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Abstract. The data acquired from the hyperspectral airborne sensor DAIS-7915
over Izrael Valley in northern Israel was processed to yield quantitative soil
properties maps of organic matter, soil �eld moisture, soil saturated moisture,
and soil salinity. The method adopted for this purpose was the Visible and Near
Infrared Analysis (VNIRA) approach, which yields an empirical model for pre-
dicting the soil property in question from both wet chemistry and spectral informa-
tion of a representative set of samples (calibration set). Based on spectral
laboratory data that show a signi�cant capability to predict the above soil
properties and populations using the VNIRA strategy, the next step was to
examine this feasibility under a hyperspectral remote sensing (HSR) domain. After
atmospherically rectifying the DAIS-7915 data and omitting noisy bands, the
VNIRA routine was performed to yield a prediction equation model for each
property, using the re�ectance image data. Applying this equation on a pixel-by-
pixel basis revealed images that described spatially and quantitatively the surface
distribution of each property. The VNIRA results were validated successfully
from a priori knowledge of the area characteristics and from data collected from
several sampling points. Following these examinations, a procedure was developed
in order to create a soil property map of the entire area, including soils under
vegetated areas. This procedure employed a random selection of more than 80
points along nonvegetated areas from the quantitative soil property images and
interpolation of the points to yield an isocontour map for each property. It is
concluded that the VNIRA method is a promising strategy for quantitative soil
surface mapping, furthermore, the method could even be improved if a better
quality of HSR data were used.

1. Introduction

Hyperspectral remote sensing (HSR) is an advanced technique that provides a

near-laboratory-qualit y re�ectance spectra of each single pixel. This capability allows

the identi�cation of targets based on their well-known spectral absorption features

(Goetz et al. 1985). Under laboratory conditions, the spectral information of the

visible, near-infrared and short wave infrared (VIS-NIR-SWIR; 0.4–2.5 mm) spectral

regions provides a promising capability to identify soil, vegetation, rock and mineral

materials (e.g. Stoner and Baumgardner 1981, Gao and Goetz 1990, Clark et al.

1990). Under HSR conditions, this spectral information enables semi-quantitative
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classi�cation of large areas regarding such issues as composition of rocks and

minerals (Kruse et al. 1990, Lorcher 1999, Hausknecht 1999, vegetation status

(Martin and Aber, 1993, Gao and Goetz 1995), water body condition (Keller et al.

1998, Lazar et al. 1998, Pierson 1998) and atmospheric gas distribution (Gao and

Goetz 1990, Richter and Ludeker 1998).

Because soil is a complex system, soil properties cannot be easily assessed directly

from their re�ectance spectra even under controlled (laboratory) conditions (Ben-

Dor and Banin 1994). Since under a remote sensing domain this capability could be

even more problematic (Peng 1998), neither quantitative nor semi-quantitative spa-

tial analysis of many soil properties from re�ectance data have yet received proper

attention in either the point or imaging spectroscopy domain. Nevertheless, in some

cases, quantitative feasibility can be achieved using HSR data, mainly if the property

in question is a well-known spectral property active across the re�ectance region

(e.g. organic matter, Ubelhoven et al. 1997 ).

A new approach for analysing soil properties from laboratory re�ectance informa-

tion has been developed by Dalal and Henry (1986) and later expanded by Ben-Dor

and Banin (1995a, 1995b) . The method (termed VNIRA; Visible and Near Infrared

Analysis) was originally developed for use in food science for rapidly determining

chemical constituents directly from their laboratory re�ectance spectra in the NIR-

SWIR spectral region (1.0–2.5 mm) (Norris 1988). This approach employs a statistical

model that draws a correspondence between ‘wet chemistry’ and re�ectance data to

yield a tool for empirically predicting the constituent in question solely from its

re�ectance information. The VNIRA method is widely used in �elds such as food

science, tobacco and oil industries, pharmacology, vegetation monitoring and medi-

cine (Stark et al. 1986). In the �eld of remote sensing, extracting re�ectance values

from a pixel is a complicated task as compared with the process under controlled

laboratory conditions, because of illumination and terrain changes, atmospheric

attenuation, low signal-to-noise ratio and more. However, if the airborne sensor is

sensitive enough and the atmospheric eVects can be properly removed from the

original data, this technique might be useful for rapid quantitative mapping of large

areas. In this regard Curan et al. (1992) and LaCapra et al. (1996) were able to

demonstrate that the VNIRA approach is capable of assessing canopy chemistry by

using AVIRIS (Airborne Visible and Infrared Imaging Scanner; Vane et al. 1993 )

