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ABSTRACT: 

 

Mapping the distribution of poverty in developing countries is essential for humanitarian organizations and policymakers to 

formulate targeted programs and aid. However, traditional methods for obtaining socioeconomic data can be time-consuming, 

expensive, and labor-intensive. Recent studies have demonstrated the effectiveness of combining machine learning and satellite 

images to estimate wealth in sub-Saharan African countries (Xie et al., 2016, Jean et al., 2016). In this study, we investigate the 

extent to which this method can be applied in the context of the Philippine archipelago to predict four different socioeconomic 

indicators: wealth level, years of education, access to electricity, and access to water. We also propose an alternative, cost-effective 

approach that leverages a combination of volunteered geographic information from OpenStreetMap and nighttime lights satellite 

imagery for estimating socioeconomic indicators. The best models, which incorporate regional indicators as predictors, explain 

approximately 63% of the variation in asset-based wealth. Our findings also indicate that models trained on publicly available, 

volunteer-curated geographic data achieve the same predictive performance as that of models trained using proprietary satellite 

images. 
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1. INTRODUCTION 

Despite best efforts in implementing poverty alleviation 

programs, the Philippines still lags behind its Southeast Asian 

neighbors in terms of poverty eradication, with approximately 

22 million Filipinos living below the national poverty line 

(Philippine Statistics Authority, 2018). A major challenge in 

fighting poverty today is the lack of reliable socioeconomic 

data, which is often expensive, time-consuming, and labor-

intensive to collect. Conducting onthe-ground household 

surveys in the Philippines can cost up to 1.5M USD. Such 

surveys are done only every 3 to 5 years and are often 

aggregated to the regional or provincial level when reported to 

the public (Juan-Albacea, 2009). Without more granular and up-

to-date data to guide their policies and programs, development 

organizations and government agencies risk allocating their 

limited resources in the wrong areas. 

 

In recent years, major advancements in computer vision 

research and an increasing availability of geospatial resources 

have enabled novel methods for estimating socioeconomic 

indicators (Jean et al., 2016, Babenko et al., 2017, Engstrom et 

al., 2017). To tackle the problem of poverty eradication, we 

look towards combining machine learning with geospatial 

information as a fast, low-cost, and scalable means of providing 

granular poverty estimates. In this study, we examine the extent 

to which geospatial data including nighttime lights, daytime 

satellite imagery, human settlement data, and crowd-sourced 

information can be used to estimate socioeconomic well-being 

in the Philippines. 

 

To summarize, our work primarily seeks to answer the 

following questions: (1) Are remote sensing-based methods 

developed for poverty prediction in other countries applicable 

within the Philippine context? and (2) How well do predictive 

models trained on publicly available crowd-sourced geospatial 

information compare against state-of-the-art remote sensing-

based methods for poverty estimation in the Philippines? 

 

2. RELATED WORK 

In recent years, more research works have started focusing on 

the development of novel techniques using a variety of 

geospatial data sources for estimating socioeconomic 

development. 

 

Study Approach Countries Out-of-sample 

R2 

Engstrom et 

al., 2017 

Derived 

features 

Sri Lanka 0.60 

Jean et al., 

2016 

Transfer 

learning 

Malawi 0.55 

Tanzania 0.57 

Nigeria 0.68 

Uganda 0.69 

Rwanda 0.75 

Head et al., 

2017 

Transfer 

learning 

Haiti 0.51 

Nepal 0.64 

Babenko et 

al., 2017 

End-to-end 

learning 

Mexico 0.57 

Table 1. A summary of the out-of-sample R2 results of past 

studies on poverty prediction using remote sensing techniques. 
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In 2016, Jean et al. proposed a method that combines deep 

learning and satellite imagery for poverty prediction. The study 

uses convolutional neural networks to map daytime satellite 

images to their corresponding nighttime light intensity levels in 

order to implicitly identify important patterns in the satellite 

imagery (e.g. roads, buildings, land cover) that are indicative of 

wealth. The study obtained R2 results of 0.55 - 0.75 for asset-

based wealth estimation in five different sub-Saharan African 

countries. 

 

In 2017, the study was followed by that of Head et al. which 

demonstrated the replicability of the results and extended the 

study to estimate a range of socioeconomic indicators in 

countries outside of Africa, including Haiti and Nepal. The 

study investigated the model’s efficacy in predicting other 
human development indicators, including education, health, 

access to electricity, access to water, and anthropomorphic 

measures. Ultimately, the study showed that the method cannot 

be trivially applied to estimate other socioeconomic indicators 

outside of wealth, especially if these indicators do not exhibit 

any clear relationships with nighttime lights. 

