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Cell surface glycans form a critical interface with the biological

milieu, informing diverse processes from the inflammatory cas-

cade to cellular migration. Assembly of discrete carbohydrate

structures requires the coordinated activity of a repertoire of

proteins, including glycosyltransferases and glycosidases. Little is

known about the regulatory networks controlling this complex

biosynthetic process. Recent work points to a role for microRNA

(miRNA) in the regulation of specific glycan biosynthetic enzymes.

Herein we take a unique systems-based approach to identify

connections between miRNA and the glycome. By using our

glycomic analysis platform, lectin microarrays, we identify glyco-

sylation signatures in the NCI-60 cell panel that point to the

glycome as a direct output of genomic information flow. In-

tegrating our glycomic dataset with miRNA data, we map miRNA

regulators onto genes in glycan biosynthetic pathways (glyco-

genes) that generate the observed glycan structures. We validate

three of these predicted miRNA/glycogene regulatory networks:

high mannose, fucose, and terminal β-GalNAc, identifying miRNA

regulation that would not have been observed by traditional bio-

informatic methods. Overall, our work reveals critical nodes in the

global glycosylation network accessible to miRNA regulation, pro-

viding a bridge between miRNA-mediated control of cell pheno-

type and the glycome.

glycan regulation | carbohydrate biosynthesis | systems biology |
epigenetics | NCI-60

Cell surface glycans form a critical interface with the biological
milieu, informing diverse processes from cellular migration

to pathogen–cell interactions. Assembly of discrete carbohydrate
structures requires coordination of a complex repertoire of
proteins, including glycosyltransferases, glycosidases, and sugar
nucleotide transporters, acting in tandem (1, 2). Little is known
about the regulation of the complex biosynthetic networks re-
quired for glycosylation. MicroRNAs (miRNAs) are small non-
coding RNAs that can bind the 3′-UTR of mRNA and inhibit
mRNA stability or translation (3). Recent work points to a role
for miRNA in modulating the levels of glycan biosynthetic enzymes
(glycogenes) (4–11) with profound biological consequences,
including promotion of tumor metastasis (5) and regulation
of neuronal migration (9). Enrichment of glycogene mRNA in
miRNA/mRNA/RNA-induced silencing complex-complexes dur-
ing Caenorhabditis elegans development hints that miRNA may be
a major regulator of glycosylation (12). Studying the relationship
between the glycome and miRNA is complicated by the low
abundance of glycogene transcripts, resulting in inaccuracies in
microarray-based expression analysis, the basis for most miRNA
target prediction algorithms (13, 14). These algorithms predict
hundreds to thousands of gene targets with a precision between
∼30% and 50% (15, 16). Target prioritization is often based on
mRNA conservation across species (15), which presents a second
issue for glycogenes as glycosylation is a rapidly evolving system
(17). We reasoned that a systems-based approach integrating
glycosylation patterns, the functional outcome of mRNA regula-
tion, with miRNA expression would allow us to map miRNA onto

glycan biosynthetic pathways. Harnessing the power of lectin
microarrays, our glycomic platform, we demonstrate that miRNAs
are critical modulators of the human glycome and identify miRNA
regulation of glycogenes elusive to current prediction algorithms.

Results

Glycomic Analysis of the NCI-60 Reveals Tissue Type-Specific Glycan

Signatures. Lectin microarrays, in which carbohydrate-binding
proteins are probes for glycan structure, provide a systems-level
view of the glycome (Fig. 1A) (18–20). These microarrays give
specific information on the repertoire of glycans present, e.g.,
high mannose epitopes, branching patterns, and terminal α-2,3-
or α-2,6-sialic acids, in a high-throughput format. Unlike other
glycomic methods, both the N- and O-linked glycome are ob-
served (19), and the data are in the same format as mRNA and
miRNA datasets. We analyzed the NCI-60, a cancer cell line
panel containing 59 cell lines from nine tissue types, using our
lectin microarray technology. This cell panel is a model for in-
tegrated analysis across multiple data types because of the
availability of chemosensitivity profiles for these cells (21–23).
The miRNA and mRNA profiles of the NCI-60 show the most
coherent signatures for four tissue types: colon, leukemia, mel-
anoma, and renal (22, 23). We first profiled the glycome of cells
from these four tissue types for integration with miRNA datasets
and observed clear segregation by tissue of origin (SI Appendix,
Fig. S1). An expanded analysis of the cell panel displayed similar
results and is shown in Fig. 1. Glycosylation patterns were con-
firmed by fluorescence microscopy (SI Appendix, Fig. S2). For
both datasets, normalized data were subjected to hierarchical
clustering by using the Pearson correlation coefficient (PearCC)