HSR data. Soil is a more heterogeneous material than vegetation, which eventually

results in greater diYculties in applying quantitative analyses to HSR soil data. Ben-

Dor and Banin (1990, 1994, 1995a, 1995b) have shown that the VNIRA approach

is useful for assessing soil properties if careful laboratory conditions and spectral
manipulation techniques are employed. Moreover, they showed that for several soil

properties, a large number of spectral channels is not always required to accurately

predict the property in question (number of channels required ranged between 15

and 313). Because airborne HSR technology enables band numbers around this

range (e.g. AVIRIS-224, DAIS-79), the VNIRA approach should be examined for
soil applications using HSR data. To the best of our knowledge, this approach has

never been applied to a soil environment in a remote sensing domain. This study is

therefore aimed at examining the HSR-VNIRA capability under such conditions.

2. Materials and methods

2.1. T he selected sensor and area

The DAIS-7915 scanner was selected for this study. The DAIS-7915 is a whisk
broom sensor, manufactured by the GER Inc., USA and upgraded by the DLR
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Germany (Muller and Ortel 1997). The sensor is sensitive to the VIS-NIR-SWIR-

TIR spectral regions (0.4–14 mm), consisting of 79 channels across, with a bandwidth

ranging from 0.9 nm to 60 nm. The instantaneous-�eld-of-view (IFOV) is 3.3 mrad,

and the �eld-of view (FOV) is 52°. For this study only the refractive portion of the

electromagnetic radiation was taken covering the VIS-NIR-SWIR (0.4–2.5 mm) spec-

tral region with 72 spectral bands. The sensor was mounted onboard a DLR Dornier

228 aircraft and �own over several Israel locations during the summer of 1997 from

an altitude of 10 000 feet (providing a pixel size of about 8 m×8 m). The area selected

for this study is in northern Israel (Izrael Valley) on a relatively �at terrain called

Zvaim Heights (�gure 1). This area is heavily cultivated and intensively used to grow

agricultural crops. The soil texture is heavy clay (mostly vertisol in the USDA

classi�cation system), which causes many related problems, such as poor drainage,

salinity and heavy structure.

2.2. Data acquisition

The over�ight took place on 2 August, 1997, at 15:00 local time (12:00 GMT).

On the ground, several teams measured �eld spectra, using a �eld portable spectro-

meter (Analytical Spectral Devices—ASD), and surface temperature, using a thermal

radiometer gun. Also, 62 soil samples were collected from throughout the area during

the overpass. The soil sampling was carefully done as follows: for each soil sample,

a uniform area measuring about four pixels (~30 m×30 m) was selected. Each target

area was described in detail in the �eld, accurately georeferenced, using a GPS

device, and photographically documented. Four to �ve samples from the upper layer

of the selected 30 m×30 m area were mixed to yield a representative soil composite

for further analysis. The selection of sample areas was based on minimal variation

between airborne and �eld spectra, which was visually detected during the sampling

time. The soil samples were stored in plastic bags in order to preserve the in-�eld

soil moisture and were brought into the laboratory for chemical and physical

analyses.

2.3. Wet chemistry analyses

The soil �eld moisture was determined by the oven drying method after Gardner

(1986) (weighing the samples before and after 24 hours in a 105°C environment).

The organic matter content was determined by using the loss-on-ignition method

after Ben-Dor and Banin (1989) (heating the sample to 400°C for 8 hours and

calculating the weight (organic) loss on a dry soil basis). The soil was brought to

the saturated moisture condition using distilled water. After equilibration for 60

minutes, the soil solution was extracted using a vacuum of ~0.3 atmospheres. The

extracted solutions were stored in glass bottles under refrigeration for further analysis.

