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Genome Québec Innovation Centre, Montréal, Canada, 10Department of Human Genetics and 11Department of

Medical Genetics, McGill University, Montréal, Canada
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Genome-wide association studies of human gene expression promise to identify functional regulatory gen-
etic variation that contributes to phenotypic diversity. However, it is unclear how useful this approach will be
for the identification of disease-susceptibility variants. We generated gene expression profiles for 22 184
mRNA transcripts using RNA derived from peripheral blood CD41 lymphocytes, and genome-wide genotype
data for 516 512 autosomal markers in 200 subjects. We screened for cis-acting variants by testing variants
mapping within 50 kb of expressed transcripts for association with transcript abundance using generalized
linear models. Significant associations were identified for 1585 genes at a false discovery rate of 0.05 (corre-
sponding to P-values ranging from 1 3 10291 to 7 3 1024). Importantly, we identified evidence of regulatory
variation for 119 previously mapped disease genes, including 24 examples where the variant with the stron-
gest evidence of disease-association demonstrates strong association with specific transcript abundance.
The prevalence of cis-acting variants among disease-associated genes was 63% higher than the genome-
wide rate in our data set (P 5 6.41 3 1026), and although many of the implicated loci were associated with
immune-related diseases (including asthma, connective tissue disorders and inflammatory bowel disease),
associations with genes implicated in non-immune-related diseases including lipid profiles, anthropo-
morphic measurements, cancer and neurologic disease were also observed. Genetic variants that confer
inter-individual differences in gene expression represent an important subset of variants that contribute to
disease susceptibility. Population-based integrative genetic approaches can help identify such variation
and enhance our understanding of the genetic basis of complex traits.
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INTRODUCTION

The pace of susceptibility gene mapping for common dis-
eases has greatly accelerated with the implementation of
genome-wide association studies (GWAS) in large popu-
lations. Over the past 2 years, GWAS have identified no
fewer than 800 genetic loci conferring risk of more than
100 diseases or disease-related traits (1), providing new
insights into the pathogenesis of these disorders and
opening new avenues for therapeutic targeting. However,
among the current limitations of GWAS is their reliance on
‘indirect’ association testing of fixed marker sets that
capture the linkage disequilibrium (LD) patterns of
common genetic variation. Although in some instances, the
observed pattern of genetic association and presence of an
obvious functional candidate variant (typically a non-
synonymous coding variant) enables precise localization of
the functional locus, such efficiency is rare. More commonly,
regional LD extends across multiple genes, and the
disease-associated variants serve as proxies for unrecognized
non-coding variation, precluding claims of specific disease
gene identification. Without reliable means to recognize
functional non-coding variation directly, investigators are
left speculating, often with multiple relevant candidates
from which to choose (2).

GWAS of human gene expression represent an innovative
approach for mapping functional non-coding variation. In
2001, Jansen and Nap (3) suggested that gene transcript
abundance in relevant biologic tissues (measured using
microarrays) could be considered a proximal intermediate
phenotype for genetic mapping studies to identify expression
quantitative trait loci (eQTLs). This integrative approach has
intuitive appeal, as it is increasingly evident that a substantial
proportion of the genetic variation influencing complex traits
is regulatory (4). Initial studies in model organisms demon-
strated the feasibility of eQTL mapping and its usefulness
in identifying disease-susceptibility variants. More recently,
linkage and association studies of the genetics of gene
expression in human population studies demonstrated that
transcript expression for many genes is highly heritable
(5–7). Preliminary eQTL mapping studies, primarily using
immortalized lymphoblastoid cell lines (LCLs), but also in
primary cell types, have identified numerous cis- and trans-
acting regulatory loci (7–10). Although in several instances,
this approach has facilitated the identification of novel
disease-susceptibility loci (11,12), the extent to which this
approach can be used for disease gene mapping remains
unclear.

Here, we present results from a genome-wide survey for
cis-acting regulatory variants using RNA collected from per-
ipheral blood CD4+ lymphocytes in a cohort of young
adults with asthma. Not only do we demonstrate the feasibility
of eQTL mapping in primary cell types collected in the clini-
cal setting, but also provide evidence for strong enrichment of
the observed expression-associated polymorphisms for
disease-susceptibility variation, highlighting the utility of
eQTL mapping for the identification of putative functional
variation that contributes to the pathogenesis of complex
genetic traits.

RESULTS

eQTL mapping in CD41 lymphocytes

Expression data from primary peripheral blood CD4+ lym-
phocytes and genome-wide SNP genotype data were generated
for 200 self-reported non-Hispanic white asthmatics. Of the
genotyped SNPs, 258 314 mapped to within 50 kb of 19 451

