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We introduce a new class of sine-Gordon models, for which the interaction term is present in a region
different from the domain over which the quadratic part is defined. We develop a nonperturbative approach for
calculating partition functions of such models, which relies on mapping them to statistical properties of random
surfaces. As a specific application of our method, we consider the problem of calculating the amplitude of
interference fringes in experiments with two independent low dimensional Bose gases. We calculate full
distribution functions of interference amplitude for one-dimensional and two-dimensional gases with nonzero
temperatures.
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I. INTRODUCTION

Sine-Gordon !SG" models and their Coulomb gas repre-
sentations appear as a low energy effective theory for many
types of physical systems. The so-called “bulk” SG model
describes the Berezinskii-Kosterlitz-Thouless !BKT" transi-
tion in two-dimensional superfluids #1–3$ and the superfluid
to insulator transition of Cooper pairs in a chain of Joseph-
son junctions #4$. The so-called “boundary” SG model #5$
can be used to describe the Chakravarty-Schmid transition in
a single Josephson junction with dissipation #6$ and a quan-
tum impurity problem #7$ in one dimension !1D". Powerful
theoretical techniques have been developed for studying such
SG models including Bethe ansatz solutions #8$, renormal-
ization group analysis !see e.g., Ref. #3$", and functional
renormalization group #9$. Recent theoretical work suggested
that there is another class of SG models which is important
for several kinds of physical systems. Such models can be
described by the action

S!g" = !K%
"

!!! #"2dx d$ + 2%
%

g cos!2!#"dx d$ , !1"

where the interaction term cos!2!#" is present in the spatial
region % !or space-time region for quantum problems",
which is only a part of the domain " over which the nonin-
teracting part !!! #"2 is defined. This should be contrasted to
the bulk SG models, in which the interaction term is present
in the entire region ", and to the boundary SG models, in
which the interaction term is present on a line. We note that
models with inhomogeneous g!x ,$" can be considered using
methods developed in the paper as well, but for concreteness
we will consider only constant g. Model !1" interpolates be-
tween the bulk and boundary SG models, and we will refer
to it as the interior sine-Gordon !ISG" model. Here are a few
examples of physical systems that can be described by such
models. The first example is the problem of “interwire co-
herence” #10$ in which wires are brought together over a
finite length l and separated on both ends. The cos term
describes the correlated umklapp electron scattering in the
two wires !+2kF scattering in one wire accompanied by −2kF
scattering in the other wire". The quantum space-time action

of this system has the form of Eq. !1" with "= #−& ,&$x
' #0,($$ and %= #−l /2, l /2$x' #0,($$. Another example
comes from a system of quantum particles in one dimension
!e.g., electrons or Cooper pairs in a wire, or ultracold atoms
in a weak optical trap" with a periodic potential present in a
finite region of the system. The cos term comes from the
umklapp scattering on the external potential and is limited to
the finite region in the interior of the system. The third ex-
ample is the problem of distribution functions of interference
fringe amplitudes !DFIFA" for a pair of independent low-
dimensional condensates #11–13$. Individual moments of the
distribution function can be represented as a microcanonical
partition function of Coulomb gases #14–16$, with positions
of Coulomb charges restricted to the part of the system from
which interference patterns have been extracted. The latter is
typically smaller than the total system size. For example,
in the case of large 2D condensates we have "= #−& ,&$x
' #−& ,&$$, and when the interference pattern is extracted
from the area l' l, we have %= #−l /2, l /2$x' #−l /2, l /2$$.
The relation between the DFIFA and the partition function of
the ISG model will be outlined below and has also been
discussed in Refs. #14–16$.

In this paper we develop a nonperturbative approach to
calculating partition functions of a wide class of SG models
and Coulomb gases, which relies on the mapping of their
partition functions to certain problems of statistics of random
surfaces. We point out that our method does not rely on the
existence of the exact solutions of SG models, but uses the
structure of the multipoint correlation functions in the ab-
sence of interactions. We also note that a suitable extension
of our method can be used to compute correlation functions
of SG models in equilibrium and nonequilibrium situations.
The particular strength of our approach is that it can be ap-
plied to study ISG models, which cannot be analyzed by
other theoretical methods. As a concrete application of our
method we calculate DFIFA for both 1D and 2D conden-
sates. We point out that earlier theoretical work on interfer-
ence experiments focused on 1D systems with periodic
boundary conditions !PBC" #15$. While these boundary con-
ditions are extremely artificial from the point of view of re-
alistic experiments, they allow one to relate the DFIFA to the
quantum impurity problem #7$ and use certain exact results
about the latter #17$. Methods used in Ref. #15$ cannot be
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generalized either to the realistic case of open boundary con-
ditions !OBC" !i.e., interference patterns extracted from the
interior of a large system" or 2D systems, but these cases can
be analyzed using the method discussed in this paper. We
emphasize, however, that the main goal of this paper is to
introduce an approach to the analysis of SG models, and the
problem of DFIFA is just one example that illustrates the
power of the new method.

