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Abstract

Information on the area and spatial distribution of paddy rice fields is needed for trace gas emission estimates, management of water

resources, and food security. Paddy rice fields are characterized by an initial period of flooding and transplanting, during which period open

canopy (a mixture of surface water and rice crops) exists. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the

NASA EOS Terra satellite has visible, near infrared and shortwave infrared bands; and therefore, a number of vegetation indices can be

calculated, including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Land Surface Water Index

(LSWI) that is sensitive to leaf water and soil moisture. In this study, we developed a paddy rice mapping algorithm that uses time series of

three vegetation indices (LSWI, EVI, and NDVI) derived from MODIS images to identify that initial period of flooding and transplanting in

paddy rice fields, based on the sensitivity of LSWI to the increased surface moisture during the period of flooding and rice transplanting. We

ran the algorithm to map paddy rice fields in 13 provinces of southern China, using the 8-day composite MODIS Surface Reflectance

products (500-m spatial resolution) in 2002. The resultant MODIS-derived paddy rice map was evaluated, using the National Land Cover

Dataset (1:100,000 scale) derived from analysis of Landsat ETM+ images in 1999/2000. There were reasonable agreements in area estimates

of paddy rice fields between the MODIS-derived map and the Landsat-based dataset at the provincial and county levels. The results of this

study indicated that the MODIS-based paddy rice mapping algorithm could potentially be applied at large spatial scales to monitor paddy rice

agriculture on a timely and frequent basis.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Rice is one of the world’s major staple foods and paddy

rice fields account for approximately 15% of the world’s

arable land (IRRI, 1993). A unique physical feature of

paddy fields is that the rice is grown on flooded soils. This

feature is significant in terms of both trace gas emissions

and water resources management. Seasonally flooded rice
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paddies are a significant source of methane emissions

(Denier Van Der Gon, 2000; Li et al., 2002; Neue &

Boonjawat, 1998), contributing over 10% of the total

methane flux to the atmosphere (Prather & Ehhalt, 2001),

which may have substantial impacts on atmospheric

chemistry and climate. Agricultural water use (in the form

of irrigation withdrawals) accounted for ~70% of global

fresh water withdrawals (Samad et al., 1992), and the

majority of Asian rice agriculture is irrigated (Huke, 1982;

Huke & Huke, 1997). Intensification in rice farming

practices in the near future could have significant impacts

on the emissions of various greenhouse gases and
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availability of water (Li et al., 2002; Wassmann et al.,

2000).

Accurate assessment of methane emissions at regional

and global scales requires geospatial datasets of paddy rice

fields. Several global datasets of paddy rice were developed

in the late 1980s and early 1990s (Aselman & Crutzen,

1989; Matthews et al., 1991; Olson, 1992; Wilson &

Henderson-Sellers, 1992) and used in global-scale analyses

of climate and trace gas emissions. Most of these global

datasets have a coarse spatial resolution (from 0.58 to 58
latitude and longitude). Recently, a global cropland data

product was developed at a spatial resolution of five arc

minutes, which contains a category of paddy rice fields

(Leff et al., 2004). At the regional scale, an Asian rice

dataset was generated using statistical data of rice agricul-

ture at sub-country administration units from the 1970s,

including a base map at a scale of 1:4,500,000 (Huke,

1982). The Asia rice dataset was later updated (Huke &

Huke, 1997), using agricultural census data of the sown area

of rice agriculture in the early 1990s. This updated Asia rice

database was used to estimate methane emissions in Asia

(Knox et al., 2000; Matthews et al., 2000). Regional-scale

analyses of trace gas emissions, food security, and water

resource management require updated datasets of paddy rice

fields at a finer spatial resolution.

Optical satellite remote sensing provides a viable means

to meet the requirement of improved regional-scale datasets

of paddy rice fields. A number of studies have explored the

potential of images from Landsat and NOAA Advanced

Very High Resolution Radiometer (AVHRR) to identify

paddy rice fields (Fang, 1998; Fang et al., 1998; Okamoto &

Fukuhara, 1996; Okamoto & Kawashima, 1999; Tennakoon

et al., 1992; Van Niel et al., 2003). Those studies that

identified rice paddies using fine-resolution Landsat The-

matic Mapper (TM) data primarily used image classification

procedures. Those studies that used moderate-resolution

AVHRR images were primarily based on the temporal

development of the Normalized Difference Vegetation Index

(NDVI; Eq. (1)) and local knowledge (e.g., crop calendars)

of rice paddy fields.

A new generation of advanced optical sensors, includ-

ing the Moderate Resolution Imaging Spectroradiometer

(MODIS) onboard the Terra and Aqua satellites, and

VEGETATION (VGT) onboard the SPOT-4 satellite,

provide additional shortwave infrared bands that are

sensitive to vegetation moisture and soil water. For

instance, the VGT sensor has four spectral bands: blue

(430–470 nm), red (610–680 nm), near infrared (NIR,

780–890 nm) and shortwave infrared (SWIR, 1580–1750

nm). The availability of an additional SWIR spectral band

in VGT provides an opportunity for developing and

generating improved vegetation indices that are sensitive

to equivalent water thickness (EWT, g H2O/m
2), such as

the Land Surface Water Index (LSWI; Eq. (2)) (Maki et al.,

2004; Xiao et al., 2002a, 2002b). During the rice trans-

planting period and the early part of the rice growing
season, paddy fields are a mixture of green rice plants and

open water (Xiao et al., 2002d). Recently, we developed an

algorithm to identify paddy rice fields, using temporal

profiles of LSWI and NDVI data derived from 10-day

composite VGT images (Xiao et al., 2002b). Rice paddies

were identified as areas where the LSWI values increased

(due to the greater surface moisture during the flooding

period) and were temporarily greater than NDVI values

(Xiao et al., 2002b).