Significance

Carbohydrates (glycans) are complex cell surface molecules

that control multiple aspects of cell biology, including cell–cell

communication, cancer metastasis, and inflammation. Glycan

biosynthesis requires the coordination of many enzymes, but

how this is regulated is not well understood. Herein we show

that microRNA (miRNA), small noncoding RNA, are a major

regulator of cell surface glycosylation. We map miRNA ex-

pression onto carbohydrate signatures obtained by using lectin

microarrays, a glycan analysis method. We identify and vali-

date several miRNA–glycan networks, including a major de-

cision point in N-linked glycan biosynthesis. Overall, our work

provides insights into the “black box” of carbohydrate control

mechanisms.
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as the distance metric and average linkage analysis. Melanoma
and renal cell lines showed enrichment in high mannose [ASA,
AMA, UDA, scytovirin (SVN), Calsepa, HHL; see SI Appendix,

Tables S1 and S2 for full lectin names] but were distinguished by
differing levels of complex multiantennary N-glycans (PHA-L,
PHA-E; renal, high; melanoma, low). In contrast, leukemia and

Fig. 1. Ratiometric comparison of NCI-60 cell lines. (A) Experimental scheme. Equal amounts of Cy5-sample (S) and Cy3-reference (R) were analyzed on the

lectin microarray. (B) Median-normalized log2 ratios (S/R) for 55 cell lines of the NCI-60 were hierarchically clustered by using centered PearCC as the distance

metric and average linkage analysis (n = 76 lectins). Heat map is shown. Yellow, log2(S/R) > log2(Smedian/Rmedian); blue, log2(Smedian/Rmedian) > log2(S/R). (C)

Dendrogram from B. As expected, biological replicates for KM12 clustered tightly. PearCC scale is shown at right.

Fig. 2. Mapping of miRNA/glycosylation networks. (A) SVD of lectin and miRNA data for renal, colon, leukemia (leuk), and melanoma cell lines. The first six

eigengenes (E1–E6) are indicated. (B) Hierarchical clustering of the projection correlation values for E1–E6 using uncentered PearCC as the distance metric and

average linkage analysis. Select clusters are annotated by glycan specificity. (C) A detailed representation of the high mannose cluster (R = 0.71; one-tailed P =

0.06; n = 6). Lectins are shown in red. (D–F) Networks derived from lectin/miRNA clusters: (D) high mannose network, (E) fucose network, (F) β-GalNAc

network. Gray boxes indicate epitopes recognized by lectins. Bubbles indicate predicted miRNA targets, with bubble size reflecting number of miRNA tar-

geting gene. Lines connect miRNA with targets; genes in silver are genes in the pathway that are not targeted.
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colon had lower levels of high mannose and divergent levels of
complex multiantennary glycans (colon, high; leukemia, low) and
β-GalNAc epitopes (BPA, SBA; colon, high; leukemia, low). In
the larger NCI-60 dataset, no discrete glycan signatures were
observed for the remaining cell types. Our data are consistent
with previous mRNA- and miRNA-based profiles (22, 24).
Overall, our data suggest that the glycome of a cell is a direct
representation of the complex flow of genetic information that
encodes cell type.

Multidimensional Singular Value Decomposition Analysis Identifies

Regulatory miRNA/Glycosylation Networks. To examine the re-
lationship between miRNAs and the observed glycan signatures,
we integrated data from our original glycomic analysis (SI Ap-
pendix, Fig. S1) with the miRNA expression data from Liu et al.
(22) by using singular value decomposition (SVD), an un-
supervised matrix method (25). SVD decomposes datasets into
unique “eigenarrays” and “eigengenes,” related by a significance
matrix, which can map onto biological phenotype. We observed
five eigengenes (E2–E6; Fig. 2A), reflecting cell type-dependent
patterns, which, together with the first eigengene (E1), account
for 94% of the variation in the data. Projection of the lectins and