Figure 1. (A) QQ plot of genome-wide screen for proximal eSNP in CD4+
lymphocytes. Dashed line denotes expected uniform (null) distribution.
(B) Distribution of SNP-specific proportion of expression variation explained.
Histogram includes 6706 SNPs with significant eQTL association findings.
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transcripts with acceptable expression data (corresponding to
16 036 genes), resulting in 510 689 SNP–transcript associ-
ation tests. Significant evidence for cis-acting regulatory vari-
ation was identified for 7274 SNP–transcript combinations,
comprising 6706 SNPs corresponding to 1585 unique genes
[9.88% of genes tested at a false discovery rate (FDR)
threshold of 0.05, with corresponding P-values ranging from
0.0007 to 1 × 10291, Fig. 1A]. The identified cis-acting
expression-associated SNP (eSNP) explained a substantial
proportion of the total variability in gene expression
(Fig. 1B): the median of expression variability explained
was 9.8% [inter-quartile range (IQR) 7.4–14.8%]. Greater
than 25% of expression variability was explained by one
SNP for 195 genes, and at least 50% of expression variability
was explained by one SNP for 33 genes (Table 1). Although
we note that the observed estimates of proportion variation
explained (i.e. the eSNP-specific genetic effect size) fall
between those observed in prior studies (7–10), such estimates
are influenced by sample size, variance in gene expression and
allele frequency distributions. It is therefore possible that
given our modest sample size of 200 subjects, the observed
median genetic effect size of 9.8% may be overestimated.
Given our sample size and assuming 80% power to detect a

genetic effect, at an FDR of 0.05 (corresponding to an eQTL
P-value of 0.0007 in our data set), we calculated the expected
genetic effect size to be 8.5%. Thus, our observed median
effect size of 9.8% is similar to, but slightly higher than, the
expected value, suggesting that our estimates are relatively
good approximations of the likely underlying true distribution
of magnitude of eSNP effects for common regulatory poly-
morphisms. However, we recognize that our sample size is
underpowered to detect alleles with weak effects (i.e. variants
that explain ,2% of gene expression variability) and conse-
quently that our observed distribution of genetic effects does
not include such variants. A complete list of all identified
eSNP is available in Supplementary Material, Table S1.

A series of statistical and technical validation procedures,
including family-based testing and comparisons with results
from previously published allelic imbalance and eQTL
mapping studies, confirmed a large majority of identified
eSNP. First, to assess whether population stratification could
explain our results, even after adjustment for ancestry using
the EIGENSTRAT program (13), we repeated the association
testing incorporating parental genotype information in family-
based association testing. The availability of parental genotype
data for 154 of the 200 probands enabled confirmatory family-

Table 1. Genes with eSNP explaining .50% of expression variability

HUGO SNP Distance
(kb from
transcript)

MAF Proportion
variance
explained

eQTL association P-value SNP
under
probe

AI
FDR GC and FDR Family-based

SCGB3A1 rs2453176 42.7 0.088 0.896 1.24E 2 90 5.39E 2 86 3.90E 2 08 NI
IPO8 rs3910564 48.4 0.447 0.844 4.79E 2 71 2.20E 2 67 7.22E 2 15 Yes Yes
C9orf135 rs10521434 13.3 0.098 0.842 2.70E 2 70 1.12E 2 66 5.31E 2 08 NI
CHURC1 rs7143432 22.0 0.203 0.791 1.50E 2 54 9.81E 2 52 3.60E 2 13 Yes
GYPE rs1822841 215.9 0.263 20.785 2.41E 2 60 3.12E 2 57 6.70E 2 11 NI
RPS23 rs226206 218.8 0.280 20.776 1.69E 2 56 1.39E 2 53 1.39E 2 09 Yes Yes
ANKDD1A rs1628955 226.9 0.387 0.760 5.54E 2 57 4.85E 2 54 1.52E 2 12 Yes
PTER rs7909832 1.0 0.447 20.750 6.14E 2 55 4.21E 2 52 7.22E 2 15 No
TMEM25 rs11552421 28.6 0.138 0.746 4.71E 2 55 3.28E 2 52 2.17E 2 06 Yes Yes
GSTM3 rs10735234 1.1 0.443 20.693 9.67E 2 47 2.60E 2 44 8.75E 2 14 Yes
FAM118A rs104664 6.0 0.120 0.684 1.54E 2 46 4.04E 2 44 0.0002 Yes
PILRB rs6955367 5.6 0.173 0.673 8.63E 2 43 1.48E 2 40 4.44E 2 06 NI
FAM119B rs10877013 21.3 0.345 0.659 5.31E 2 41 7.40E 2 39 2.28E 2 12 Yes
LRAP rs2161657 17.5 0.495 20.641 1.81E 2 39 2.11E 2 37 2.33E 2 15 NI
FKSG14 rs36133 233.5 0.370 0.637 1.04E 2 38 1.10E 2 36 4.93E 2 10 NI
ACTA2 rs1926196 241.2 0.498 0.635 5.01E 2 37 4.31E 2 35 1.49E 2 13 Yes
WBSCR27 rs4304218 3.9 0.293 0.627 1.74E 2 39 2.02E 2 37 7.77E 2 15 NI
CPA5 rs11761888 22.7 0.201 20.623 7.79E 2 39 8.41E 2 37 8.31E 2 10 Yes No
SRI rs1063964 13.9 0.296 20.622 3.27E 2 38 3.26E 2 36 5.51E 2 09 No
USMG5 rs11191666 28.9 0.428 0.621 7.88E 2 37 6.64E 2 35 5.36E 2 08 Yes
MXRA7 rs1005645 10.3 0.085 0.616 2.85E 2 37 2.53E 2 35 0.0005 NI
RPS6KA2 rs9356529 4.6 0.273 0.582 1.43E 2 36 1.16E 2 34 8.04E 2 08 Yes No
PRR17 rs816922 218.5 0.065 0.579 4.26E 2 33 2.34E 2 31 6.15E 2 05 NI
KCTD10 rs9943689 24.8 0.200 20.571 1.79E 2 32 9.13E 2 31 1.66E 2 07 Yes
NAPRT1 rs1809148 22.6 0.140 0.567 7.30E 2 33 3.89E 2 31 8.94E 2 07 NI
KRT1 rs1567759 217.4 0.425 20.555 1.51E 2 31 6.90E 2 30 2.35E 2 12 NI
LOC400566 rs6565724 10.7 0.333 20.539 2.67E 2 28 8.41E 2 27 2.18E 2 06 NI
C5orf35 rs2591961 33.5 0.230 20.526 1.32E 2 27 3.83E 2 26 1.84E 2 06 Yes
SLC25A29 rs1059264 3.6 0.313 0.523 1.79E 2 28 5.76E 2 27 1.06E 2 09 Yes
INPP5E rs1127152 21.3 0.408 20.516 1.04E 2 27 3.06E 2 26 2.61E 2 11 Yes
MRPL43 rs2863095 0.8 0.208 0.513 1.07E 2 27 3.15E 2 26 1.48E 2 10 NI
C1orf57 rs3820124 21.6 0.208 20.511 2.10E 2 27 5.96E 2 26 5.72E 2 07 No
HOXB2 rs1042815 2.1 0.382 20.508 6.97E 2 27 1.86E 2 25 8.31E 2 10 NI