The MODIS sensor has 36 spectral bands, seven of

which are designed for the study of vegetation and land

surfaces: blue (459–479 nm), green (545–565 nm), red

(620–670 nm), near infrared (NIR1: 841–875 nm; NIR2:

1230–1250 nm), and shortwave infrared (SWIR1: 1628–

1652 nm, SWIR2: 2105–2155 nm). Daily global imagery

is provided at spatial resolutions of 250-m (red and

NIR1) and 500-m (blue, green, NIR2, SWIR1, SWIR2).

The MODIS Land Science Team provides a suite of

standard MODIS data products to the users, including the

8-day composite MODIS Surface Reflectance Product

(MOD09A1). Compared to the 10-day composite VGT

product, the 8-day composite MODIS data have three

advantages for paddy rice analyses: (a) finer spatial

resolution (500 m versus 1 km in VGT), (b) slightly shorter

temporal resolution (8-day in MODIS versus 10-day in

VGT), and (c) improved atmospheric correction (Vermote &

Vermeulen, 1999).

The objective of this study is to assess the potential of

MODIS images for identifying inundation and paddy rice

fields. Southern China was selected as the case study area

for MODIS-based large-scale mapping of paddy rice fields

because it has a large amount of paddy rice agriculture and

fine-resolution cropland area reference data are available for

the evaluation of MODIS-based results (Frolking et al.,

1999, 2002; Xiao et al., 2003b). If successful, the algorithm

we developed for MODIS images can be applied to other

rice-producing countries in Asia to generate an updated

continental database of paddy rice agriculture; such a

product would support various analyses that address

biogeochemical nutrient cycling, trace gas emissions, water

management, food security, agricultural vulnerability and

sustainability.
2. Study area, data and methods

2.1. Description of the study area

There are large spatial variations in agriculture and crop

rotation systems in China (Frolking et al., 2002; Qiu et al.,

2003). In this study we focused on 13 provincial-level

administrative units (12 provinces plus Shanghai) in south-

ern China (Fig. 1), which represent over 2.5 million km2 of

land area (Table 1). Two-crop rotation systems are dominant

across southern China, because of a long warm season and

abundant precipitation (Frolking et al., 2002; Qiu et al.,



Fig. 1. Digital elevation model (DEM) of southern China (http://edc.usgs.gov/products/elevation/gtopo30.html). The study area covers 13 provinces in southern

China.
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2003). A rotation of upland (e.g., winter wheat, rapeseed)

and paddy rice crops occurs mostly in the northern part of

the study area (e.g., Jiangsu province), where the landscape

is very flat and land cover is relatively homogenous,

dominated by cropland. In the western and southern parts

of the study area, a rotation of early rice and late rice crops

occurs, but the fraction of the landscape allocated to

croplands is generally much less than in the northern part

of the study area. Land cover types in those areas are more

heterogeneous and influenced by increased complexity of

topography, and represent a mixed landscape of cropland

and forest.
Table 1

A summary of land area, paddy rice agriculture and upland cropland from

the National Land Cover Dataset (NLCD-2000) for the 13 provincial

administrative units in southern China

Province Land area

(km2)

Area of

upland

cropland

(km2)

Area of

paddy

rice

(km2)

Percent of

rice area

with z20%

fractional

cover in

1-km pixels

Median

percent of

paddy rice

within 1-km

pixels

Jiangsu 100,857 18,325 32,022 98 62

Anhui 140,210 28,500 31,879 94 60

Sichuan 567,092 74,710 39,708 79 33

Shanghai 6689 338 2888 98 31

Hubei 185,968 21,982 28,518 85 43

Zhejiang 101,945 3434 17,800 87 52

Hunan 211,964 11,036 32,348 80 37

Jiangxia 167,651 9032 24,250 78 36

Fujiana 121,685 4332 10,590 69 29

Guizhoua 176,183 26,191 11,144 67 27

Yunnana 384,281 34,892 11,955 78 37

Guangxia 236,359 12,425 18,683 75 36

Guangdonga 177,316 9644 18,769 80 38

Total 2,578,198 254,841 280,555 86 43

a bHillyQ provinces.
2.2. MODIS image data

Among a suite of standard MODIS data products

available to the users, we used the 8-day composite

MODIS Surface Reflectance Product (MOD09A1). Each

8-day composite includes estimates of surface spectral

reflectance of the seven spectral bands at 500-m spatial

resolution. In the production of MOD09A1, atmospheric

corrections for gases, thin cirrus clouds and aerosols are

implemented (Vermote & Vermeulen, 1999). The 8-day

composite product is generated through a multi-step

process that first eliminates observations with a low

quality score or low observational coverage, and then

selects the observation with the minimum value of blue

band (band 3) during the 8-day composite period (http://

modis-land.gsfc.nasa.gov/MOD09/MOD09ProductInfo/

MOD09_L3_8-day.htm). The composites still have reflec-

tance variations associated with variation in the bidirec-

tional reflectance distribution function (BRDF).

MOD09A1 also includes quality control flags to account

for various image artifacts (e.g., clouds, cloud shadow).

MODIS products are organized in a tile system with the

Sinusoidal (SIN) projection grid, and each tile covers an

area of 1200 km by 1200 km (approximately 108 latitude

by 108 longitude at equator). In this study, we downloaded

MOD09A1 data for 2002 (forty-six 8-day composites)

from the USGS EROS Data Center (http://edc.usgs.gov/).

Six tiles (H26V05, H26V06, H27V05, H27V06, H28V05

and H28V06) are needed to cover the study area of

southern China (Fig. 1).

2.3. Calculation of vegetation indices

For each 8-day composite, we calculated NDVI, LSWI

and Enhanced Vegetation Index (EVI; Eq. (3)) (Huete et al.,

http://www.modis-land.gsfc.nasa.gov/MOD09/MOD09ProductInfo/MOD09_L3_8-day.htm
http://www.edc.usgs.gov/
http://www.edc.usgs.gov/products/elevation/gtopo30.html
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Fig. 2. The seasonal dynamics of the Normalized Difference Vegetation

Index (NDVI), the Enhanced Vegetation Index (EVI), and the Land Surface

Water Index (LSWI) at a field site in Jiangning County (south of Nanjing),

Jiangsu Province. This site (118854.519VE, 31849.623VN) has winter wheat
crops in winter/spring seasons and paddy rice in summer/fall seasons.