miRNA onto individual eigengenes resulted in sets of lectins
with mixed specificities, confounding our mapping of miRNA/
glycan associations. We reasoned that miRNA that tightly as-
sociate with a particular glycan structure via regulation of un-
derlying glycogenes should covary with lectin binders in their
contributions to the eigengenes. Therefore, we performed a mul-
tidimensional analysis of miRNA and lectin contributions to the
eigengenes by hierarchically clustering projection scores for the
first six eigengenes by using PearCC as the distance metric and
average linkage analysis (Fig. 2B). This improved segregation of
lectins and identified multiple miRNA/lectin clusters that map
onto biosynthetic pathways. We identified regulatory networks
for high mannose (Fig. 2 C and D and SI Appendix, Fig. S3A),
fucose (Fig. 2E and SI Appendix, Fig. S3B), terminal β-GalNAc
(Fig. 2F and SI Appendix, Fig. S3C), Tn and T-antigens (SI Ap-
pendix, Figs. S3D and S4A), hybrid-N-glycans (SI Appendix, Figs.
S3E and S4B), and blood group B (SI Appendix, Figs. S3F and
S4C), suggesting widespread control of glycan biosynthetic path-
ways by miRNA. We validated three of these networks—high
mannose, fucose, and terminal β-GalNAc—as subsequently dis-
cussed in detail, identifying seven previously unknown miRNA/
glycogene interactions and providing strong evidence that

Fig. 3. Validation of the high mannose network. (A and B) Representative fluorescence images of HT-29 cells stained with high mannose lectins (A) HHL or (B) PSA

following 96 h treatment with miR-30c, -181b-5p, -361–5p, or scramble mimics. Monosaccharide control for staining is shown. Data are representative of three bi-

ological replicates. Statistical analysis of the staining and additional lectin data for GNA,NPA, and the LcHcontrol is shown in SI Appendix, Fig. S5. (C–F) Real-timeqPCR

analysis of indicated glycogenes in HT-29 cells treated with indicated miRNA mimics (50 nM; C and E) or corresponding inhibitors (anti-, 25 nM; D and F) for 72 h.

Scrambled sequences are used as a control (scramble). Graphs show average relative expression normalized to GAPDH of three biological replicates. (C and D)

MAN1A1. (E and F)MAN1A2. (G andH)Western blot analysis ofMAN1A2 samples treatedasdescribedwith (G)miRNAmimics or (H) inhibitors. Graphs are of average

signal normalized to GAPDH for three biological replicates. Representative images corresponding to the graphs are shown. (I) Graphical representation of luciferase

activity fromMAN1A2 constructs cotransfectedwithmiR-30c, -181b-5p, -361–5p, or scramblemimics (60 nM) in HEK-293T/17 cells. Mut, miR-30mutant ormiR-361–5p

mutant constructas indicated (SIAppendix, Fig. S8AandTableS3). Luciferasedatawerenormalizedto scramble control. Errorbarsdenote SD (*P<0.05, Student t test).
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combining glycomic outcomes with miRNA expression levels is
a powerful systems-level approach for finding glycan regulatory
relationships.

High Mannose Network. More than half of all proteins are pre-
dicted to contain N-linked glycosylation, which governs functions
as diverse as protein folding, trafficking, and activity (26). We
observed an association between lectins that recognize high
mannose (AMA, Calsepa, GNA, griffithsin, HHL, NPA, RS-IIL,
SVN, and UDA) and a network of miRNAs (miR-30c, -181a-5p,
-181b-5p, -361–5p) predicted to target the α-mannosidase I
(MAN1) family of enzymes (Fig. 2 C and D and SI Appendix, Fig.
S3A). These glycosidases are involved in trimming of Man9-
GlcNAc2 to Man5GlcNAc2, a critical prerequisite for matura-
tion of complex N-linked carbohydrates (1). Down-regulation of
MAN1 results in increased high mannose. We transfected HT-29,
a colon cell line with intermediate high mannose levels, with
miRNA mimics and visualized glycans by lectin staining (HHL,
PSA, GNA, NPA, with LcH, a core fucose lectin, as a control)
and fluorescence microscopy. The miRNA from the high-man-
nose cluster increased binding of high-mannose lectins by two-
fold, suggesting a direct effect of the miRNA on MAN1 family
enzymes (Fig. 3 A and B and SI Appendix, Fig. S5).
All miRNAs in the high-mannose network were predicted by