MAF, minor allele frequency. P-values derived from GLS-modeled population-based eQTL analysis are reported with FDR adjustment alone (FDR) and with both
genomic control and FDR adjustment (GC and FDR). Proportion variance explained: sign indicates whether the major allele is associated with increased (+) or
decreased (2) transcript abundance. AI, allelic expression observed in Verlaan et al. (52); NI, non-informative.
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Table 2. CD4+ lymphocyte eSNP associated with complex genetic traits

SNP Published association studies CD4+ eSNP associations Dominanta eSNP
association in CD4+ cells

Relationship between trait
eSNP and dominant eSNP

Trait Trait–GWAS
association
P-value

PubMed ID Symbol eQTL P-value % variance
explained

SNP P-value LD (r2) Disease-eSNP
P-value,
conditioned on
dominant eSNP

Immune-related
rs3764021 Type 1 diabetes 5.00E208 17554300 CLECL1 1.04E209 20.182 rs10466829 6.09E211 0.926 0.853
rs4763879 2.00E211 19430480 2.43E205 20.094 rs10466829 6.09E211 0.709 0.596
rs1701704 Type 1 diabetes 9.00E210 18198356 SUOX 2.02E206 0.118 rs773107 7.59E207 0.949 0.781
rs2290400 Type 1 diabetes 6.00E213 19430480 GSDML 4.07E206 0.108 Same SNP NA NA NA

ORMDL3 3.05E209 0.182 rs4795405 3.00E210 0.848 0.357
rs7216389 Asthma 9.00E211 17611496 ORMDL3 1.63E208 0.165 rs4795405 3.00E210 0.886 0.868

GSDML 5.30E205 0.083 rs2290400 4.09E206 0.968 0.33
rs2872507 Crohn’s disease 5.00E209 18587394 ORMDL3 7.98E209 0.172 rs4795405 3.00E210 0.87 0.574

GSDML 3.20E205 0.088 rs2290400 4.09E206 0.894 0.593
rs2188962 Crohn’s disease 2.00E218 18587394 SLC22A5 2.42E213 20.261 Same SNP NA NA NA
rs7517847 Crohn’s disease 3.00E212 17435756 IL23R 4.23E204 0.066 Same SNP NA NA NA

IBD 4.00E213 17068223 Same SNP NA NA NA
rs3890745 Rheumatoid arthritis 1.00E207 18794853 MMEL1 1.33E206 0.098 Same SNP NA NA NA
rs13277113 SLE 1.00E210 18204098 BLK 2.83E207 0.136 rs2736340 1.52E208 0.977 0.363
rs1420101 Plasma eosinophil count 5.00E214 19198610 IL18R1 6.88E204 0.064 rs12998521 1.23E204 0.945 0.475
rs2066808 Psoriasis 1.00E209 19169254 TMEM4 4.23E204 0.071 Same SNP NA NA NA

Metabolic
rs10889353 Triglycerides 3.00E207 19060906 DOCK7 1.57E205 20.099 rs2031373 6.62E206 0.61 0.031

LDL and total cholesterol 4.00E212 19060911
rs1167998 Triglycerides 2.00E212 19060911 1.97E205 20.098 rs2031373 6.62E206 0.613 0.037
rs174546 LDL cholesterol 1.00E207 19060910 FADS1 1.32E205 0.093 rs968567 3.70E208 0.681 0.31

FADS2 4.58E206 0.11 rs968567 1.80E216 0.681 0.248
rs10838738 Body mass index 5.00E209 19079261 C1QTNF4 7.36E208 20.151 Same SNP NA NA NA