 

More recently, Engstrom et al. implemented an approach that 

involves explicitly deriving features from daytime satellite 

images using CNNs, semi-automated classification models, and 

texturebased approaches. The extracted features were then used 

to estimate poverty in 1,291 administrative units in Sri Lanka. 

Their study shows that wealth in Sri Lanka can be reconstructed 

with an R2 of 0.60 using object and texture features derived 

from satellite images. Features extracted include density and 

count of buildings, the presence of building shadows (a proxy 

for building height), the number of cars, road length and 

density, agricultural land cover, and roof type or material. 

 

Babenko et al. proposed an end-to-end deep learning approach 

that uses CNNs to directly map medium and high resolution 

satellite images to poverty rates in Mexico. Using this method, 

they were able to achieve R2 results of up to 0.57 when 

incorporating satellite-estimated land use into the model and 

0.61 when modeling poverty only in urban settings. We 

summarize the results of these remote sensing-based studies in 

Table 2. 

 

Other non-remote sensing-based methods for predicting have 

also been proposed. Previous researchers (Blumenstock et al., 

2015, Fernando et al., 2018, Hernandez et al., 2017) have 

conducted studies using anonymized call detail records (CDRs) 

from mobile phone networks to predict the poverty measures 

derived from census data in Rwanda, Sri Lanka, and Guatemala 

respectively. The studies were able to demonstrate the efficacy 

of reconstructing high-resolution maps of wealth distribution 

using only CDR. 

 

 

3. DATA AND PRE-PROCESSING 

In this section, we describe the five different data sources and 

preprocessing steps done in this study. We summarize the 

datasets in Table 2. 

 

Demographic and Health Survey (DHS)  

Year collected 2017 

No. of clusters 1,213 

No. of households 27,496 

Nighttime Lights Data (VIIRS DNB)  

Year collected 2016 

Number of ~0.25 km2 pixels 134,540 

Low intensity pixels 94,680 

Moderately low intensity pixels 27,415 

Medium intensity pixels 9,389 

Moderately high intensity pixels 2,161 

High intensity pixels 895 

Daytime Satellite Imagery (Google Static Maps)  

Year collected 2018 

No. of images in training set 150,000 

No. of images in validation set 13,454 

Human Settlement Data (HRSL)  

Year collected 2017 

No. of road features 16 

No. of building features 28 

No. of POI features 101 

Table 2. Primary datasets used in this study. 

 

3.1 Demographic and Health Survey 

We used the 2017 Philippine Demographic and Health Survey 

(DHS) as a measure of ground truth for the different 

socioeconomic indicators. Conducted every 3 to 5 years, the 

Philippine Statistical Authority (PSA) collects nationally 

representative information on social, economic, and health-

related outcomes across hundreds of households, which are 

grouped into clusters of 2 to 44 households (Philippine Statistics 

Authority, 2018, Burgert et al., 2013). In line with the United 

Nations Sustainable Development Goals, we focused our 

analysis on a subset of survey questions and derived the 

following socioeconomic indicators from the DHS dataset: 

 

Wealth Index. Our primary measure of socioeconomic well-

being is the “wealth index”, which is computed as the first 
principal component of attributes related to common asset 

ownership (e.g., roof material, television, housing material) on a 

per-household level. We get the mean wealth index per cluster 

as it is reported in the DHS dataset and do no further 

transformations. 

 

Education completed. The DHS captures information on the 

number of years of education completed by household members 

over 6 years old. We aggregated this by computing the mean 

years of education completed across all households per cluster. 

 

Access to Electricity. The DHS dataset contains information on 

the number of affirmative responses to the survey question 

related to access to electricity. We aggregated this information 

by getting the proportion of households with electricity access 

per cluster. 

 

Access to Water. The DHS dataset contains information on the 

total travel time in minutes to get to a water source. If water 

source is on-site, time is set to zero. We get the mean time to 

access a water source across all households per cluster. 

  

3.2 Nighttime Luminosity Data 

The nighttime lights (NTL) data is taken from the Visible 

Infrared Imaging Radiometer Suite Day/Night Band (VIIRS 

DNB) for the year 2016, produced in 15 arc-second geographic 

grids (NOAA National Centers for Environmental Information, 

2016). The VIIRS DNB NTL data includes a continuous 

luminosity level from 0 to 122 for the Philippines, with 0 being 

the darkest pixel. By observing the histogram of the nighttime 

light intensities, we assigned the nighttime light intensity values 

into the following five distinct classes: low intensity (zero pixel 

values), moderately low intensity (0.05-2), medium intensity (2-
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15), moderately high intensity (15-30), and high intensity (30-

122). 