the MIRANDA algorithm (microRNA.org) to target MAN1A1
(14, 27). We treated HT-29 with mimics and inhibitors of
miRNA in the cluster and examined MAN1A1 expression levels
by real-time quantitative PCR (qPCR) and Western blot analysis
(Fig. 3 C and D and SI Appendix, Fig. S6 A and B). No change
was observed. Analysis of MAN1 transcript levels in four NCI-60
cell lines (Sk-Mel-5, SN12C, HT-29, HCT-116) identified MAN1A2
as the predominant mRNA (SI Appendix, Fig. S7). We observed
strong down-regulation at the transcript and protein levels for
MAN1A2 in response to miR-30c, -181b-5p, and -361–5p mimics
(Fig. 3 E and G), but no response was seen for miR-181a-5p (Fig.
3E and SI Appendix, Fig. S6C). The reciprocal effect was observed
for miRNA inhibitors (Fig. 3 F and H and SI Appendix, Fig. S6C).
Similar results were obtained in the renal cell line SN12C (SI
Appendix, Fig. S6 D and E).
To determine whether miR-181b-5p, -361–5p, and -30c target

MAN1A2 expression through direct binding to the 3′-UTR, we
used a luciferase-MAN1A2-3′-UTR reporter assay (Fig. 3I and SI
Appendix, Fig. S8A). Mimics of miR-30c and -361–5p inhibited
luciferase expression (Fig. 3I). In contrast, miR-181b-5p, which is
not predicted to target MAN1A2, did not affect luciferase levels.
This miRNA was identified as regulating high mannose through
our glycomic integration analysis and may be affecting MAN1A2
expression levels through an indirect mechanism or by targeting
a region other than the 3′-UTR of the mRNA (3, 15). Mutation
of the predicted binding sites of miR-30c or -361–5p abrogated
the effect of these miRNA on MAN1A2-3′-UTR reporter, con-
firming their sites of action (Fig. 3I). Overall, our network
identified predicted and unpredicted miRNA regulators of a key
node in the N-linked pathway responsible for the balance of
high-mannose and complex glycans.

Fucose Network. Fucosylation is a key terminal modification in-
volved in processes from the inflammatory cascade to microbial
adhesion (28). We observed all five members of the miR-200
family [miR-200f: miR-141, -200a-3p (200a), -200b-3p (200b),
-200c-3p (200c), -429] in a cluster with the fucose lectin AAL (SI
Appendix, Fig. S3B) (29). The 200 family of miRNA is strongly
associated with an epithelial phenotype and is down-regulated in
epithelial to mesenchymal transition, a process in which epithe-
lial cells transform into migratory mesenchymal cells (30, 31).
This change in cell state is a critical process normally occurring in
development and wound healing, but dysregulated in cancer
metastasis and fibrosis (32). Previous analysis of miRNA in the
NCI-60 by Park et al. identified a clear correlation between miR-
200f levels and epithelial phenotype in this cell set (30). We
examined the binding of AAL and UEA-I, another well-known

fucose lectin, as a function of epithelial/mesenchymal status in
the expanded NCI-60 dataset (Fig. 4A). Overall, fucosylation was
enriched in the epithelial cell type, correlating with known miR-
200f levels (30).
We identified α-L-fucosidase-2 (FUCA2), a secreted enzyme that

removes fucose, altering cell surface fucosylation levels (33), as
a common predicted target for 6 of the 13 miRNA in the cluster,
including miR-200f members miR-141 and -200a (Fig. 2E and SI
Appendix, Fig. S3B). MiR-141/200a and miR-200b/200c/429 form
two distinct groups of miR-200f and have overlapping and discrete
targets (31). We examined the effects of miR-200f on FUCA2 ex-
pression by using a luciferase-FUCA2-3′-UTR reporter assay (Fig.
4B and SI Appendix, Fig. S8B). Of the five family members tested,
only miR-200b, -200c, and -429 mimics showed inhibition of the
luciferase signals. Mimics of miR-141 and -200a, which are pre-
dicted by microRNA.org to target FUCA2, showed no effect.
miRNA target prediction algorithms allow for only a single mis-
match between the seed region of the miRNA and the target se-
quence (14, 16). These requirements may be too stringent,
precluding important sites. A scan of eight prediction programs
using miRWalk revealed no binding sites for miR-200b, -200c, or
-429 (34), but manual alignment of the miRNAs with the 3′-UTR
of FUCA2 revealed a potential binding site with a 7-bp seed region
and two mismatches flanked by multiple additional matched base
pairs (Fig. 4C). Mutation of this site abrogated the effect of
miRNAmimics on luciferase expression, validating it as the binding
site (Fig. 4 B and C). We confirmed the differential effects of miR-
200f members on FUCA2 in the HT-29 cell line, observing down-
regulation of mRNA levels by real-time qPCR for miR-200b, -200c,
and -429, but not for miR-141 and -200a, in line with our luciferase
assays (Fig. 5A and SI Appendix, Fig. S9A). Mimics of miR-200b,
-200c, and -429 also increased binding of AAL to HT-29, con-
firming their ability to modulate fucosylation in line with the NCI-
60 analysis (Fig. 5B and SI Appendix, Fig. S9B). Taken together,
these data validate our fucose network, demonstrating that fuco-
sylation is controlled by the same miRNA switch responsible for
epithelial cell status and may be a marker for this cell subtype.