Harvest of winter wheat crops usually takes place in early- to mid-June, and

flooding and rice transplanting usually take place in mid- to late-June (Xiao

et al., 2002b).
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1997), using surface reflectance values from the blue, red,

NIR (841–875 nm) and SWIR (1628–1652 nm) bands:

NDVI ¼ qnir � qred

qnir þ qred

ð1Þ

LWSI ¼ qnir � qswir

qnir þ qswir

ð2Þ

EVI ¼ 2:5� qnir � qred

qnir þ 6� qred � 7:5� qblue þ 1
ð3Þ

While NDVI is correlated to the leaf area index (LAI) of

paddy rice fields (Xiao et al., 2002d), it has some

limitations, including saturation under closed canopy and

sensitivity to atmospheric conditions and soil background

(Huete et al., 2002; Xiao et al., 2003a). The blue band is

sensitive to atmospheric conditions and is used for

atmospheric correction. EVI directly adjusts the reflectance

in the red band as a function of the reflectance in the blue

band, and it accounts for residual atmospheric contamina-

tion (e.g., aerosols) and variable soil and canopy back-

ground reflectance (Huete et al., 1997, 2002). In addition to

NDVI, we have explored the biophysical performance of

EVI and LSWI and their potential for land cover classi-

fication (Boles et al., 2004; Xiao et al., 2002a, 2002c).

2.4. Algorithms for identifying inundation and paddy rice

field

A unique physical feature of paddy rice fields is that rice

plants are grown on flooded soils. Temporal dynamics of

paddy rice fields can be characterized by three main periods:

(1) the flooding and rice transplanting period; (2) the

growing period (vegetative growth, reproductive and ripen-

ing stages); and (3) the fallow period after harvest (Le Toan

et al., 1997). During the flooding and rice transplanting

period, the land surface is a mixture of surface water and

green rice plants (Xiao et al., 2002b). Water depth generally

varies from 2 to 15 cm. About 50 to 60 days after

transplanting, rice plant canopies cover most of the surface

area. At the end of the growth period prior to harvesting (the

ripening stage), there is a decrease of leaf and stem moisture

content and a decrease of the number of green leaves.

For optical sensors, detection of changes in the mixture

of surface water and green vegetation in paddy rice fields

requires spectral bands or vegetation indices that are

sensitive to both water and vegetation. In an earlier study,

we examined the potential of a greenness-related vegetation

index (NDVI) and a water-related vegetation index (LSWI)

for identifying flooding and rice transplanting in eastern

Jiangsu Province, China (Xiao et al., 2002b), where

agriculture is dominated by a rotation of two seasonal crops

(winter wheat or rapeseed crops followed by paddy rice).

LSWI temporal dynamics were variable enough to capture

substantial increases of surface water due to flooding

(inundation) and rice transplanting at paddy rice fields.
Using multi-temporal 10-day composites from the VGT

sensor, a temporal profile analysis of both NDVI and LSWI

was conducted to identify the period of flooding and rice

transplanting at paddy rice fields using a simple threshold

assumption, i.e., LSWINNDVI (Xiao et al., 2002b). In that

earlier study, field observations on crop rotation, LAI, water

management and fertilizer application at five field sites were

conducted (Xiao et al., 2002b, 2002d). The paddy rice

mapping algorithm was applied and evaluated in eastern

Jiangsu Province with an area of 175�165 km2 (Xiao et al.,

2002b).

In this study we continued to explore the algorithm that

combines NDVI and LSWI (Xiao et al., 2002b), while also

including EVI into the analysis. We examined temporal

profiles of MODIS-based vegetation indices for the same

five field sites in Jiangsu province as reported in an earlier

study (Xiao et al., 2002b). As illustrated at one of the five

field sites, EVI values in croplands were generally larger

than LSWI values throughout much of the year. However,

LSWI values were slightly higher than EVI in late June of

2002 (Fig. 2). According to field observations in 1999–2000

at this site, crop cultivation in this site shifted from winter

wheat (non-flooded) to paddy rice (flooded) in late June

(Xiao et al., 2002b). For the other four field sites (not shown

here), there were MODIS-based observations that had either

EVIbLSWI or NDVIbLSWI in one to a few 8-day

composites, which are consistent with the observations

reported in an earlier study that used 10-day VGT composite

data (Xiao et al., 2002b).

Individual farmers have different flooding and rice

transplanting schedules for their paddy rice fields, which

poses a great challenge for remote sensing analyses at large

spatial scales. Our hypothesis is that a temporary inversion
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of the vegetation indices, where LSWI either approaches or

overtakes NDVI or EVI values, may signal flooding and

rice transplanting in paddy rice fields. To slightly relax the

assumption (LSWINNDVI) used in the earlier study (Xiao et

al., 2002b), we used the following thresholds for identifying

a flooded/transplanting pixel: LSWI+0.05zNDVI or

LSWI+0.05zEVI. After a pixel was identified as a

bflooding and transplantingQ pixel, a procedure was imple-

mented to determine whether rice growth occurs in that

pixel, using the assumption that the EVI value of a true rice

pixel reaches half of the maximum EVI value (in that crop

cycle) within five 8-day composites (40-days) following the

date of flooding and transplanting. Rice crops grow rapidly

after transplanting, and LAI usually reaches its peak within

2 months (Xiao et al., 2002d).