Miscellaneous
rs6899976 Height 6.00E206 18391951 L3MBTL3 9.74E221 0.373 rs6569648 5.90E223 20.825 0.006
rs210138 Testicular germ cell tumor 1.00E213 19483681 FLJ43752 3.73E206 0.111 rs375555 2.45E206 20.866 0.25
rs8034191 Lung cancer 5.00E220 18385738 IREB2 2.87E204 0.07 Same SNP NA NA NA

3.00E218 18385676
COPD 1.00E208 18780872

1.00E210 19300482
rs2290416 ADHD 9.00E206 18821565 NAPRT1 2.97E204 0.068 rs1809148 3.88E235 0.071 9.85E207
rs3799977 ADHD 5.00E206 18839057 SUPT3H 5.87E213 20.25 rs9472409 3.83E215 20.852 0.216
rs420259 Bipolar disorder 6.00E208 17554300 DCTN5 6.41E207 0.127 rs34514 7.20E213 20.645 0.477
rs4654748 Vitamin B6 8.00E218 19303062 NBPF3 4.35E207 20.136 rs1780324 2.27E210 0.818 0.968
rs1780324 Alkaline phosphatase 7.00E215 18940312 NBPF3 2.26E210 20.203 Same SNP NA NA NA
rs657152 Alkaline phosphatase 2.00E230 18940312 ABO 5.56E204 20.064 rs11244079 4.96E206 0.337 0.028
rs505922 TNF-a levels 7.00E240 18464913 4.26E205 20.088 rs11244079 4.96E206 0.352 0.005

Venous thromboembolism 4.00E215 19278955
rs7112513 Soluble transferrin receptor 6.00E209 18464913 TAGLN 2.47E204 0.068 rs236919 6.08E206 20.432 0.049
rs10919071 QT interval 1.00E215 19305409 ATP1B1 3.51E224 0.458 Same SNP NA NA NA

LD, linkage disequilibrium; IBD, inflammatory bowel disease; ADHD, attention deficit hyperactivity disorder; SLE, systemic lupus erythematosus; COPD, chronic obstructive pulmonary disease; sign of %
variance explained denotes whether major allele is associated with increased (+) or decreased (2) transcript abundance.
aFor the purposes of this table and accompanying analysis, the dominant eSNP is defined as the eSNP with the lowest GLS association P-value at the target gene.
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based association testing using PBAT (version 3.5) (14,15). A
robust empirical variance estimator was used to calculate the
variance in each family-based association test, which esti-
mates correlation among family members when calculating
the genetic variance–covariance matrix. Despite reduced stat-
istical power resulting from the nearly 25% reduction in
sample size, nearly three-fourths (74.9%) of the population-
based associations were also significant using family-based
association testing (P ≤ 0.05). The remaining 25.1% of the
significant population-based tests not associated using family-
based methods had lower minor allele frequency (mean of
0.277 versus 0.304 for those that were significant, P ¼ 6.6 ×
10215) and were consequently tested in fewer informative
families [means (standard deviations) of 79.3 (19.7) versus
84.4 (22.0), P , 10216], suggesting that failure to associate
using family-based methods was largely related to reduced
statistical power and that observed associations identified by
the population-based methods were not due to occult popu-
lation stratification.

We next compared our results with a recent genome-wide
survey for allelic expression (AE) in Epstein–Barr virus
(EBV)-transformed lymphoblastic cell lines of Caucasian
origin (16). This approach detects only cis-acting variation
and provides an orthogonal test for heritable gene expression
changes. The AE mapping was carried out in CEU-HapMap
LCLs using three or more consecutive expressed marker
SNPs as a trait (AE windows); �33 000 informative AE
windows with local SNPs phased in HapMap Phase 2 data
(rel. 22) were included, resulting in �6.6 million AE associ-
ation tests. Of these, �200 000 SNP–AE window pairs
(�3% of tested pairs) showed association at P , 1025 level,
corresponding to permutation significance of 0.001, which
corrects for multiple testing in each window. For details, see
Ge et al. (16). We limited our analysis to variants assessed
by both methods. Information was available for 3283 of the
7274 identified CD4+ eQTL associations, corresponding to
673 genes. Evidence for significant AE (P , 1025) was con-
firmed for 818 transcript–SNP pairs (24.9%) in 217 genes
(32.2%) when only 3 (0.06%) transcript–SNP pairs were
expected to overlap by chance (P , 1026). Given that prior
observations suggest that only 50% of eQTL associations
overlap with AE signals when both are performed in the
same tissue (16), the degree of observed overlap between
our eQTL associations in CD4+ lymphocytes with the AE
findings in LCLs is considerable. Of particular note, 15 of
the 19 informative variants with the strongest evidence of
eQTL association (Table 1) demonstrated replication by AE
mapping.

We also compared our results with two similar studies per-
formed using EBV-transformed immortalized LCLs (8,9,12).
The studies differ with respect to ascertainment strategies,
sample size, expression and genotyping platforms, and
methods of statistical analysis. However, considerable
overlap in replicated associations was noted across studies:
18.8 and 39.9% of genes found to have cis-acting variants in
the GeneVar and Dixon studies, respectively, were also
noted in Childhood Asthma Management Program (CAMP).
Although more genes with evidence of cis-acting regulatory
variation were identified in the current analysis (45 and
296% more than the GeneVar and Dixon data sets, respect-

ively), this is likely a function of between-study differences
in sample size and defined significance thresholds rather
than cell type.