β-GalNAc Network. Terminal GalNAc-β1,4-GlcNAc epitope
(β-GalNAc) is found on a select subset of glycoproteins and gly-
colipids and correlates with neuroblastoma malignancy in humans
(35). We observed a strong association between terminal β-Gal-
NAc binding lectins (BDA, BPA, CAA, CSA, VVA) and
miRNA predicted to target glycosyltransferases that modu-
late terminal β-GalNAc levels (R = 0.92, P = 0.005; Fig. 2F and SI
Appendix, Fig. S3C). ST6GALNAC3, an α-2,6-sialyltransferase that

Fig. 4. Validation of the fucose network. (A) Fucose lectin data from Fig. 1B

(AAL, UEA-I) arranged to reflect phenotype as previously described (30). Cell

lines with high expression of miR-200f are boxed in red (30). (B) Graphical

representation of luciferase activity from FUCA2 constructs cotransfected

with miR-200b, -200c, -429, or scramble mimics. Mut, FUCA2 mutant as in-

dicated in C. Data were generated as in Fig. 3I. (C) Sequence alignment of

miR-200c and FUCA2-3′UTR; mutated bases are shown in red.
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catalyzes addition of sialic acid to β-GalNAc, is a predicted target
of five of the seven miRNAs in this complex network. By using an
ST6GALNAC3-3′-UTR luciferase reporter assay, we examined the
ability of three miRNAs from the cluster [miR-200a-5p (200a*),
200b-5p (200b*), and miR-205–5p] to regulate enzyme expression
(Fig. 6 and SI Appendix, Fig. S8C). Of the three mimics tested, only
miR-200b* inhibited luciferase expression. No effect was observed
for miR-200a* or miR-205–5p. miR-200a* and -200b* have iden-
tical seed regions but differ in their flanking bases, arguing that
these are important in determining target specificity. Mutation of
the miR-200b* binding region abrogated the effect of mimic on
luciferase expression, validating the predicted binding site (Fig. 6).
The miR-200b* binding site in ST6GALNAC3 is not conserved
across species and would not be prioritized by prediction algo-
rithms. By integrating miRNA and glycomic data, our analysis
prompted us to validate this glycogene as a target of miR-200b*.

Conclusions

The sheer complexity of the glycome, with its multiple potentially
redundant enzymes, low glycogene expression levels, rapid evo-
lution, and dendritic structures, makes identification of critical
control mechanisms difficult. Herein we harness the power of
our lectin microarray platform to demonstrate that the glycome
communicates the genomic information flow governing tissue
type and cell state at the surface of the cell. miRNAs are master
regulators of this information flow and control the glycan bio-
synthetic network through direct interaction with glycogene
transcripts, as we show in this work. miRNAs are known to target
multiple genes concurrently, opening up the possibility that
the glycome may be modulated along several pathways (e.g.,
N-linked, O-linked, glycolipid) simultaneously by the same miRNA.
Although cancer cells were used in this work, miRNAs regulate
normal biological processes ranging from T-cell development to
embryogenesis, opening a window into glycogene regulation and
involvement in these systems. Overall, our work begins to map
glycans onto critical regulatory networks controlling cell phenotype,
providing a means to deconstruct the glycocode.

Materials and Methods
Cell Lines. The NCI-60 cell set was from the Division of Cancer Treatment and

Diagnosis Tumor Repository (National Cancer Institute, Frederick, MD). Cell

lines were grown in RPMI-1640 (Lonza) supplemented with 10% (vol/vol) FBS

(Atlanta Biologics) and 2 mM L-glutamine (Lonza) at 37 °C in 5% CO2.