The electrical conductivity (EC) at 25°C and the pH of the extracted solutions were

analysed. The saturated moisture content was determined using the oven drying

method (see above) . In addition to all of the above measurements, the soils were

identi�ed by colour using a Munsell colour chart and measured for their re�ectance

under laboratory conditions using two spectrometers (ASD with 2100 channels

across the 0.4–2.5 mm spectral region and LT-1200 with 1200 channels across the

1.2–2.4 mm spectral region). A comparison between �eld and laboratory spectra

revealed a good match at the known atmospheric windows, whereas better signal-

to-noise ratios were observed in the laboratory spectra recorded by the LT-1200

spectrometer at around 2.1–2.4 mm).



Case study over clayey soils in Israel 1047

2.4. DAIS-7915 data processing

The DAIS data were converted into radiance data using a calibration �le provided

by the DLR (based on a laboratory calibration performed by the Optoelectronics

Laboratory of the DLR before the �ight). Whereas most of the DAIS channels

visually provided sharp images, apparently channels 60–70 (between 2.314 and

2.462 mm) were contaminated with nonsystemati c across-track noise. Using the

Minimum Noise Fraction (MNF) technique (Green et al. 1988), the noise components

were isolated from the spectral components and the data spectral cube was recon-

structed to yield clean images of channels 60–67. Using this method, the noise from

channels 68–70 could not be removed and therefore they were omitted from the

entire reconstructed image cube.

Atmospheric eVects were removed by applying several methods and models on

the radiance data as follows: ATREM (Gao et al. 1993), ATCOR (Richter 1996),

MODTRAN (Berk et al. 1989), �at �eld; IARR (Kruse 1988) and Empirical Line

(EL; Roberts et al. 1985) techniques. The best method for providing the most reliable

results (as examined against �eld soil spectra) was the EL technique with seven

targets. Accordingly, the radiance data (MNF treated) were corrected for further

analysis using this selected EL technique. Nevertheless, because spectral noise across

the 2.2–2.5 mm wavelengths (channels 62–67) were still visible after the atmosphere

recti�cation, this range was gently smoothed by using a moving average reduction

technique.

Locating each soil sample on the image was possible using DiVerential Global

Position System (DGPS) information recorded during the data acquisition (both in

the air and on the ground) and by using the detailed information collected for each

of the targets during the time of acquisition. DAIS re�ectance spectra (resulting from

the EL correction) of each sample (generated from 5–10 pixels around a well-de�ned

location of each target as obtained either by using the DGPS information or relying

on the detail �eld description of each selected area) were extracted and transferred

to a new environment in order to perform the VNIRA procedure independently.

2.5. Spectral analyses

The re�ectance R (or its �rst derivatives Rê; Rê=(R
l
R

lÕ1
)/Dl, where R is the

re�ectance at wavelength l and Dl is the spectral interval between two closed spectral

bands (l and l1)) of each wavelength for all samples ( laboratory and atmospheric-

ally corrected airborne data) were linearly correlated against the analysed value of

the given chemical property. A correlogram spectrum for each property, showing

the coeYcient of regression versus the wavelengths, was performed. The next step

was to select the highest (in terms of coeYcient of correlation) and most reliable 38

bands and their corresponding readings (�eld, laboratory and airborne) to run a

forward multiple regression analysis. The result of this stage is the following

prediction equation:

C
p
=B

0
+B

1
R

l1
+B

2
R

l2
+ ...... B

n
R

ln
(1)

where C
p

stands for the predicted property value, B
0

is a constant coeYcient for the

current population, B
1
B

n
are coeYcients for each wavelength reading, R is the

re�ectance or its manipulation (e.g. �rst or second derivatives) and l stands for

wavelength. The prediction accuracy is judged by using the following equation:

SEC=ãS (C
a
C

p
)2/(n1) (2)
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where C
a

stands for the laboratory values and n for the number of samples involved

in the analysis. In general equation (1) is empirically extracted from a spectrally and

chemically known population and is known as a calibration set.