We examined the physical distribution of eSNP in our data
set in relation to genomic distance from transcript (Fig. 2).
Similar to prior observations (17,18), enrichment of
expression-associated variation increased exponentially with
increasing proximity to transcript, with a .30-fold increase
over expectation under the null (horizontal line at P ¼ 0.001
in Fig. 2) for variants within 1 kb of transcript. We also note
persistent enrichment at 50 kb from transcript (generally
10–15-fold over null expectation), suggesting that more
distal regulatory variation is notable in some genes. To
further explore the extent of more distal regulatory variation,
we extended our association testing to variants mapping as
far as 1 Mb from transcript and found significant residual
enrichment as far as 500 kb from transcript (P , 1025),
suggesting the existence of more remote regulatory variation
in a subset of genes.

eQTL mapping of disease-associated variation

A catalog of putative regulatory variants could facilitate
mapping the genetic determinants of complex traits. We com-
pared our results with a catalog of 285 published GWAS that
includes results for 1544 SNPs associated with 198 traits (19).
We found strong enrichment for cis-acting regulatory variation
among the disease-associated genes: of the 783 genes with

Figure 2. The proportion of expression–trait association results with
population-based P-values ,0.001 are plotted against distance from transcript
boundaries for SNP within 1 Mb of transcript (6.86 million association tests).
SNP distances were rounded up to the nearest kilobase, resulting in 2000 bins.
A lowess curve with smoothing span of 0.1 is plotted in solid black. The line at
0.001 on the ordinate reflects the proportion of SNP that would be expected
under the null hypothesis of no association. The red data points denote the
50 kb window considered for our primary association studies.
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Figure 3. Examples of disease-associated eQTL findings in peripheral blood CD4+ lymphocytes. For each of five panels (A–E), upper figure displays the
–log10 P-values of population-based tests of association as a function of physical distance. Line colors correspond to results for individual genes (defined in
legend), with relative position and strand orientation of genes depicted as arrows. Lower figure displays box plots of transcript intensity (log2) as a function
of disease-associated SNP genotype, the position of which is denoted by (∗) in the upper figure. (A) Asthma, Crohn’s and type I diabetes-associated
ORMDL3/GSDML; (B) Crohn’s disease/inflammatory bowel disease-associated IL23R; (C) lupus-associated BLK locus; (D) lipid-associated FADS1,
FADS2, and FADS3; and (E) type I diabetes-associated SUOX.
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Figure 3. Continued
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SNP–disease associations (as designated in the Catalog of
Published GWAS, abstracted from primary GWAS publi-
cations) for which eQTL data were available in our data set,
evidence of cis-acting regulatory variation was observed for
119 (15.2%), 1.63 times more frequent as expected by
chance (95% confidence interval 1.32–2.00, Fisher’s exact
P ¼ 6.41 × 1026; see Supplementary Material, Table S2).
The degree of eQTL enrichment was similar across strata of
minor allele frequencies, with fold enrichment of 1.59 (P ¼
0.001), 1.69 (P ¼ 0.0005), 1.61 (P ¼ 0.001) and 1.78 (P ¼
0.0003) for minor allele frequency bins of 0.05–0.20, 0.21–
0.30, 0.31–40 and 0.41–0.50, respectively, suggesting that
the observed enrichment of eSNP cannot be explained by con-
founding by allele frequency. We note that the degree of sig-
nificance of this fold enrichment may be slightly
overestimated due to some non-independence of transcripts
in our eQTL data set, due to their co-expression in CD4+
lymphocytes.

Of 119 GWAS disease-associated genes harboring
cis-acting eQTL, we found 24 examples in which the variant
most strongly associated with clinical phenotype also exhibits
strong association with gene expression (Table 2). Regulatory
function has been demonstrated previously for several of these
variants, including multiple variants on chromosome 17q and
ORMDL3/GSDML in asthma (12) and Crohn’s disease (20)
(Fig. 3A); rs7517847 and interleukin 23 receptor expression
in inflammatory bowel disease (Fig. 3B) (21,22); and

rs13277113 with BLK in systemic lupus erythematosus
(Fig. 3C) (23). For example, a GWAS identified variants on
chromosome 17q (including rs7216389) that confer increased
susceptibility to asthma and were strongly associated with
ORMDL3 expression in LCLs (12). We confirmed these find-
ings in the CD4+ lymphocyte data set: rs7216389 rare-allele
count was associated with ORMDL3 expression in a dose-
dependent manner, explaining 16.5% of expression variability
(P ¼ 1.6 × 1028). In our CD4+ lymphocyte data set, stronger
evidence was demonstrated for variants immediately upstream
of ORMDL3, including rs4795405, which is located 4.6 kb
upstream of the ORMDL3 transcription start site, explaining
20.2% of ORMDL3 expression variability (P ¼ 3.0 × 10210).
We note that the mechanism for the genetic co-regulation of
ORMDL3 and GSDML was recently defined (24), resulting
from regional gene regulation by allele-specific binding of
insulator CTCF at SNP rs12936231, in strong LD with
rs4795405 (D′ ¼ 1.0, r2 ¼ 0.69) (24). This polymorphism
was strongly associated with asthma in three independent
populations (combined P ¼ 8.74 × 1027), including the
CAMP asthmatic probands (family-based association study,
P ¼ 0.007) (24).