2.5. Regional implementation of algorithms

To implement the MODIS rice detection algorithm at the

regional scale is a challenging task, as many factors could

potentially affect the seasonal dynamics of vegetation

indices, including snow cover, clouds, water bodies and

other vegetation background. Implementation of the algo-

rithm over a large and complex spatial domain requires

careful consideration of those factors. Therefore, we

developed a procedure for regional implementation of the

algorithm by generating various masks for clouds, snow

cover, water bodies, and forest cover in an effort to

minimize their potential impacts (Fig. 3).
MODIS 8-day composites of surface reflectance product (MOD09A1)

NDSI NDVI,              EVI,          LSWI

Snow mask

Cloud mask
Permanent
water mask

Evergreen 
vegetation mask

Maps of flooding and rice transplanting (46 maps/yr)

Initial map of paddy rice field

Final map of paddy rice field

DEM

Fig. 3. A schematic diagram illustrating the algorithms for large-scale

mapping of flooding and paddy rice fields from MODIS 8-day surface

reflectance images at 500-m spatial resolution. One year of 8-day MODIS

surface reflectance data (a total of forty-six 8-day composites) are used as

input data.
The MOD09A1 file includes quality control flags for

clouds. We extracted the information on clouds and

generated masks of cloud cover for all time periods of each

MODIS tile. It was noticed that a number of pixels had a

high blue band reflectance but were not labeled as clouds in

the MOD09A1 cloud quality flag. These pixels tended to

have high LSWI relative to NDVI and EVI, potentially

resulting in false identification of paddy rice areas. An

additional restriction was then applied, whereas pixels with

a blue reflectance of z0.2 were also masked as cloudy

pixels. For each MODIS tile, 46 cloud cover maps were

generated; all cloud observations were excluded from

further analyses.

Snow cover has large surface reflectance values in the

visible spectral bands and could potentially affect

vegetation index values. To minimize the potential impact

of those areas with snow cover in winter and spring on

our analysis, we used the snow cover algorithms

developed for the MODIS snow product (Hall et al.,

1995, 2002) to generate snow cover masks. Normalized

Difference Snow Index (NDSI; Eq. (4)) was first

calculated for each 8-day composite, using surface reflec-

tance values from the green and NIR bands; and then

thresholds (NDSIN0.40 and NIRN0.11) were applied to

identify snow-covered pixels. For each MODIS tile, 46

snow cover maps were generated and then merged into one

mask of snow cover, which counts the number of 8-day

periods a pixel was classified as snow. Pixels containing

snow at any time during the year were excluded for the

identification of flooding and rice transplanting.

NDSI ¼
qgreen � qnir

qgreen þ qnir

ð4Þ

There is also a need to separate persistent water bodies

from seasonally flooded pixels (e.g., paddy rice). Instead of

using conventional image classification approach (e.g.,

cluster analysis of forty-six 8-day composites) to generate

a mask of persistent water bodies, we developed a simple

method that is based on temporal dynamics of NDVI and

LSWI. We first analyzed temporal profiles of NDVI and

LSWI, and assumed a pixel to be covered by water if

NDVIb0.10 and NDVIbLSWI, and generated a map that

counts the number of 8-day periods within the year to be

classified as water. Second, we assumed a pixel to be

persistent water bodies if it was identified as water in ten or

more 8-day composite periods in the year. Since the

flooding/transplanting period is temporary, flooded rice

pixels are expected to have fewer than ten composite

periods classed as water. Those pixels identified as

persistent water bodies were excluded from calculation of

the flooding map. For each MODIS tile, one mask of

permanent water bodies was generated.

To further avoid confusion from flooded natural vegeta-

tion, we have constructed a mask of natural evergreen

vegetation, using a two-test procedure that employed both
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NDVI and LSWI time series data. Natural evergreen

vegetation in southern China is generally composed of

evergreen trees or shrubs. The first test was designed to

identify evergreen forests. Evergreen forest areas tend to

have a long and consistently high NDVI value throughout a

year, while cropland (e.g., rice) pixels tend to have only a

few 8-day periods with high NDVI values, just prior to

harvesting. Evergreen forest pixels were identified as those

pixels having NDVI values of z0.7 over at least twenty 8-

day composites during the year. Since the NDVI forest

restriction is a cumulative count, we used a gap-filled

product that corrects NDVI values in the time series where

the cloud mask indicated clouds (Xiao et al., 2002b). The

second test was designed to identify evergreen shrubland/

woodland/grassland, which generally have much lower leaf

area index or NDVI values than evergreen forests. Crop-

lands usually have some periods of time with exposed soils

(e.g., after-harvest or land preparation), when LSWI values

are very low with exposed soils and crop litterfall. After

examining the seasonal dynamics of LSWI for various

vegetation types in southern China, we found out that

permanently vegetated areas (with green vegetation

throughout a year) rarely have a LSWI value of b0.15. In

this study we simply assign those pixels with no LSWI

value of b0.15 during a year to be natural evergreen

vegetation. For each MODIS tile, one mask of natural

evergreen vegetation was generated, and those pixels of

evergreen vegetation were excluded from identification of

flooding and paddy rice fields.

While much of the rice agriculture in southern China

occurs in great flat plains near the mouth of the Yangtze

River, there is some significant topography in the far south

and west of the study area that could pose challenges to

the development of a rice detection algorithm. The digital

elevation model (GTOPO30; Global 30-Arc Second

Elevation Dataset; http://edc.usgs.gov/products/elevation/

gtopo30.html) was acquired and we calculated slope of

pixels, using the Arc/Info software. We compared the

elevation map and slope map with the paddy rice map

from the NLCD-2000 dataset (see Section 2.5 for details).

Few pixels with a large fraction of paddy rice occur at an

elevation N2000 m and/or a slope of z28. Therefore, we
generated a DEM mask and used it to exclude those areas

above 2000 m in elevation and with a slope greater than 28.
Based on a qualitative assessment of topographical charac-

teristics, provinces were roughly separated as primarily

dflatT (Jiangsu, Anhui, Sichuan, Shanghai, Hubei, Zhejiang,
Hunan) or dhillyT (Fujian, Guizhou, Jiangxi, Yunnan,

Guangxi, Guangdong) so that the potential impacts of

topography on the performance of the MODIS-based paddy

rice detection algorithm could be explored.