3. Results

Table 1 provides general information about the selected soil population as

obtained from the laboratory analytical data (minimum {MIN} maximum {MAX},

standard deviation {SD}, and the coeYcient of variance {CV}). From this table it

can be seen that a wide range of both organic matter and EC (and hence soil salinity)

values does exist. The relatively high values of organic matter (MIN=3.56%) occur

because most of the analysed soils were characterized by high contamination of

dry vegetation debris (the soils were not run through a >2 mm sieve as is routinely

done in soil science prior to soil analysis) . The electrical conductivity (EC) values

range from 0.59 dsm cmÕ 1 (MIN) to 27.4 dsm cmÕ 1 (MAX) with a mean value of

4.14 dsm cmÕ 1 (AVE). The relatively high EC values provide evidence that the soil

surface areas along the study location were aVected by salinity contamination. This

�nding stands in good agreement with �eld observations, which show signi�cant soil

degradation in several locations around agricultural �elds. The soil saturated mois-

ture (SM) values are relatively lower than expected from clayey soils (AVE of

43.31%). However, because the �nal moisture stage in this method is subjective, the

most important issue is that all soils were treated equally. Other properties (soil �eld

moisture {FM}, and pH {PH}) represent normal values for the soils examined at

this time of the year.

The VNIRA procedure was �rst run on the laboratory spectral data (48 soil

samples and their spectra) to obtain a correlation between the spectral and the

chemical data (calibration stage) . This step was taken in order to ensure that the

selected populations have reliable chemical and spectral relationships to perform a

con�dent VNIRA analysis. Doing so revealed a signi�cant ability to predict each

soil property from its re�ectance information. In table 2 some statistical parameters

of the laboratory VNIRA results are provided (marked with @). In the next stage,

the DAIS spectral data (over the 0.5–2.3 mm spectral range) were processed using

the VNIRA approach and two spectral manipulations: the original DAIS re�ectance

(R) and its �rst derivative (Rê). The �rst step for each spectral domain was to generate

Table 1. General information about each property as obtained from the wet-chemistry
analyses.

EC
Electric

OM conductivity SM
FM Organic (Deci Soil-saturated

Field moisture matter PH Simens moisture
content (%) (%) pH (cmÕ 1 ) (%)

Average 9.08 4.83 7.9 4.14 43.31
Std. Dev. 6.79 0.70 0.1 6.21 2.77
CV*(%) 74.8 14.4 1.2 150 6.4
Minimum 4.67 3.56 7.5 0.59 37.98
Maximum 28.10 7.04 8.2 27.40 48.93
Average 9.08 4.83 7.9 4.14 43.31

Std. Dev.=Standard deviation, CV(%)=CoeYcient of variation (Std. dev. *100/Average).
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the correlogram spectrum in order to judge whether the highest correlated wave-

lengths consisted of reliable spectral assignments (known from the literature) . This

step is extremely important because it is intended to prevent spectral noise from

entering into the analyses (known as an over�tting problem, Davies and Grant

1987). Figure 2 provides the correlograms used for all properties examined under

the �rst derivative spectral domain. As seen, a relatively high correlation exists in

several wavelengths between the properties in question and their spectral readings

(r$ 0.50.6). In the case of organic matter for example, all of these wavelengths

can be assigned according to Ben-Dor et al. (1997) to remaining chlorophyll (around

0.7 mm), oil and cellulose (around 1 mm), pectin, starch and cellulose (around 1.6 mm),

and lignin and humic acid (around 2.3 mm). The prediction equations extracted from

these correlograms are given in table 2. These equations were generated by calculating

a forward stepwise multiple analysis on the highest 38 spectral reliable bands. The

next step was to run the best equation on a pixel-by-pixel basis on the DAIS

re�ectance cube in order to produce a spatial view of the property in question (see

later discussion) . In table 2, the prediction (calibration) equations for the examined

soil properties are given along with some statistical parameters (R2
m

, SEC, SEP, and

SEL; see de�nitions in table 2) and possible spectral assignments. From table 2 it

can be seen that in general, the prediction performances obtained for soil �eld

moisture, organic matter, saturated moisture, and soil salinity (EC) are favourable

(R2
m

>0.65). Both the organic matter and the �eld moisture properties are ‘features’

properties (having signi�cant spectral assignments, which are also termed ‘chromo-

phores’). In organic matter, many features across the VIS-NIR-SWIR regions are

dominant because of the many functional groups active in this spectral region (see

previous discussion) .