Although a substantial proportion of the disease-associated
variants for which we have identified regulatory function
relate to T-cell-associated diseases [including asthma, auto-
immune disease, type I diabetes (T1D) and inflammatory
bowel disease], regulatory variation for other disease classes,

Figure 3. Continued
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including serum lipid levels, anthropomorphic measures,
cancer and neuropsychiatric disorders, were also noted. For
example, strong associations of DOCK7 and FADS1
expression levels with lipid-associated risk alleles that have
been previously demonstrated using liver-derived RNA
samples were also noted in our CD4+ lymphocyte data set
(Fig. 3D). Similarly, a recently identified determinant of
height (25) (rs6899976) was strongly associated with the
expression of L3MBTL3 in CD4+ lymphocytes, explaining
37.3% of the variance of L3MBTL3 expression (P ¼ 9.7 ×
10221). No other neighboring gene’s expression was associ-
ated with rs6899976 genotype, despite similar ranges of
expression. L3MBTL3 is expressed in osteoblasts and embryo-
nic bone, harbors multiple vitamin D response element-
binding sites and is a target of down-regulation by
1,25-hydroxyvitamin D (26), all supporting L3MBTL3 as a
plausible determinant of height.

We assessed whether the disease-associated eSNP was also
the SNP most strongly associated with target gene expression
(i.e. is the disease-associated eSNP the dominant eSNP of the
target gene). In approximately one-third of the cases (10 of 31
instances), the disease-associated eSNP was the dominant
eSNP for the target gene. Of the remaining variants, LD
between the disease-associated eSNP and the dominant
eSNP was very high (median 0.82, IQR 0.61–0.89), with
only four instances where r2 was ,0.60. To evaluate the
implications of this, we repeated the eQTL association tests
for the disease-associated eSNP, conditioned on the most
dominant eSNP. In all but a few instances, this adjustment
resulted in loss of evidence for eSNP association of the
disease-associated SNP. These data suggest that in the vast
majority of the cases, the disease-associated variants are
tightly linked to the dominant regulatory variants underlying
the variability in transcript abundance. Although few, there
were several instances where evidence for eSNP association
of the disease-associated variant persisted even after con-
ditioning on the dominant eSNP, including rs505922 at the
ABO locus (conditioned P-value 0.005), rs6899976 at
L3MBTL3 (P ¼ 0.006) and rs2290416 at NAPRT1 (P ¼
9.85 × 1027). These results suggest that in these three
instances, the target genes are controlled by at least two loci
(the primary dominant eSNP and the disease-associated
eSNP). It is possible in these cases that the primary eSNP
may therefore independently contribute to disease suscepti-
bility.

In addition to the 24 instances in which we found that a
disease-associated SNP was an eSNP, we identified evidence
for regulatory variation in 95 other disease-susceptibility
genes (Supplemental Material, Table S2). Measures of LD in
the HapMap samples of Western European ancestry were
available for 72 eSNP/disease-associated SNP pairs. We
found that in one-third of the cases (24 of 72), D′ between
the disease- and expression-associated variants was 1,
suggesting that the identified disease associations are likely
due to a regulatory effect marked by a shared haplotype;
although indirect association due to bystander effect of neigh-
boring causative markers (27) could also explain these pat-
terns. Among the remaining 48 cases, pair-wise LD between
the disease and expression-associated variants was low
(median r2 0.031, IQR 0.006–0.181), suggesting that in

these cases, the GWAS-identified disease associations are
independent from our observed expression associations and
that testing of these novel regulatory variants for evidence
of disease association may reveal heretofore unknown allelic
heterogeneity at these disease-susceptibility loci.

SNP-under-probe effects

Interference of probe hybridization due to polymorphism in
the target transcript sequence can bias expression association
studies (28). Alignment of probe sequences with dbSNP
(build 129) revealed a non-significant trend for excess
SNP-under-probe effects, as 7.4% (123 of 1662) of
expression-associated transcripts harbor at least one known
polymorphism, compared with 6.2% (1105/17 789) among
the remaining Illumina HumanRef8 v2 target sequences not
associated with cis-acting variants (Fisher’s exact test, P ¼
0.06). We note that repeating the cis-acting expression associ-
ation studies after removal of probes with known sequence
variation did not change our results (i.e. the P-value distri-
butions were similar, resulting in similar FDR cut-offs). More-
over, we note that several eSNP-associated genes for which
the Illumina probes have known polymorphism (i.e. IPO8,
RPS23 and TMEM25; Table 1) demonstrated confirmed AE
(a method immune to SNP-probe effects), suggesting that
the observed expression association for these variants may
not be due to SNP-under-probe effects. Similar to
observations by others (29), these results suggest that though
SNP-under-probe effects are present, they do not present a sig-
nificant problem in the interpretation of our results.