II. MAPPING

The partition function corresponding to the action !1" is
given by Z!g"=&D#e−S!g" /&D#e−S!0". By expanding Z!g" in
powers of g we arrive at the grand canonical partition func-
tion of the Coulomb gas #18$

Z!g" = '
n=0

n=&
g2n

!n!"2Z2n, !2"

where

Z2n = %
%

¯%
%

d2u!1 ¯ d2v!n exp(1/K)'
i)j

G!u! i,u! j"

+ '
i)j

G!v! i,v! j" − '
ij

G!u! i,v! j"*+ .

Here, Z2n is a microcanonical partition function of a classical
two-component neutral Coloumb gas of 2n particles, and
G!x! ,y!" is an interaction potential, which is proportional to
Green’s function of the Laplace operator on ". The most
familiar case is when "= #−& ,&$x' #−& ,&$$ and G!x! ,y!"
=ln,x! −y!,.

To evaluate Z!g" nonperturbatively in g, we introduce an
auxiliary function W!*", which should be understood as a
certain distribution function, and is defined in such a way
that its nth moment equals Z2n.

Z2n =% W!*"*nd* . !3"

One can use the Hankel transformation #19$ to compute Z!g"
from W!*" as

Z!g" = %
0

&

W!*"I0!2g-*"d* . !4"

This equation can be verified using the Taylor expansion of
the modified Bessel function I0!x" and Eq. !3". Formulation
of the auxiliary “problem of moments” allows one to avoid
calculating Z!g" order by order, and can be viewed as a tool
to sum the perturbation series in Eq. !2" to all orders.

Function G!x! ,y!" is real and symmetric, so it can be di-
agonalized on % by solving the eigenvalue equations

%
%

G!x!,y!"+ f!y!"d2y! = G!f"+ f!x!" . !5"

Here f is an integer index, which goes from 1 to &. + f!x!"
can be chosen to be real and normalized according to
&%+ f!x!"+k!x!"d2x! =,!f ,k". Then, G!x! ,y!" is given by G!x! ,y!"
=' f=1

f=&G!f"+ f!x!"+ f!y!". Such decomposition is similar to the
diagonalization of a symmetric matrix using its eigenvectors
and eigenvalues. We have

Z2n = %
%

¯%
%

d2u!1 ¯ d2v!n exp(' f
G!f"/2K).'

i=1

i=n

+ f!u! i" − + f!v! i"/2

− '
i=1

i=n

+ f!u! i"2 + + f!v! i"2*+
= %

%

¯%
%

d2u!1 ¯ d2v!n0
f=1

f=& %
−&

&

dtfe
−tf

2/2exp1'
i

tf
-G!f"/K#+ f!u! i" − + f!v! i"$ − G!f"/2K#+ f!u! i"2 + + f!v! i"2$2

-2!
. !6"

To go from the first to the second line in Eq. !6" we intro-
duced the Hubbard-Stratonovich variables tf. Integration
over d2u!1¯d2v!n, is now straightforward since all u!− and v!
− integrals are identical.

Z2n = 30
f=1

f=& %
−&

&

e−tf
2/2dtf

-2!
4g!1tf2"ng!1− tf2"n, !7"

where

g!1tf2" = %
%

dx! exp)'
f

tf
-G!f"/K+ f!x!" − G!f"/2K+ f!x!"* .

!8"

From a comparison of Eqs. !3" and !7" we obtain

W!*" = 0
f=1

f=& %
−&

&

e−tf
2/2dtf

-2!
,#* − g!1tf2"g!1− tf2"$ . !9"

Equations !8" and !9" have a simple physical interpretation.
Consider + f!x!" to be the eigenmodes of the surface vibra-
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tions, tf the fluctuating mode amplitudes, and ,G!f", the noise
power. Infinite dimensional integral over 1tf2 variables can be
understood as an averaging over fluctuations of the surface.
For a particular realization of noise variables 1tf2, a complex
valued surface coordinate at point x! is given by h!x! ; 1tf2"
=' ftf+ f!x!"-G!f" /K−G!f"+ f!x!"2 /2K. For each realization
of a random surface 1tf2, g!1tf2" is obtained as an integral !8",
which can also be written as g!1tf2"=&%d2x!eh!x!;1tf2". Hence
Eq. !9" can be interpreted as the mapping between the parti-
tion function of the SG model !1" and the statistics of ran-
dom surfaces subject to classical noise. This mapping is the
central result of this paper.