In order to determine whether the wavelengths were spectrally reliable, we

generated a pure spectra library of components representing the soil environment of

Zvaim Valley resampled into the DAIS spectral con�guration. Figure 3 (a, b, c)

provides the spectra of the following components: silt-loam soil in six diVerent

Figure 2. The correlograms of all examined properties as obtained from the �rst derivative
of the re�ectance DAIS readings (Rê) and the laboratory values.
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moisture contents ranging from 0.8% to 20.2% (taken from Bowers and Hanks

(1965) �gure 3(a)); montmorillonite, kaolinite, halite, illite and quartz (taken from

JPL-spectral library, Grove et al. 1992 �gure 3(b)) and pure (fresh-a and decomposed-

b) organic matter (taken from Ben-Dor et al. 1997, �gure 3(c)). From �gure 3(a) it

can be postulated that in addition to peak intensity changes at around 1.9 mm

(assigned to OH in water; see montomorillonite spectrum) and at 2.2 mm (assigned

to OH in clay lattice; see montmorillonite spectrum), signi�cant and consistent

changes of the spectral slope along the VIS-NIR (0.5–1.3 mm), SWIR-I (1.55–1.8 mm)

and SWIR-II (2.25–2.4 mm) regions also exist. As Ben-Dor and Banin (1994) pointed

out, the strong OH bands at 1.4 mm and 1.9 mm may not be always correlated with

soil/clay moisture. Ben-Dor and Banin (1994) showed that across the NIR-SWIR

spectral region (using 25 bands) , the 2.365 mm wavelength is highly correlated with

hygroscopic moisture, which emerged from the slope changes. In this regard it is

interesting to note that using 63 bands across this region with the same population,

the 1.621 mm wavelength is best for predicting soil moisture status based on a similar

slope assignment (Ben Dor 1992). As seen in table 2, the selected bands for predicting

soil moisture are 0.739, 0.86, and 1.65 mm, which all fell within the spectral range of

‘VIS-NIR slope changes’ previously discussed. Because these slope changes (in the

original spectra) are more pronounced in the �rst derivative domain, these wave-

lengths can be assigned to the slope-water relationship. Nevertheless, we suspect that

the 0.739 mm wavelength is also assigned to chlorophyll absorption that might occur

because of organic matter/vegetation remaining in the soil (see the pure organic

matter spectra in �gure 3(c) or even to microphytes (Karnieli and Tsoar 1994). In

general, relatively high organic matter content will be found along areas of relatively

high moisture. In the current study the coeYcient of determination value obtained

between organic matter and soil moisture (table 3) is relatively low (r=0.37 ), but

still high enough to indicate that such a trend might exist. To validate the above

discussion for the Zvaim soil samples, �gure 4 gives laboratory, �eld and airborne

spectra of two representative soil samples. As can be clearly seen, the absorption

features of OH in clay lattice (around 2.2 mm) and in adsorbed water (around 1.9 mm)

are signi�cant together with noticeable slopes at around the VIS (0.4–1.0 mm) and

at the SWIR-1 (1.2–1.8 mm) spectral regions. Weak spectral features can be depicted

around 0.7 mm and 0.83 mm, which can be attributed to both organic matter remaining

and iron oxide components in these soils, respectively.

4. Discussion

As Ben-Dor and Banin (1995b) pointed out, ‘featureless’ properties (properties

without a direct chromophore) may also be predicted via internal correlation with

Table 3. The correlation matrix of the wet chemistry components.

SM FM OM PH EC

SM 1.00
FM 0.29 1.00
OM 0.19 0.37 1.00
PH 0.22 0.26 0.39 1.00
EC 0.21 0.58* 0.43+ 0.61 1.00

SM=Saturated Moisture, FM=Field Moisture, OM=Organic Matter, PH=pH, EC=
Electrical Conductivity of the soil extracted pasta liquids.

*, + Signi�cance at the 0.001 and 0.01 probability level, respectively.
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‘chromophoric’ properties. In this case, neither the soil salinity nor the pH has any

direct spectral assignments. However, soil salinity (EC) is signi�cantly correlated

with �eld moisture content as seen in table 3 (r=0.58), and hence its prediction

equation consists of the �eld moisture assignments. From the correlation coeYcient

matrix it is postulated that a negative correlation exists between pH and EC (r=
0.61), whereas no direct correlation exists between pH and �eld moisture or

organic matter (‘chromophoric’) properties. If a more varied population containing

acidic, alkaline and neutral soils was involved, it is possible that a prediction equation