Lectin Microarray. Sample preparation. Cell samples were prepared and Cy5-

labeled as previously described (36). Reference was prepared by mixing equal

amounts (by protein) of membrane samples from HS-578T, PC-3, OVCAR-3,

OVCAR-4, LOX IMVI, and SNB-19 before labeling with Cy3.

Printing, hybridization, and analysis. Lectins were purchased from E. Y. Labo-

ratories or Vector Laboratories with the following exceptions: recombinant

cyanovirin, SVN and griffithsin were gifts from B. O’Keefe (Frederick National

Laboratory for Cancer Research, Frederick, MD); recombinant Gaf-D, PA-IL,

PA-IIL, and RS-IIL were made as previously described (37); TJA-I and TJA-II

were from NorthStar Bioproducts. All antibodies were purchased from

Abcam. SI Appendix, Tables S1 and S2, summarize the print lists and buffers.

Printing, hybridization and data analysis were performed as previously de-

scribed (20, 36). Our data were normally distributed as determined by the

Lilliefors test in MATLAB. Lectins were excluded from analysis if they did not

meet our minimal threshold for activity (20).

SVD and Multidimensional Analysis. The normalized miRNA dataset from Liu

et al. (22) was downloaded from CellMiner [RNA; Agilent Human microRNA

(V2); http://discover.nci.nih.gov/cellminer/]. miRNA and lectin microarray

data (SI Appendix, Fig. S1) were combined and ordered by tissue of origin for

the four tissue types. SVD and the projection correlation using the dot

product were performed by using the built-in “SingularValueDecomposi-

tion” function in Mathematica 8 on the collated dataset. For multidimen-

sional analysis, projection correlation values for each lectin or miRNA vector

were calculated by taking the dot product of the expression values with each

of the first six eigengenes, which account for 94% of data variance. These

correlation values were hierarchically clustered by using the PearCC

(uncentered) as the distance metric and average linkage analysis in Cluster

3.0 and visualized in Java TreeView. Clusters were chosen for annotation if

they met the following criteria: (i) >50% of lectins in the cluster had over-

lapping specificity toward a defined epitope, (ii) PearCC > 0.51 (P ≤ 0.15,

single-tailed t test), and (iii) miRNAs in the cluster were annotated in

microRNA.org and mapped onto a clear biosynthetic pathway. The centered

PearCC as the distance metric gave different results, generally segregating

lectins from miRNA; however, the high mannose cluster was observed and

included miR-30c, which we validated (SI Appendix, Fig. S3A).

Mapping miRNA Onto Glycosylation Pathways. Biosynthetic pathways for rele-

vant glycan epitopesweremappedby using theKyoto Encyclopedia ofGenes and

Genomes (38) and the work of Nairn et al. (2). The pathway data were then

compared with the complete set of all predicted glycogene targets from the

downloaded microRNA.org database (14) for miRNA within the corresponding

cluster. miRNA glycogene targets were overlaid onto the appropriate pathways.

Transfection of miRNA Mimics and Inhibitors. Cells were seeded in 12-well or

35-mm glass-bottom dish (1 × 105 cells), cultured 24 h, and transfected with

miRNA mimics (50 nM) or inhibitors (25 nM, miRIDIAN; Dharmacon; SI Ap-

pendix, Table S3) with Lipofectamine 2000 (Invitrogen). Samples were

analyzed 72 h (real-time qPCR and Western) or 96 h (microscopy)

posttransfection.

Fig. 5. MiR-200f members down-regulate FUCA2 expression and increase fucosylation in HT-29. (A) Real-time qPCR analysis of FUCA2 mRNA expression in

cells treated with miR-200b-3p (200b), -200c-3p (200c), -429, or scramble mimic. Data were generated as in Fig. 3 C and E. (B) Representative fluorescence

images of cells treated as in Fig. 3 A and B with indicated miR-200f mimics or scramble and stained with AAL. Monosaccharide inhibition control is shown

(Ctrl). Data are representative of three biological replicates; SI Appendix, Fig. S9B provides statistical quantification of staining.