In general, g!1tf2" is a complex number, thus in general, *
is defined on a complex plane. Simplifications occur: if all
eigenvalues G!f" are negative, then g!1−tf2"=g!1tf2"!,
g!1tf2"g!1−tf2"= ,g!1tf2",2, and * is always real and positive.
Function W!*" can be computed efficiently using Eq. !9" and
Monte Carlo simulations. In the first step one solves integral
Eqs. !5" numerically to obtain eigenfunctions + f!x!" and
eigenvectors G!f". Then one samples random numbers 1tf2
from the Gaussian ensemble, and plots the histogram of the
results for g!1tf2"g!1−tf2". Each point on a histogram requires
a computation of only two integrals, and W!*" can be evalu-
ated to arbitrary precision.

Note, that this simple numerical evaluation of W!*" al-
lows one to extract Z!g" for all values of g using Eq. !4".
While conventional large-scale Monte Carlo simulations
#20,21$ can be used to extract properties of SG models, they
require separate simulation for each value of g. Application
of such methods to the calculation of DFIFA described below
would also require analytic continuation of numerical results
to imaginary values of g #15$, which is numerically unstable.
In addition, the mapping in Eqs. !8" and !9" does not only
simplify numerical simulations, but can also be used to ob-
tain analytical results !see below".

III. APPLICATIONS TO INTERFERENCE OF LOW-
DIMENSIONAL GASES

We now apply a general formalism developed to a par-
ticular problem of the interference of low-dimensional Bose
gases #11–16$. Typical experimental setup for interference of
low-dimensional gases with open boundary conditions
!OBC" is shown in Fig. 1. Two parallel condensates are ex-
tended in the x direction. After atoms are released from the
trap, clouds expand predominantly in the transverse direc-
tion. After sufficient time of flight clouds overlap, and the
laser beam propagating along the z axis takes an absorption
image. Fluctuations of the relative phase result in fluctua-
tions of the minima positions for different x. For each y, the
image can be integrated along the x direction to obtain the
integrated fringe amplitude A. One experimental image can
be used to extract information for different values of L.
Many images are still required to obtain distribution func-
tions for each L.

For two identical 1D clouds higher moments of the fringe
amplitude A can be written as #14$

5,A,2n6 = A0
2nZ2n, where A0 = -C-2.h

1/KL2−1/K. !10"

Here - is the density, L is the imaging length, .h is the
healing length, and C is a constant of the order of unity. For
OBC Z2n is given #14$ by Eq. !2" with "= #−& ,&$x
' #0,($$ !and periodic boundary conditions in $" and %
= #0,1$x !and fixed $". Equation !10" has been derived ne-
glecting the shot noise, which arises due to a finite number of
particles in the interfering clouds #16,22$. In what follows,
we will be interested in the distribution functions W!*" of a
positive variable *= ,A,2 /A0

2 defined by Eq. !3", or of its nor-
malized version *̃= ,A,2 / 5A26, defined by Z2n /Z2

n

=&0
&W̃!*̃"*̃nd*̃. For zero temperature Z2n depends only on

the Luttinger parameter K, which describes #23,24$ the long-
distance behavior of boson correlation functions, given by
5a†!x"a!0"67-!.h /x"1/2K. For bosons K ranges from K=1
!strong interactions" to K=& !weak interactions". For OBC
and zero temperature G!x! ,y!" equals G!x! ,y!"=ln,x! −y!,, while
for PBC considered in Ref. #15$, Gper!x! ,y!"=ln 1

!sin !,x! −y!,.
While A0 depends on L, for zero temperature distribution
W̃!*̃" does not depend on L, but depends only on K. For
nonzero temperature, Z2n depends on K and the thermal
length .T=/vs / !kBT", where vs is the sound velocity:
G!x! ,y! ,.T /L"=ln! .T

!Lsinh!,x!−y!,L
.T

".
For 2D, one can use a similar approach to describe the

contrast distribution at finite temperature below the BKT
transition. In this case, correlation functions are given by
5a†!r"a!0"67-!.h /r"0!T", where 0!T"=mT / #2!/2-s!T"$ de-
pends on the temperature and the superfluid density -s!T".
The BKT transition happens at the universal value 0c!Tc"
=1 /4. To keep a connection to the 1D case, we will use K
=1 / #20!T"$, and restrict our attention to K1Kc=2. For 2D
with the aspect ratio of the imaging area equal to unity, u! i
and v! i in Eq. !2" are defined on a square %= #0,1$x' #0,1$$
with G!x! ,y!"=ln,x! −y!,.

