4-days has the most robust prediction perfor-
mance for varying seasons and measurement noise levels.
Higher measurement noise shifts the optimal prediction per-
formance toward lower temporal resolutions (i.e., longer time
periods), while lower measurement noise shifts it toward
higher temporal resolutions (i.e., shorter time periods).
[49] Whether the covariance structure is derived from the

model data averaged over the examined time period (i.e., the
truth that we are trying to estimate) or from the observations
had very little impact on the quality of the Level 3 prediction
and uncertainty maps. This finding strongly supports the use
of observations for deriving the covariance structure, thereby
avoiding the need for prior assumptions about the spatial
structure of the CO2 field.

5. Conclusions

[50] High spatiotemporal resolution global Level 3 CO2

products obtained from satellite observations offer new
opportunities for gaining a better understanding of the dis-
tribution and dynamic behavior of atmospheric CO2. Ideally,
these Level 3 products should cover time periods that are
short enough to preserve the synoptic dynamics of atmo-
spheric CO2 concentrations. Knowledge of the uncertainties
associated with statistically derived Level 3 maps makes it
possible to probabilistically evaluate CO2 flux and atmospheric
transport models, which can help identify potential areas for
improvement in model formulation and parameterization.
[51] A common method for the generation of Level 3

maps is to obtain an aggregated field by spatial binning and
averaging over long periods, which results in a loss of spatial
resolution and dynamic information. While making monthly
or seasonal maps might be adequate for more static proper-
ties (e.g., land cover, phenology), creating CO2 maps over
these long time periods hides the dynamics of the global

Figure 4. Percentage of locations where the predicted values deviate from the truth by more than +/�3
standard deviations of the prediction uncertainty (equation (7)) for 1-day, 2-day, 4-day, 8-day and 16-day
time periods for January, April, July and September 2006. Symbols of different colors and shapes repre-
sent different seasons. Symbol sizes indicate different measurement noise levels (see section 3.2). Filled
and empty symbols represent results obtained when the covariance structure is derived from the true field
or from the available observations, respectively.
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CO2 concentration field, which are critical to improving our
understanding of the carbon cycle. Such averaged fields also
typically lack quantitative uncertainty measures.
[52] The method presented in this study makes it possible

to map CO2 for time scales more consistent with the synoptic
dynamics of CO2, and provides a measure of the uncertainty
associated with predictions. This proposed method makes
minimal assumptions, namely that the atmospheric CO2

concentration exhibit spatial correlation, and that the statis-
tical characteristics of this correlation can be inferred from
the observations. Using only the observations themselves to
infer the covariance structure eliminates the need to introduce
any a priori assumptions about the distribution of atmospheric
CO2 concentrations, which in turn renders the methodology
more useful for comparison purposes.
[53] The methodology was used to evaluate Level 3 pro-

ducts derived from OCO-2-like data for time periods ranging
from 1 to 16 days, with the dual goal of verifying the pro-
posed method’s performance and of identifying the optimal
temporal resolution for Level 3 CO2 products. The results
indicate that global CO2 concentrations can be predicted
from OCO-2 satellite observations for time periods much
shorter than a full repeat cycle. Even one-day prediction
maps reproduce the large-scale features of the atmospheric
CO2 distribution and have realistic uncertainty bounds.
Temporal resolutions of 2 to 4 days proved to have the most
robust prediction performances over a wide variety of tested
scenarios. The aggregation of observations over longer time
periods introduces temporal variability that limits prediction
performance, especially for scenarios where the measure-
ment noise is low compared to the degree of temporal vari-
ability in the underlying CO2 field.
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