For each 8-day composite, we compared NDVI, EVI

and LSWI values and generated the maps of bflooding
and transplantingQ pixels, based on our hypothesis that a

temporary inversion of the vegetation indices (LSWI+

0.05zEVI or LSWI+0.05zNDVI) may signal flooding
and rice transplanting in paddy rice fields. Flooded pixels

were mapped if LSWI+0.05zEVI or LSWI+0.05zNDVI

occurred in any one composite of the time series. Pixels

that had previously been identified as water, snow, cloud,

forest, or natural evergreen vegetation were masked out

from this analysis. For each MODIS tile, 46 maps of

flooded pixels were generated. For each pixel that was

identified as a flooded pixel in one or more 8-day

periods, we examined the time-series of EVI in a year. A

procedure was implemented to identify rice growth, using

the criteria that the EVI value reached half of the

maximum EVI value (in that crop cycle) within five 8-

day periods (40 days) after flooding was identified.

We computed vegetation indices, masks, flooding maps

and rice maps for the six individual MODIS tiles that cover

southern China. We then mosaicked all rice map tiles, and

re-projected the resultant map into Lambert Azimuthal

Equal Area projection. An administrative boundary map

(both provincial- and county-level at the scale of

1:1,000,000) of China was used to generate summaries of

rice area at both provincial and county levels.

2.6. Ancillary data for evaluation of MODIS-based analysis

Accuracy assessment of moderate-resolution (500 m–1

km) land cover products is a challenging task, as these maps

can overestimate or underestimate areas of individual land

cover types due to the fragmentation and sub-pixel

proportion of individual land cover types. Because of

budget constraints and human resource limitations, we were

not able to conduct extensive field surveys for collecting

site-specific data. As an alternative approach to field

surveys, we used fine-resolution images and derived land

cover maps to evaluate the MODIS-derived rice maps. In

this study, validation of the MODIS-derived paddy rice map

was performed using detailed land cover datasets derived

from fine-resolution Landsat data.

The National Land Cover Project (NLCD), under the

support of the Chinese Academy of Sciences, completed the

analysis of Landsat 7 Enhanced Thematic Mapper (ETM+)

images acquired in 1999 and 2000 for all of China (Liu et

al., 2003). 508 ETM+ images in 1999/2000 were geo-

referenced and ortho-rectified, using field collected ground

control points and fine-resolution digital elevation models.

A classification system of 25 land cover types was used in

the NLCD project, including bpaddy riceQ and bupland
croplandQ categories. Visual interpretation of ETM+ images

was conducted to generate a thematic map of land cover in

China at a scale of 1:100,000. The resultant vector dataset

was converted into a gridded database at 1-km spatial

resolution. The 1-km gridded database still captures all of

the land cover information at the 1:100,000 scale by

calculating the percent fractional cover within a 1-km pixel

for individual land cover types (Xiao et al., 2002c). The 1-

km resolution gridded bpaddy riceQ layer of the NLCD

dataset (hereafter referred to as NLCD-2000) was used for

http://www.edc.usgs.gov/products/elevation/gtopo30.html


Fig. 4. Spatial distribution of paddy rice fields in southern China, as derived from (a) the NLCD-2000 database (Liu et al., 2003), and (b) the analysis of

MODIS 8-day surface reflectance data (at 500-m spatial resolution) in 2002.
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evaluation of MODIS-based rice maps (Fig. 4a). According

to the NLCD-2000 dataset, there is a total of 280,555 km2

area of bpaddy riceQ and 254,841 km2 area of bupland cropsQ
in the 13 provincial administrative units, respectively,

accounting for 21% of total land area in the study region

(Table 1).
3. Results

3.1. Spatial distribution of paddy rice in southern China

from MODIS-derived rice map

Fig. 4b shows the spatial distribution of paddy rice in

southern China derived from MODIS data in 2002 (here-

after referred to as MODrice). Paddy rice agriculture

occurred throughout most of the study area, with the

exception of western Sichuan where altitude and topography
prohibit rice growth. Rice agriculture was concentrated in

major lake regions (Tai Lake in Jiangsu, Poyang Lake in

Jiangxi, Dongting Lake in Hunan), the middle and lower

reaches of the Yangtze River, and large plains (e.g., Chendu

Plain in Sichuan). Rice agriculture occurred more sporadi-

cally in the southern portion of the study area, where

increased complexity of topography restricts the size of rice

fields that can occur. The heterogeneous land cover in these

areas is generally a mix of cropland and forest, with most of

the rice agriculture occurring in smaller river valleys or on

terraced slopes.

The spatial pattern of paddy rice from MODrice (Fig. 4b)

is generally similar to that of the NLCD-2000 reference

dataset (Fig. 4a). There were some notable differences

between the MODrice map and the NLCD-2000 reference

rice map. First, in northern Jiangsu and most of Sichuan,

MODrice identified paddy rice fields while the NLCD-2000

product had lower fractional amounts of rice fields. Second,
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Fig. 5. Histograms of paddy rice fields within 1-km NLCD-2000 pixels by

provinces in southern China. The cumulated frequency is used in the graph.
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in Fujian province the NLCD-2000 product has a relatively

even distribution of rice fields with low fractional coverage,

while the MODrice greatly underestimated rice area in this

province (Table 2).

3.2. Quantitative evaluation of MODIS-derived rice map

Certain challenges arise when using a fractional cover

dataset that was derived from fine-resolution imagery (e.g.,

Landsat ETM+) to validate a moderate spatial resolution

per-pixel (0 or 1 binary set) dataset (e.g., MODrice). One

has to choose an appropriate threshold of percentage

fractional cover of the reference dataset for validation

purposes, as it is not reasonable to assume that a moderate

resolution product will detect those pixels that have only

small percentages of paddy rice fields. The definition of

this minimal fractional coverage is important to the

validation results, and it is dependent upon the pixel size

of both NLCD-2000 (1 km) and MODrice (500 m).