In the limit K→&, one can expand the exponent of Eq.
!8" in the Taylor series. Then *=g!1tf2"g!1−tf2" is linearly

Z

X

IMAGING BEAM

L

A
Y

FIG. 1. Simplified setup of interference experiments with 1D
Bose liquids !see, e.g., Refs. #11,12$". Two parallel condensates are
extended in the x direction. After atoms are released from the trap,
clouds are imaged by the laser beam propagating along the z axis.
Meandering structure of the interference pattern arises from phase
fluctuations along the condensates. The net interference amplitude
A is defined from the density integrated along the section of length
L. For the analogous 2D setup, see, e.g., Fig. 2 of Ref #14$.
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related to roughness, or mean square fluctuation of the sur-
face, as defined in Ref. #25$. For PBC the noise has a 1 / f
power spectrum, since Gper!x ,y"=ln 1

!sin !,x−y,=−ln 2!
−' f=1

f=&!cos 2!fx cos 2!fy+ sin 2!fx sin 2!fy" / f . This re-
sults in the Gumbel statistics of the roughness #15,16,25,27$:
W̃G!*̃"=K exp!x−ex", where x=K!*̃−1"−2 and 2=0.577 is
the Euler constant. This provides the analytical proof of the
conjecture made in Ref. #15$, that the distribution function in
this case is given by one of the extreme value statistical
distributions, the Gumbel function #26$.

In what follows we perform simulations of W!*" with up
to N=106−107 realizations of 1tf2 and smoothen the data. We
use a finite value of fmax and check for convergence with
fmax, typically 730. 5*6 is always kept within 1% from its
expected value. For most of the presented results, all eigen-
values G!f" are negative, and Eq. !9" can be directly applied.
Special care should be taken of the 1D case with nonzero
temperatures, since one of the eigenvalues can be positive.
This situation can be handled by subtracting a sufficiently
large positive constant C from G!x! ,y! ,.T /L", which makes all
eigenvalues negative. According to Eqs. !2" and !3", this

leads to rescaling of * by a factor e−C/K, which can be easily
taken into account.

In Fig. 2 we show distribution functions of the normalized
interference amplitude W̃!*̃" at T=0 for 1D gases with OBC
for various K. The inset shows a comparison between OBC
and PBC for K=5. In Fig. 3, we show distribution functions
of the normalized interference amplitude for a 1D gas with
OBC at nonzero temperature and K=5. For .TK /L31 dis-
tribution is Poissonian #14–16$ and wide, while for K41
and .TK /L41 it is very narrow. Evolution of the full distri-
bution function of the visibilities as L is varied can be used
to precisely measure the thermal length .T, and to extract the
temperature. As seen in Fig. 3, at T"0 the distribution func-
tion has characteristic features, i.e., it is generally nonsym-
metric and can have a minimum. These features can be used
to distinguish the intrinsic noise due to fluctuations of the
phase from technical noise. Finally, in Fig. 4 we show dis-
tribution functions of the normalized interference amplitude
for a 2D gas with aspect ratio of imaging area equal to unity
and OBC below the BKT temperature. Above the BKT tem-
perature, distribution functions become Poissonian for L4.,
where . is the correlation length. In 2D one cannot describe
the crossover at L7. similar to 1D, since the action which
describes the fluctuations of the phase is not quadratic in this
region, and Eq. !2" does not hold.

IV. CONCLUSIONS

To summarize, we introduced a class of sine-Gordon
models, for which an interaction term is present in a spatial
region different from the domain over which the noninteract-
ing part is defined. We developed a general mapping of such
sine-Gordon models and related Coulomb gases to statistical
properties of random surfaces, which can be used to calculate
their partition functions nonperturbatively. As a specific
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FIG. 2. Distribution functions of the normalized interference
amplitude W̃!*̃" at T=0 for 1D gases with open boundary condi-
tions, shown for Luttinger parameters K=2 !dashed", K
=3 !dotted", and K=5 !solid". The inset shows a comparison be-
tween open !solid" and periodic !dashed" boundary conditions for
K=5.
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FIG. 3. Distribution functions of the normalized interference
amplitude W̃!*̃" for a 1D Bose gas with open boundary conditions
at nonzero temperature and K=5. Different curves correspond to
ratios K.T /L=& !solid", K.T /L=1 !dotted", and K.T /L
=0.25 !dashed". .T is the thermal correlation length, K is the Lut-
tinger parameter, and L is the imaging length.
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FIG. 4. Distribution functions of the normalized interference
amplitude W̃!*̃" for a two-dimensional Bose gas with the aspect
ratio of the imaging area equal to unity and open boundary condi-
tions. Temperature is below the Berezinskii-Kosterlitz-Thouless
!BKT" transition temperature. Different curves correspond to 0!T"
=0c!Tc"=1 /4 !the BKT transition point, solid", 0!T"=1 /6 !dashed
line", and 0!T"=1 /10 !dotted line". Above the BKT transition tem-
perature the distribution function is Poissonian !dot-dashed line".
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application of our approach, we considered interference ex-
periments with two independent low-dimensional Bose
gases. We calculated full distribution functions of the inter-
ference amplitude for 1D and 2D gases with open boundary
conditions and nonzero temperatures. Full distribution func-
tions of interference fringe visibilities can be used for ther-
mometry.
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