DISCUSSION

Identification of functional non-coding genetic polymorphisms
is an ongoing challenge in human genetics. Unlike coding
variation, differentiating functional variants from among the
millions of common human polymorphisms is hampered by
the lack of accurate predictive algorithms and limited avail-
ability of functional sequence annotation. As we and others
have already demonstrated, association mapping of regulatory
polymorphisms in human populations is feasible with rela-
tively small sample sizes and can facilitate the identification
of disease-susceptibility loci (30). The enrichment for
eQTL-associated variants within the catalog of GWAS
studies observed in our analysis is very similar to that recently
observed by Nicolae et al. (30) using LCL-derived eQTL data.
These and future studies, in conjunction with complementary
approaches like AE mapping, should facilitate annotation of
regulatory sequence variation and help accelerate identifi-
cation of functional disease-susceptibility variation.

Our analyses provide several insights regarding the role of
regulatory variation in common disease. For several instances
in which the mechanism of SNP–disease association was not
discernible from the initial GWAS of disease susceptibility
(due to the proximity of the variant to more than one plausible
candidate), expression of only one gene was associated with
disease-susceptibility genotype, implicating the expressed can-
didate over other neighboring loci in disease pathogenesis. For
example, rs1701704 on chromosome 12q13 is strongly associ-
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ated with T1D in three populations (P ¼ 9.13 × 10210) (3).
Although rs1701704 resides within a 250 kb haplotype block
that includes 13 genes (several of which are plausible biologic
candidates for T1D), eQTL mapping revealed that the
T1D-associated risk allele was associated with increased tran-
script abundance of only one gene—sulfite oxidase (SUOX)—
explaining 11.8% of the variation in its expression (P ¼
0.0004, Fig. 3E). rs1701704 was not significantly associated
with expression of any of the other candidates in this region
(despite similar variances in expression for most), suggesting
a functional role for SUOX over others loci in this region in
T1D pathogenesis. Other notable examples include the associ-
ation of the T1D-associated variant rs11052552 (31) with
expression of C-type lectin-like 1 (CLECL1, P ¼ 4.11 ×
1025) but not C-type lectin domain family 2D (CLEC2D,
min P ¼ 0.24); peripheral blood eosinophil level-associated
rs1420101 (32) with expression of IL18R1 (P ¼ 0.0489) but
not IL1RL1 (min P ¼ 0.74); and the height-associated
rs6899976 with L3MBT3 but not SAMD3 (P ¼ 0.20).

In several instances (including rs3890745 with MMEL1 and
TNFRSF14 in rheumatoid arthritis and chromosome 17 var-
iants with ORMDL3 and GSDML in asthma and Crohn’s),
the disease-associated variant appears to influence expression
of two or more neighboring genes, with a similar proportion
of expression explained for both genes. In these cases, it is
not possible to discern which gene is the more likely to influ-
ence disease pathogenesis, and it is intriguing to speculate that
it is in fact altered expression of both genes which affects
disease susceptibility. Conversely, we also note several
examples of confirmed eSNPs that are associated with suscep-
tibility to more than one clinical trait (i.e. genetic pleiotropy)
(12,20,33,34). Co-segregation of inflammatory bowel disease
with rheumatoid arthritis (35,36) and asthma with Crohn’s
disease (36,37) suggests shared molecular determinants
among these pairs of conditions. Our observation that ident-
ified susceptibility loci for these traits appear to regulate
specific genes implies that the determinants of these pleiotro-
pic disease associations operate downstream of the variants’
direct influences on gene expression and may be due to inter-
actions with other susceptibility loci.

A primary distinction of our study from many others is our
focus on a primary cell type (CD4+ lymphocytes) harvested
directly from study subjects in the clinical setting. Although
our samples were collected using a standardized protocol,
and batching of samples during hybridization was random-
ized to avoid center-specific biases in our analyses, we
anticipated substantial between-sample variability that could
compromise our ability to detect SNP-specific genetic
effects, considering that sample collection took place over
an 18-month period at four clinical centers across the
USA. However, we observed associations of substantial
genetic effect on par with prior in vitro studies in LCLs,
suggesting that eQTL mapping studies using clinical
samples are robust to these unavoidable experimental influ-
ences. Successful mapping of eQTLs in peripheral blood
mononuclear cells (11), adipose tissue (29) and cortical
tissue (18) support this notion.

Although immortalized LCLs are a convenient, renewable
source of study materials, recent evidence of substantial
tissue-dependent differences in the patterns of regulatory

variation suggests that the genetics of gene expression for
the purposes of disease gene identification should be
studied in disease-specific cell types (38). Comparisons of
our results with the eQTL and AE studies, all conducted in
LCLs, support these sentiments, in that although we saw con-
siderable overlap for many loci (32.2% overlap with AE,
18.8% with GeneVar eQTLs and 39.9% with Dixon
eQTLs), the majority of identified variants appear to be
uniquely (or at least more easily) observed in the primary
CD4+ lymphocytes. These observations provide further
impetus for the development of large-scale integrative
genome data sets in diverse cell types.

In summary, using a population-based integrative genomics
genetic mapping approach, we have identified common
genetic variants that influence the expression of 1585 genes
in CD4+ lymphocytes. These polymorphisms represent an
important subset of total genetic variation that can be priori-
tized for association testing of common traits, particularly
those with an immune basis. Similar studies across various
cell types and tissues could facilitate annotation of all regulat-
ory variation relevant in health and disease.