could be obtained for the pH property based on internal correlation. Also it may be

possible that a secondary intercorrelation (pH via EC with FM) might be less

eVective than the primary intercorrelation (EC with FM). The saturated moisture

(SM) content is known to be signi�cantly correlated with clay mineralogy and

content (Banin and Amiel 1970). As the clay content and its speci�c surface area

increase (e.g. appearance of montmorillonite as the dominant clay mineral in these

soils), more water molecules may enter into the �nal stage of the soil-saturated

mixture and hence aVect the saturated moisture content. Thus the assignment of the

saturated moisture wavelengths in table 2 are of OH in clay mineral lattice at

1.563 mm, 1.538 mm (u+2d ) and 2.183 mm (u+d ) and of water OH at 2.085 mm. In

summary it can be said that reliable spectral models for soil �eld moisture, organic

matter content, soil saturated moisture and soil salinity were achieved from the

DAIS data. The reliability is based on both statistical parameters and spectral

assignments. In general, quanti�cation (and detection) of soil salinity is a diYcult

and challenging task using re�ectance data (Csillage et al. 1993) or images based on

sun radiation if the eVect is not signi�cant to the human eye (Metternicht and Zinck

1997). This is because possible salts in the soil (e.g. NaCl), do not consist of signi�cant

absorption peaks across the relevant spectral region (see for example the spectrum

of halite in �gure 3(b)). In this case an indirect correlation with soil �eld moisture

(and less with organic matter) enables the VNIRA-salinity measurements to be

eVective. The correlation between soil �eld moisture and soil salinity in this area has

to be considered: in the study area, soil salinity emerges because of a high ground-

water table causing a capillary rise driven by the evaporation process. This causes

the formation of salt crusts at the soil/atmosphere interface (visible or invisible).

Along salinity-infected areas, the �eld moisture is relatively high, and hence, the

VNIRA analysis signi�cantly picks its location via the �eld moisture assignments.

In reality, the groundwater level may change from one season to another, and the

saline crust might serve as an indicator for determining its spatial dynamics.

Figure 5 illustrates the ‘property images’ as generated by applying the prediction

equations (see table 2) on a pixel-by-pixel basis. Basically it is assumed that an

8 m×8 m pixel can show mixed eVects of the property in question. However, although

this area may be represented by a diverse distribution, the calculated value may be

a fair average to demonstrate as precisely as possible the spatial distribution of the

soil property.

In general it can be seen that a reliable image of each property is depicted

(excluding the covered vegetation pixels, which are masked out of the image). This

conclusion is based on a priori knowledge of the area as well as on a careful

validation check of �ve independent soil samples. These samples were analysed in

the laboratory, just like the samples used for the calibration step, and are termed

the validation set. In this set, the VNIRA-based values were extracted from the

quantitative images obtained in the previous step. The predicted values were then
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Figure 3. Several pure materials suspected to be in the soil samples resampled into the DAIS
spectral con�guration (a) a silt-loam soil with varying hygroscopic moisture, taken
from Bowers and Hanks 1965, (b) minerals taken from Grove et al. 1992 and (c)
organic matter at two diVerent composition stages (a=fresh, b=decomposed after
355 days), after Ben-Dor et al. 1997.



E. Ben-Dor et al.1054

Figure 4. Representative spectra ( laboratory, �eld and airborne) of two soil samples, rep-
resenting typical spectral features emerging from a mixture of suggested pure
chromophores given in �gure 3.

compared with the actual ( laboratory) values, and the results are presented in �gure 6.

It appears that a favourable relationship occurs between the two values except for

sample b26. For practical reasons, the DAIS spectrum of sample b26 could not be

properly spatially extracted. This sample was located between two cotton plots

signi�cantly in�uenced by a mixed (soil and vegetation) pixel problem (a problem

might arise in any non-homogeneous pixel environment) . It is obvious that the b26

sample is an outlier sample among the validation set population. In general, hetero-

geneity in the population examined by the VNIRA approach may produce outliers

(Ben-Dor and Banin 1990). In this regard it is very important to identify the outliers

prior the calibration stage so that the selected model is stable and reliable. This step

was taken for sample b26 in the calibration stage, which is independent of the

validation stage. The poor validation results obtained from sample b26 demonstrate

that exact spatial identi�cation and positioning of samples in the VNIRA technique

are critical. It should be noted that the prediction equations developed in this study
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Figure 5. A mosaic image providing the spatial distribution of soil properties after applying
the prediction VNIRA equation given in table 2 to the DAIS re�ectance cube. Each
image is a spatial subset representing the intensive agriculture areas along the selected
�ight line. (a=Electrical Conductivity (EC), b=Field Moisture (FM), c=Organic
Matter (OM), d=Saturated Moisture (SM), e=Reference base map {channel #12
0.767 mm})

are adequate only for the soil population examined in this study, i.e. representing

the soil types of the calibration set.