 

Figure 1 illustrates the relationship between the average night 

time lights per cluster and the four (4) different socioeconomic 

indicators: wealth index, education, access to electricity, and 

access to water. 

            (a) Wealth Index                     (b) Education 

         (c) Electricity Access               (d) Water Access 

 

Figure 1. Relationship between average nighttime light 

luminosity and the Philippine socioeconomic indicators (wealth 

index, education completed, access to electricity, access to 

water) at the cluster level. Black line indicates a LOESS curve 

fitted to the data. 

 

3.3 Daytime Satellite Imagery 

We retrieved a number of satellite images per cluster based on 

the cluster centroids reported in the DHS dataset, where each 

cluster location is defined by the mean latitude and longitude of 

the households, with added noise to preserve the privacy of the 

households (Philippine Statistics Authority, 2018). Each cluster 

location is also labeled with a tag that indicates whether or not it 

is within a rural or urban area. We obtained up to 400 square 

tiles of satellite images within a 5 km radius for rural areas and 

up to 60 square tiles within a 2 km radius for urban areas. These 

tiles surround each cluster centroid and each tile corresponds to 

a pixel in the VIIRS DNB NTL dataset. Using Google Static 

Maps API, we downloaded a total of 134,540 images with a 

zoom level of 17, scale of 1, and pixel resolution of 

approximately 1.25 m. The size of each image is 400×400 

pixels and matches the 0.25 km2 land area covered by a single 

pixel of night time lights data. 

 

3.4 High Resolution Settlement Data 

The High Resolution Settlement Layer dataset by Tiecke et al. 

was used to identify satellite images that contained no human 

settlements. The dataset provides estimates of human population 

distribution at a resolution of 1 arc-second (30 m). The 

population estimates were based on recent census data and high 

resolution satellite imagery (0.5 m) from DigitalGlobe. Using 

building footprints as a proxy for human settlements, Tiecke et 

al. developed a CNN model to detect buildings from satellite 

images; population estimates were then assigned using 

proportional allocation over a wide coverage area, 

encompassing both urban and rural areas (Tiecke et al., 2017). 

 

3.5 OpenStreetMap Data 

More and more researchers are turning to volunteer-curated 

geographic information and open geospatial datasets to study 

socioeconomic development, social inequalities, and territorial 

conflicts (Gervasoni et al., 2018, Mahabir et al., 2018, Grippa et 

al., 2018). One of the more popular geospatial data crowd-

sourcing platforms is OpenStreetMap (OSM), a global 

geospatial database containing billions of entries of volunteered 

geographic information, maintained by a massive community of 

mappers from around the world all working towards the goal of 

curating accurate and complete geospatial data. 

 

The community of OSM contributors typically consists of 

individual mappers, university researchers, volunteer 

communities, and non-profit organizations. Such organizations 

regularly organize field mapping activities, workshops, and 

events that promote geospatial data mapping and contribution. 

For local governments units and volunteer organizations such 

the the Humanitarian OpenStreetMap Team (HOT), OSM has 

been used largely for humanitarian work, disaster risk 

management, and emergency relief operations. 

 

In recent years, large corporations such as Facebook, Amazon, 

and Microsoft as well transportation network companies like 

Grab and Uber have also started making major contributions to 

OSM (Anderson et al., 2019). Given massive computational 

resources, private corporations are able to use computer vision 

with satellite imagery to identify and map large-scale road 

networks. In fact, a recent study has found that user-generated 

road maps in OSM are approximately 83% complete as of 2016, 

with over 40% of countries having a fully mapped street 

network (Barrington-Leigh and Millard-Ball, 2017). 

Meanwhile, non-corporate mappers are more active contributors 

of building and point-of-interest data, which are typically more 

difficult to distinguish using satellite imagery and are thus more 

accurately mapped using local domain knowledge and on-the-

ground field surveys. 

 

In this study, we obtained OpenStreetMap (OSM) data for the 

Philippines from Geofabrik, an online repository for OSM data 

(Geofabrik, 2018). From this, we were able to extract 

information related to the roads, buildings, and points of 

interests present within specified areas. 

 

 

4. METHODS 

In this section, we describe the different methods used in 

predicting socioeconomic well-being. All models were 

evaluated using a five-fold nested cross validation scheme. 