Fig. 6. Validation of β-GalNAc network. Graphical representation of

luciferase activity from ST6GALNAC3 constructs cotransfected with miR-

200a-5p, -200b-5p, -205, or scramble mimics. Mut, ST6GALNAC3 mutant

(SI Appendix, Table S3). Data were generated as in Fig. 3I.
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Fluorescence Microscopy. Fluorescence microscopy was used to confirm lectin

microarray and miRNA data as it causes minimal perturbation to adherent

cells. Cells were cultured in glass-bottom dishes, fixed in 4% (wt/vol) para-

formaldehyde in HBSS (5 min, room temperature) and incubated with bio-

tinylated lectins (10 μg/mL in PBS solution, 45 min, 37 °C; Vector Laboratories),

followed by streptavidin-Cy5 staining (1:100 vol/vol in PBS solution, 30 min,

37 °C; Invitrogen) in the dark. NCI-60 validation samples were stained with

DAPI (600 nM) to test for permeabilization, which was not observed under

these fixation conditions. miRNA mimic-treated samples were not stained with

DAPI. Samples were imaged by fluorescence microscopy (60× PlanFluor ob-

jective, NA 0.3, Eclipse TE 2000-U; Nikon) and a minimum of 10 fluorescence

(excitation/emission, 625–650 nm/670 nm) and bright-field (phase contrast)

image pairs were obtained. All samples stained with the same lectin were

imaged under identical conditions. Lectins were preincubated with mono-

saccharide inhibitors (30 min, 200 mM mannose for HHL, PSL, GNA, NPA, LcH;

200 mM fucose for AAL) as a staining control. Images were analyzed in Met-

aMorph (Molecular Devices). For statistical analysis, images were background-

subtracted and six random areas per image were selected in bright field.

Regions with aggregated lectin or internal staining (as observed by bright

fluorescent aggregates and/or DAPI staining where applicable) were excluded

from the statistical analysis and alternatives regions selected. For NCI-60 vali-

dation studies, the average fluorescence of six areas was normalized to cell

count (>29 cells per image, bright field) for four random images and averaged

to generate graphs. For miRNA validation, data from 10 images per replicate

(three biological replicates, 30 images total, 180 random areas) were averaged

to generate graphs.

RNA Extraction and Real-Time qPCR. Total RNA was extracted from samples

(miRNeasyMini Kit; Qiagen), quantified by using a NanoDrop ND-1000 device,

and reverse-transcribed (High Capacity cDNA Reverse Transcription Kit; Ap-

plied Biosystems). Transcripts were quantified by real-time qPCR using Power

SYBR Green PCR Master Mix (Applied Biosystems) in a LightCycler 480 (Roche).

Primers were designed by using PrimerSelect (SI Appendix, Table S3).

Cycle threshold values were normalized to the housekeeping gene

GAPDH. The average for three biological replicates was plotted as rel-

ative transcript abundance.

Western Blotting. Cells were lysed in cold RIPA buffer supplemented with

protease inhibitors. Equal amounts of protein were resolved by 10% SDS/

PAGE, transferred onto nitrocellulosemembranes, and blocked in block buffer

[5% (wt/vol) BSA, PBST (PBS, pH 7.4, 0.05% Tween-20), 1 h, room tempera-

ture]. Antibodies were diluted in block buffer; primary antibodies were as

follows: α-MAN1A2 (1:1,000; Novagen), α-MAN1A1 (1:1,000; Abcam), α-GAPDH

(1:5,000; Abcam); secondary antibodies corresponding to the primary anti-

bodies were as follows: α-mouse or α-rabbit-HRP (1:5,000; Bio-Rad). Blots were

developed by using SuperSignal West Pico (Thermo Scientific).

Luciferase Reporter Assay. MAN1A2-3′UTR and ST6GALNAC3-3′UTR reporter

plasmids were obtained from SwitchGear Genomics. FUCA2-3′UTR was cloned

from HT-29 cDNA and inserted into pLightSwitch-MT vector (SwitchGear

Genomics). Mutagenesis of seed regions was performed with Phusion Hot

Start Flex (New England Biolabs) and 5′-phosphorylated primers (SI Appendix,

Table S3, shows primers and constructs). Plasmids were purified using Endo-

Free Plasmid Maxi Kit (Qiagen) for transfection. Each plasmid (250 ng DNA)

was cotransfected with 60 nM miRNA or scramble mimic in HEK 293T/17 cells

in a 96-well plate by using Lipofectamine 2000 (Life Technologies). After 24 h,

luminescence was developed by using LightSwitch Assay Reagent (SwitchGear

Genomics) and read on a SynergyHT microplate reader. All luciferase data

were normalized to scramble control.
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