It can be concluded that although a vast �eld validation check has not been
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Figure 6. Validation plots of each examined property, showing the actual values of selected
soil samples along the study area against the predicted values extracted from the
VNIRA image (a=EC (Ds cmÕ 1 ); b=FM (fraction); c=OM (fraction); d=SM
(fraction)).

performed on a large scale, the current results do indicate that the VNIRA methodo-

logy is a feasible tool for quantitatively assessing soil properties using a remote-

sensing means. It is important to note that the quality of the DAIS-7915 data still

lags (in terms of signal-to-noise ratio, radiometric calibration and sensors’ stability)

far behind that of laboratory data and even other airborne HSR data, such as the

AVIRIS 97 or HyMap data (Green et al. 1997, Cocks et al. 1998 ). Although the

results obtained in this study are promising, we strongly believe that using better

HSR data could improve the VNIRA’s accuracy and could enable it to be used as

an alternative tool for soil surface mapping. Another limitation is the fact that optical

remote sensing can directly assess only the soil surface area. Because full and detailed

soil mapping must consist of the entire pro�le, this tool is not optimally suYcient

for traditional soil mapping. Nevertheless, it is a most useful vehicle for assessing

the properties of surface conditions (e.g. physical crust) or signi�cant properties on

the surface (e.g. soil organic matter or surface moisture) . In conclusion it can be

summarized that in spite of the above-mentioned limitations, the current DAIS-7915

enabled reliable and quantitative assessment of soil properties on the soil surface.

The feasibility of the DAIS-7915 data to be processed by the VNIRA methodology

demonstrates that this analytical step can be practically used on other HSR data,

which is acquired by a better HSR sensor.
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5. Soil property maps

Two major limitations were encountered with optical remote sensing of soils:

(1) it is impossible to sense the entire soil pro�le (see previous discussion) ; and

(2) soil vegetation (dry or green) masks out Sun photons, preventing interaction with

the soil. Taking the second limitation into account, it appears that along densely

vegetated areas (temporary or permanent ) no soil information can be extracted from

the HSR images in general and from quantitative VNIRA images in particular

(Murphy and Wadge 1994, Zhang et al. 1998). In advanced agriculture it is important

to know the soil status in order to improve decision making from one season to

another. Because the soil surface is not always clear of vegetation coverage, a reliable

spatial mapping technique for soil properties is strongly required. In this regard, we

suggest application of an interpolation process on non-vegetated sites in order to

estimate the entire area (vegetated and non-vegetated). For that purpose and to

increase spatial accuracy, it is important to have a large number of soil samples for

the analysis. Traditionally, preparation of such a set (based on �eld and laboratory

work) is a time- and money-consuming process and is not always possible.

Alternatively, the VNIRA images oVer a favourable database from which large

numbers of soil samples and their corresponding properties can be rapidly extracted.

Accordingly, and based on the quantitative images created in the previous stage, we

randomly selected approximately 80 soil targets (pixels from the VNIRA image with

their corresponding soil property values) from an area measuring 49 km2 . Figure 7

shows the exact locations of these sites with polygons overlain to represent areas of

vegetation coverage. Examining the histogram of the chosen soil population (Gaosian

like) along with its spatial distribution (homogeneous like) suggests that the selected

group is a favourable database within which the selected interpolation processes can

be run. The �nal product of this stage is intended to be geocoded maps with isovalue