According to the NLCD2000 dataset, there was a total

area of 280,555 km2 paddy rice in the 13 provinces of

southern China (Table 1). We calculated the frequency

distribution of paddy rice fields within 1-km pixels in the

NLCD-2000 dataset by province, and the cumulated

frequency graphs show large differences among provinces

in southern China (Fig. 5). In those seven provinces

dominated by relative flat plains (top graph), a large

portion of pixels tend to have high percentage fractions of

paddy rice fields (Fig. 5). The total area of paddy rice in

those seven flat provinces is about 185,164 km2, account-

ing for 66% of total paddy rice area in the 13 provinces of

southern China. The median point (50% of pixels) for the
Table 2

Spatial agreements between MODrice and NLCD20 paddy rice pixels by

provinces

Province Both MODrice

and NLCD20

MODrice

only

NLCD20

only

Spatial agreement

(%) using NLCD20

or MODrice as basis

NLCD20 MODrice

Jiangsu 40,856 17,517 14,737 73 70

Anhui 35,320 13,342 21,507 62 73

Sichuan 47,941 40,038 40,589 54 54

Shanghai 3929 589 1122 78 87

Hubei 31,925 18,053 26,953 54 64

Zhejiang 11,634 2296 21,299 35 84

Hunan 30,386 15,020 37,312 45 67

Jiangxi 21,675 9197 28,792 43 70

Fujian 1901 2183 19,277 9 47

Guizhou 3414 11,692 20,073 15 23

Yunnan 5495 11,241 18,899 23 33

Guangxi 7323 17,504 29,398 20 29

Guangdong 8680 11,420 29,819 23 43

Total 250,480 170,092 309,778 45 60

In a two-way table, we calculated the sum of Column #2 and Column #3

(MODsum) and the sum of Column #2 and Column #4 (NLCDsum), and then

calculated the spatial agreements (%): NLCD20 (Column #5)=Column #2/

NLCDsum, and MODrice (Column #6)=Column #2/MODsum.
fractions of paddy rice within 1-km pixels varies from

27% in Guizhou province to 62% in Jiangsu province

(Table 1).

Note that a MODIS pixel in the MOD09A1 product has a

spatial resolution of 463-m�463-m and an area of 214,369

m2, being about 21% of 1-km pixel area (1,000,000 m2) of

the NLCD-2000 data. In this study we designated those

pixels in the NLCD-2000 dataset with a fractional coverage

of z20% paddy rice as paddy rice pixels, and generated a

binary (0 or 1) map of paddy rice fields (hereafter NLCD20).

The total area of paddy rice from all the NLCD pixels with a

fraction of z20% paddy rice is about 241,193 km2 (Table

3), accounting for 86% of the total paddy rice area (280,555

km2) in Southern China. To compare the MODrice map and

the NLCD20 reference rice map at administrative units

(province and county), administrative boundaries of China

were overlaid with the paddy rice maps to calculate the total

rice area for the 13 provinces and 1153 counties in the study

area. The spatial agreement between MODrice and NLCD20

has a strong topographic bias, varying between 78% in a flat

province (Shanghai) and 9% in a hilly province (Fujian),

respectively (Table 2). A number of factors could result in

the MODrice pixels that do not correspond spatially with

NLCD20 pixels, including falsely identified rice pixels in the



Table 3

A provincial-level comparison of area estimates of paddy rice field (km2)

from MODIS 8-day surface reflectance data and the National Land Cover

Dataset (NLCD) from 1999/2000 (Liu et al., 2003)

Province Pixel-based comparison

paddy rice area (km2)

with an assumption of

100% fraction

Fractional area-based

comparison paddy rice area

(km2) with fractional values

from NLCD

MODrice NLCD20 MODrice(area) NLCD20(area)

Jiangsu 58,373 55,593 40,856 31,276

Anhui 48,663 56,827 35,320 29,867

Sichuan 87,979 88,530 47,941 31,192

Shanghai 4518 5051 3929 2840

Hubei 49,977 58,878 31,924 24,252

Zhejiang 13,930 32,933 11,634 15,488

Hunan 45,406 67,698 30,386 25,801

Jiangxi 30,872 50,467 21,675 19,024

Fujian 4084 21,179 1901 7284

Guizhou 15,106 23,487 3414 7507

Yunnan 16,736 24,394 5495 9321

Guangxi 24,827 36,721 7323 14,070

Guangdong 20,100 38,500 8680 14,972

Total 420,572 560,257 250,480 241,193

We assigned those NLCD pixels that have at least 20% rice coverage within

1 km as paddy rice pixels (NLCD20). MODrice(area) is calculated as the sum

of fractions of paddy rice in the NLCD dataset for all the MODIS paddy

rice pixels. NLCD20(area) was calculated as the sum of fractions of paddy

rice in the NLCD dataset for all the NLCD20 paddy rice pixels.
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MODrice product or errors in the NLCD20 product. For

example, in the process of Landsat image classification,

image interpreters may have had the difficult choice of

labeling a cropland as either paddy rice field or upland crop
Pixel-based comparison
(assuming 100% fraction)
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Fig. 6. Province-level, per-pixel comparisons of paddy rice fields in

southern China between the MODIS rice algorithm (MODrice) and NLCD-

2000 dataset. Province-level results were analyzed using a pixel-based

comparison approach, in which we assumed that all MODrice pixels and the

NLCD20 paddy rice pixels have 100% fractional cover of paddy rice.
field in a system of double cropping (e.g., a rotation of

winter wheat and paddy rice).

We conducted two sets of comparisons between MODrice

and NLCD20 maps. The first comparison is to mimic a

pixel-based comparison by assuming all MODIS-based

paddy rice pixels and NLCD20 paddy rice pixels have

100% fractional cover of paddy rice within individual

pixels. In the pixel-based comparison, the correlations in the

area estimates between MODrice and NLCD20 at the

provincial level were high, with r2=0.88 for flat provinces

and r2=0.80 for hilly provinces (Fig. 6). While caution

should be used when deriving correlation coefficients from

samples with a small population (e.g., number of provinces),
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Fig. 7. County-level, per-pixel comparisons of paddy rice fields in southern

China between the MODIS rice algorithm (MODrice) and NLCD-2000

dataset. County-level results were analyzed using a pixel-based comparison

approach, in which we assumed that all MODrice pixels and the NLCD20

paddy rice pixels have 100% fractional cover of paddy rice.