MATERIALS AND METHODS

Study population and sample collection

The CAMP was a 4.5-year multicenter clinical trial of child-
hood asthmatics designed to evaluate the long-term efficacy
and safety of inhaled asthma medications (39). Nine hundred
sixty-three of the 1041 trial participants and 1518 parents
provided DNA samples for genetic studies of asthma. The
trial was followed by two 4-year observation studies—
CAMP Continuation Study (CAMPCS) 1 and 2. RNA was
obtained from peripheral blood CD4+ lymphocytes col-
lected during year 3 or 4 CAMPCS/2 clinic visits at four
CAMP study centers (Baltimore, Boston, Denver and
St Louis). We isolated CD4+ lymphocytes using anti-
CD4+ microbeads by column separation (Miltenyi Biotec,
Auburn, CA, USA) (40) and extracted total RNA using the
RNAeasy Mini Protocol (QIAGEN, Valencia, CA, USA)
(41). High-quality RNA was available for 378 CAMP par-
ticipants, of whom 200 were of self-reported non-Hispanic
white ancestry and had available genotype data. Eighteen
of the 200 subjects were siblings (i.e. nine sibling pairs).
The remaining 78 subjects were of diverse ethnic
backgrounds (including African-Americans, Hispanics and
other). Owing to known between-population differences in
gene expression and eQTL results (42–44), and because
the largest group of subjects (African-Americans, n ¼ 49)
was too small and underpowered for separate eQTL
studies, we restricted our analysis to the non-Hispanic
white subset only. Approval was obtained from the Insti-
tutional Review Boards of Brigham and Women’s Hospital
(Boston, MA, USA) and each of the CAMP participating
institutions. Informed consent was obtained from study par-
ticipants if they were over the age of 18 years. Otherwise,
informed consent was obtained from parents of participating
children, and the child’s assent was obtained prior to study
enrollment.
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Expression profiling

Expression profiles were generated with Illumina Human-
Ref8 v2 BeadChip arrays (Illumina, San Diego, CA,
USA). Raw expression intensities generated using BeadStu-
dio (v3.1.7) were processed with background adjustment
with RMA convolution using the lumi package (45,46) and
normalized using VSN (47). Two thousand two hundred
eighty of 22 184 transcripts were not considered for analysis
because they did not uniquely map or were located on
sex chromosomes. The microarray data are available
through the Gene Expression Omnibus repository (GEO,
at http://www.ncbi.nlm.nih.gov/geo/, accession number
GSE22324).

Genotyping

DNA was available for 200 subjects of self-reported white
ancestry, as well as 292 of their parents (146 complete
nuclear families). Genotyping of families was performed by
Illumina on the Infinium II HumanHap550 Genotyping Bead-
Chip. Forty-seven additional singletons were genotyped on
the Human610W-Quad platform, with excellent genotype
concordance rates among four subjects genotyped on both
platforms (average 99.99%, minimum 99.89%). Association
studies were limited to the set of overlapping markers
present on both platforms passing quality control (QC).
The merged data set comprised 516 512 autosomal SNPs.
QC evaluations and data cleaning were performed using
PLINK (48). Passing subjects all had a completion rate
higher than 96.5% (average 99.8%). Markers were excluded
(16 419 and 9022 from the 550 and 610 K platforms, respect-
ively) for the following reasons: (i) probe sequences did not
map uniquely to the hg18 genome build, (ii) poor genotype
cluster separation, (iii) –log10(P-value) for Hardy–Weinberg
equilibrium ≥8, (iv) marker completion rate ,95%, (v)
monomorphic markers or (vi) Mendelian error count ≥5.
Unlike some other researchers (8), we did not apply non-
specific gene filtering, as we have found that transcripts
with lower overall intensities and/or narrower intensity distri-
butions still displayed informative differential expression by
genotype.

Statistical analysis

Population-based analyses were conducted using generalized
least squares (GLS) models with the nlme R package,
adjusting for age and sex. To control for potential popu-
lation stratification, the model was further adjusted for
four significant principal components derived from the gen-
otype data with EIGENSTRAT (49). Data were managed
using an smlSet from the Bioconductor package GGtools
(50). The GLS model covariance matrix was modified to
accommodate correlation among the few related probands
(nine sibling pairs) in the data set, enabling accurate
genetic effect size estimation. Specifically, the correlation
structure that models within-family correlation was fixed
to reflect the expected number of alleles shared by siblings.
We used this approach rather than estimating the correlation
empirically because we felt that the number of sibling pairs

was too small (n ¼ 9) to reliably estimate the correlation.
We adjusted the test statistics by the genomic inflation
factor l, which was estimated to be 1.051644 from the dis-
tribution of test statistics from the 1 Mb cis-eQTL screen.
We employed the FDR procedure (51) with a threshold of
0.05 to adjust for multiple comparisons. Comparisons of
our results with those from prior GWAS studies were per-
formed using a catalog of 285 published GWAS available
at www.genome.gov/gwastudies (19). Estimates of LD
were obtained using the HapMap samples of Western Euro-
pean ancestry (rel. 21). Fold enrichment of eSNP in the
Catalog of Published GWAS (19) was assessed using the
tabular data (accessed December 15, 2008) as abstracted
from primary GWAS publications; significance was evalu-
ated by Fisher’s exact tests.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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