Figure 7. Locations of the interpolation points taken for the IDW analysis. Overlain are
polygons representing the areas of vegetation coverage.
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vectors for each property. The interpolation procedure selected for this stage was

the Inverse Distance Weighting Interpolation (IDW). This technique serves as a

model in the MapInfo software (MapInfo User’s Guide 1996) and is a type of moving

average interpolative usually applied to highly variable data. For certain data types

it is possible to return to the collection site and record a new value that is statistically

diVerent from the original reading, but within the general trend for the area. Because

this method is recommended for soil chemistry results, bedrock assays and mon-

itoring environmental data we used it in this study. The IDW technique calculates

a value for each grid node by examining surrounding data points that lie within a

user-de�ned search radius. The node value is calculated by averaging the weighted

sum of all the points. Data points that lie progressively farther from the node

in�uence the computed value far less than those closer to the node. Using the 80

soil samples, the IDW technique was run to provide the soil property maps that are

presented in �gure 8(a, b, c, d ). In general, good spatial agreement exists between

the EC (soil salinity) and the �eld moisture content maps (�gures 8(a) and (b),

respectively) . This was expected based on the relationships already obtained between

the laboratory values of these properties (table 3) as well as the positive agreement

that occurred between their spectral assignments (table 2). Comparing the organic

matter map (�gure 8(c)) with both the EC and the �eld moisture maps reveals that

some areas are highly correlated (e.g. at the north-west edge) and some areas are

not (e.g. at the centre and south-east edge). A partial validation check of the EC

(salinity) on the IDW+VNIRA map discovered new saline spots, as seen in

�gure 8(b) and represented by three yellow polygons north of Hamadia farms (situ-

ated in the south-east corner of the area), which were veri�ed on the ground.

Although a comprehensive validation check has not been performed, the previous

ground validation checks strongly suggest that the IDW + VNIRA methodology is

a feasible tool for agriculture applications. It is assumed that improved data quality

and improved data processing would provide even better results. Accordingly, it is

hoped that this paper can act as a precursor to further implementation of the VNIRA

methodology in soil mapping applications using many varieties of HSR data. The

VNIRA approach can take place together with the ongoing development of the HSR

technology, which aims at providing an advanced spatial sensor with relatively high

spectral, spatial and temporal resolutions.

5. Summary and conclusions

This study employs the laboratory approach known as VNIRA for soil mapping

applications by using DAIS-7915 hyperspectral data. The VNIRA method uses a

spectral-chemical empirical model to predict soil properties from their re�ectance

spectra only. This is done by using a well-known set of calibration data and an

unknown set of validation data to check the results. Under remote sensing conditions

this approach has never been examined for soil applications. This paper could

therefore serve as a case study from which other HSR users can start in order to

create quantitative soil surface maps. In this regard many problems arose, such as

atmospheric contamination of the raw data, low signal-to-noise ratios, unreliable

spectral band response and positioning of the sample on the ground. Although eVort

was made to overcome all of these diYculties, the results were still aVected by these

obstacles and the process thus lagged in comparison with laboratory accuracy. Using

the DAIS spectral information it was possible to obtain reliable prediction equations

for the following soil properties: soil moisture, soil salinity (EC), soil saturated
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moisture and organic matter content. It was found that the intercorrelation between

properties is as important a parameter as the spectral information. This is because

the intercorrelation enlarges the envelope of spectral assignments and provides a

greater physical basis for the spectral prediction model. In this regard it was found

that although the soil salinity (EC) is a featureless property, it can be spectrally

explained via �eld moisture assignments.

There was an indication that organic matter assignments played a role in the

soil �eld moisture assignments. A validation stage using �ve independent samples

yielded reasonable results (except for one outlier, which was questionable in terms

of its ground positioning) . This stressed the fact that a careful positioning of ground

targets using the VNIRA approach under a remote-sensing domain is essential. An

attempt to estimate soil property distribution under vegetation coverage using the

VNIRA results was made. For that, we employed a random selection of 80 soil

samples from the quantitative images and applied an interpolation technique to

provide an isocontour map for each of the studied soil properties. It was shown that

merging the quantitative remote sensing (VNIRA) technique with a spatial interpola-

tion algorithm (IDW) provides a useful tool for soil mapping applications. Although

the results are still far from what can be achieved in the laboratory, the study showed

that the VNIRA technique is a feasible tool for mapping soil properties using HSR

data. Better HSR data, more soil samples and sharpening the VNIRA approach

could be the combination that makes this method fully applicable.
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