Fractional area - based comparison
(using fractional area of NLCD)

Paddy rice area from NLCD20 (km2)

0 10000 20000 30000 40000 50000

P
ad

dy
 r

ic
e 

ar
ea

 fr
om

 M
O

D
ric

e 
(k

m
2 )

0

10000

20000

30000

40000

50000

MODrice vs. NLCD20 (flat provinces)
MODrice = 4094 + 1.44 x NLCD20, r2=0.91, N=7
MODrice vs. NLCD20 (hilly provinces)
MODrice = -8346 + 1.36 x NLCD20, r2=0.82, N=6

Fig. 8. Province-level comparisons of area estimates of paddy rice fields in

southern China between the MODIS rice algorithm (MODrice) and NLCD-

2000 dataset. Province-level results were analyzed using a fractional area-

based comparison approach, in which we used the fractional area of paddy

rice within individual pixels from the NLCD data for all MODrice pixels and

NLCD20 paddy rice pixels.

P
ad

dy
 r

ic
e 

ar
ea

 fr
om

 M
O

D
ric

e 
(k

m
2 )

0

500

1000

1500

2000

2500

3000
a

b

Fractional area - based comparison
(using fractional area of NLCD) 

counties in "flat" provinces

Paddy rice area from NLCD20 (km2)

0 500 1000 1500 2000 2500 3000

MODrice versus NLCD20
MODrice = -37.92 + 1.38 x NLCD20, r2=0.87, N=603

P
ad

dy
 r

ic
e 

ar
ea

 fr
om

 M
O

D
ric

e 
(k

m
2 )

200

400

600

800

1000

1200

1400

Fractional area - based comparison
(using fractional area of NLCD)

counties in "hilly" provinces

Paddy rice area from NLCD20 (km2)

0 200 400 600 800 1000 1200 1400

MODrice versus NLCD20
MODrice = -35.32 + 0.92 x NLCD20, r2=0.65, N=550

0

Fig. 9. County-level comparisons of area estimates of paddy rice fields in

southern China between the MODIS rice algorithm (MODrice) and NLCD-

2000 dataset. County-level results were analyzed using a fractional area-

based comparison approach, in which we used the fractional area of paddy

rice within individual pixels from the NLCD data for all MODrice pixels and

NLCD20 paddy rice pixels.
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the root mean square error (RMSE) is an alternative

statistical measure that can be used to compare the datasets.

The RMSE were 14,492 km2 for hilly provinces and 11,909

km2 for flat provinces, respectively (Fig. 6). The area

estimates of MODrice were lower than the areas of NLCD20

for all provinces except Jiangsu (Table 3). This under-

estimation by the MODrice product becomes more pro-

nounced outside of the lower reaches of the Yangtze River.

The impact of topography was evident when comparing the

rice area estimates in both flat and hilly provinces. In the flat

provinces, the average provincial area of MODrice was

79.4% of the NLCD20 total, but in hilly provinces the

average provincial area of MODrice was only 55% of the

NLCD20. The reason for MODrice to underestimate rice

areas in the hilly provinces is likely a result of smaller rice

field sizes in this part of the study area (Fig. 5), and complex

patterns of simultaneous harvesting and rice transplanting in

the fields.

In the pixel-based comparison, the correlations in the

area estimates between MODrice and NLCD20 at the county

level also varied between the flat provinces and the hilly

provinces (Fig. 7). For those counties within the flat

provinces (Fig. 7a), there was a correlation (r2=0.65,

RMSE=327 km2) between MODrice and NLCD20, although

it was not as strong as was encountered at the provincial

level (Fig. 6). For those counties within hilly provinces (Fig.

7b), the correlation between MODrice and NLCD20 is lower

(r2=0.49, RMSE=263 km2), but still positive.

The second comparison, the fractional area-based com-

parison, directly uses the fractional values of paddy rice in

the NLCD dataset to calculate the areas for all the MODIS-
based paddy rice pixels. In the fractional area-based

comparison, there were strong linear relationships in area

estimates of paddy rice at the province level between

MODrice and NLCD20 (Fig. 8), with RMSE=8434 km2 for

flat provinces and RMSE=5041 km2 for hilly provinces.

However, the actual area estimates that are compared in this

validation exercise show a strong topographical effect. With

the exception of Zhejiang Province, the rice area of all the

flat provinces was overestimated by MODrice compared to

NLCD20 fractional area, while all of the hilly provinces

were underestimated by MODrice (Table 3).
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At the county level, there were also strong correlations

in the area estimates of paddy rice between MODrice and

NLCD20 (Fig. 9), with RMSE=188 km2 for flat provinces

and RMSE=97 km2 for hilly provinces. The strong

relationship between the two datasets suggests that

MODrice may be a useful tool to provide timely, annual

rice area estimates, if a reference dataset (NLCD20) is used

to constrain the areas of analysis. The MODIS paddy rice

pixels cover a total area of 250,480 km2 (Table 3),

accounting for 89% of total paddy rice area (280,555 km2)

from the NLCD database. From a standpoint of biogeo-

chemical modeling, these results are very encouraging as

biogeochemical modeling is often performed at the county

scale (Li et al., 2002, 2003).
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Fig. 10. A comparison of five vegetation indices in 2002 for a field site in

Jiangsu province, southern China. The field site is the same as Fig. 2. This

site (118854.519VE, 31849.623VN) has winter wheat crops in winter/spring

seasons and paddy rice in summer/fall seasons. Harvest of winter wheat

crops usually takes place in early- to mid-June, and flooding and rice

transplanting usually take place in mid- to late-June (Xiao et al., 2002b).
4. Discussion and summary

In this study, we used a temporal profile analysis of

MODIS-derived vegetation indices to identify paddy rice

fields at large spatial scales. This approach takes advantage

of the flooded soils and open canopy characteristics of

paddy rice fields during the phase of flooding and rice

transplanting. The unique features of spectral reflectance

values in that specific period make paddy rice fields

separable from other croplands with no surface water

(Xiao et al., 2002b). This approach is different from a

number of studies that had used various clustering

algorithms to identify paddy rice fields (Bachelet, 1995;

Fang, 1998; Fang et al., 1998; Okamoto & Fukuhara,

1996; Van Niel et al., 2003). The previous landscape-scale

study at field sites (Xiao et al., 2002b) and the results from

this MODIS data analysis in southern China have

demonstrated its potential for the large-scale mapping of

paddy rice fields.

A number of factors could potentially affect the

identification and mapping of paddy rice fields when

MODIS 8-day composites are used. The first factor is

related to the temporal resolution of the MOD09A1

dataset. MODIS 8-day composites are generated by

selecting the date with the minimum value of blue band

(the clearest atmospheric condition) within an 8-day period

for each individual pixel. This compositing method could

potentially omit some observations associated with the

flooding/transplanting period. Use of daily MODIS data

could improve the identification of the critical flooding/

transplanting period, but it would require much larger

datasets and would introduce a greater probability of cloud

contamination. A second factor is the spatial resolution of

the input datasets. Further improvements to this paddy rice

detection algorithm are likely to be achieved if finer spatial

resolution input data could be used. The Global Imager

(GLI) sensor onboard the ADEOS II satellite (launched on

December 14, 2002) offers daily images (visible, NIR and

SWIR bands) at 250-m spatial resolution. When the GLI

image dataset becomes publicly available, the algorithm
presented in this study could be applied to GLI data and

analyzed. Unfortunately, the failure of GLI sensor after its

short period of operation made it impossible to have multi-

year image data available to users. A third factor is

residual cloud contamination in the 8-day MODIS compo-

sites. This is very important in tropical and sub-tropical

areas where much of the world’s rice is grown and the

availability of optical satellite data is severely constrained

by frequent cloud cover. Synthetic aperture radar (SAR)

data is independent of meteorological conditions and, with

well-timed image acquisitions, can be very effective in the

mapping of paddy rice (e.g., Le Toan et al., 1997). While

it is expensive to have multi-temporal SAR images at fine

spatial resolution to cover large spatial domain, the

temporal analysis of MODIS could help design an

effective image acquisition plan of SAR images. A fourth

factor is snow under the vegetation canopy that could

result in higher LSWI values (Xiao et al., 2002c), which

could potentially affect the study areas that experience

snow events. The Land Surface Temperature (LST)

product provided by the MODIS Land Science Team

(Wan, 1999) could be explored for avoiding snow-covered

observations, as low land surface temperature is associated

with snow cover. A fifth factor is rainfall or irrigation

events in other croplands or grassland, which could

potentially result in situations where water-related index

values are greater than or approach the greenness-related

index values. A sixth factor is seasonally inundated open

wetlands that could potentially be identified as rice paddies

(misclassification error). Use of land cover maps at 500-m

spatial resolution may help minimize the effects of the fifth

and sixth factors. The MODIS Land Science Team

provides a land cover dataset using MODIS data at 1-km
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spatial resolution (Friedl et al., 2002; Townshend, 1999),

which could be useful after a thorough validation and

accuracy assessment. Further effort in the MODIS-related

remote sensing community should also be devoted to

develop a land cover map at 500-m spatial resolution.

The MODIS sensor has three spectral bands that are

sensitive to leaf water and soil moisture: NIR (NIR2:

1230–1250 nm), and shortwave infrared (SWIR1: 1628–

1652 nm, SWIR2: 2105–2155 nm). Following our earlier

studies that used SWIR band (1580–1750 nm) of VGT

sensor (Xiao et al., 2002b), we have explored MODIS

SWIR1 (1628–1652 nm) in this study and other studies

(Xiao et al., 2004, 2005). Another water-related vegetation

index is the Normalized Difference Water Index (NDWI),

which can be calculated from NIR1 (841–875 nm) and

NIR2 bands, i.e., NDWI=(NIR1�NIR2)/(NIR1+NIR2)

(Gao, 1996). One can also calculate a third water-related

vegetation index, using NIR1 and SWIR2 bands, i.e.,

LSWI2105=(NIR1�SWIR2)/(NIR1+SWIR2). As shown in

Fig. 10, all the three indices are sensitive to changes in

water at the land surface during late June 2002 for a field

site in Jiangling county, Jiangsu province. Although NDWI

has small dynamic range (Fig. 10), additional study is

needed to explore the potential of LSWI2105 and NDWI in

identifying and mapping paddy rice fields.

In summary, this study has demonstrated the potential of

MODIS data and the paddy rice mapping algorithm for the

large-scale mapping of paddy rice fields. This is made

possible by the availability of water-sensitive shortwave

infrared bands from advanced optical sensors (MODIS and

VGT), which enables us to progress beyond other algorithms

that are centered on leaf area index and NDVI. Our paddy

rice mapping algorithm is built upon the understanding of

physical system change (e.g., flooding and transplanting

period) in paddy rice field, and focuses on detection of the

critical phase of flooding and transplanting in paddy rice

field by identifying temporary increases in a water-sensitive

spectral index (LSWI). Application of this paddy rice

mapping algorithm to other countries in Asia, where paddy

rice agriculture dominates, could potentially provide a useful

dataset of the spatial distribution of paddy rice agriculture in

Asia. In addition, the algorithm can also be applied to other

years of MOD09A1 data to quantify interannual variations of

paddy rice fields in Asia.

Economic development in China has resulted in notice-

able changes (an increase of 8 million ha) of paddy rice

agriculture in China from 1995/1996 to 1999/2000 (Liu et

al., 2003). Strong regional variations have been observed as

southern China has experienced losses of paddy rice fields

while northeastern China has had an increase of paddy rice

field area (Liu et al., 2003). Changes in water management

(continuous flooding versus intermittent drainage) during the

past quarter century have had significant impacts on methane

emissions from paddy rice fields (Li et al., 2002). Therefore,

timely and accurate geospatial datasets of flooding and

paddy rice fields are critically needed for quantifying the
spatial pattern and temporal dynamics of methane emissions

from paddy rice fields and assessing water use and food

security in China and Asia.
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