 

4.1 Remote Sensing-based Transfer Learning Model 

We implemented the satellite-based deep learning approach 

proposed by Xie et al. in 2015 and later improved upon by Jean 

et al. in 2016, with the assumption that nighttime lights act as a 

good proxy for economic activity (Mellander et al., 2015). As in 

Head et al., we began by fine-tuning a convolutional neural 

network (CNN) with VGG16 architecture that has been pre-

trained on the ImageNet dataset to recognize 1000 different 

class labels (Krizhevsky et al., 2012), with the goal of learning 

features that are useful for poverty prediction. We treat the 

problem as a classification task with five night time intensity 

classes: low, moderately low, medium, moderately high, and 

high. We set aside 90% of the images for training and used the 

remaining 10% for the validation set. We dealt with the class 
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imbalance by upsampling the minority classes (high, moderately 

high, and medium nighttime light intensities) and 

downsampling the low and moderately low light intensity 

classes to 30,000 images per class in order for all five classes to 

have the same number of training examples. 

 

Like most models pretrained on ImageNet, the VGG16 model 

accepts 224×224 pixel images; meanwhile, our input images are 

400×400 pixels. We proceeded to implement a fully 

convolutional architecture as described by Xie et al., which 

involves replacing the fully-connected top layers from the 

VGG16 modelwith randomly initialized fully convolutional top 

layers. This allows the model to accept input images of arbitrary 

sizes without losing information. We augmented the training set 

using random horizontal mirroring and began fine-tuning the 

full network using an Adam optimizer with an initial learning 

rate of 10−6 and a batch size of 32. We set the maximum number 

of epochs to 50, decreasing the learning rate by a factor of 10 

whenever the validation loss began to plateau. We froze most of 

the layers, tuning only the last block of fully convolutional 

layers. At the end of training, we were able to achieve a 72% 

validation accuracy and 60% validation F1 score for the 

classification task. 

 

For each image, we extract a 4,096-dimensional vector of 

activations in the top layer of the CNN, which are optimized to 

distinguish between different levels of night light luminosity. 

Each cluster has up to 400 images that we convert to feature 

vectors of learned representations; these feature vectors are then 

averaged into a single vector. Finally, we used these cluster-

level feature vectors as input to a secondary regression model to 

predict the socioeconomic indicators. As in previous studies 

(Jean et al., 2016, Head et al., 2017), we used a ridge regression 

model to learn the mapping from cluster-level feature vectors to 

socioeconomic indicators. 

 

4.2 OpenStreetMap Model 

For each cluster, we engineered three types of OSM features, 

namely roads, buildings, and points of interest (POIs). These 

OSM features were extracted within a 5 km radius for rural 

areas and 2 km radius for urban areas, with each area centered 

on the cluster locations. We identified five types of roads in the 

dataset: primary, trunk, paved, unpaved, and intersection. For 

road feature engineering, we followed the pre-processing 

technique described by Zhao and Kusumaputri, i.e., for each 

type of road, we calculated the distance to the closest road, total 

number of roads, and total road length per cluster (Zhao and 

Kusumaputri, 2016). 

 

We also identified six different types of buildings: residential, 

damaged, commercial, industrial, education, health. For each 

type, we calculated the total number of buildings, the total area 

of buildings, the mean area of buildings, and the proportion of 

the cluster area occupied by the buildings. Finally, we identified 

over 100 different points of interests; for each cluster, we 

obtained the total number of each POI within a proximity of the 

area, e.g., number of banks, bars, cinemas, colleges, hotels, 

parks, etc. 

 

We compared the performances of random forest regression 

models trained on the different types of OSM features, both 

separately and combined, for predicting socioeconomic well-

being. Furthermore, we also conducted experiments to 

determine the predictive performance of models trained using 

multiple data sources, with the hypothesis that using features 

from mixed data sources will bolster model performance. 

Specifically, we trained random forest regression models using 

a combination of OSM data and nighttime lights-derived 

features as input. Nighttime light features consist of summary 

statistics and histogram-based features, including the mean, 

median, maximum, minimum, covariance, skewness, and 

kurtosis, of the nightlight luminosity pixels within each cluster. 

 

          (a) Wealth Index                         (b) Education 

         (c) Electricity Access                (d) Water Access 

 

Figure 2. Relationship between cluster-level asset-based wealth 

and different covariates extracted from OSM. Black line 

indicates a LOESS curve fitted to the data. 

 

 

To our knowledge, this is the first paper to study multi-

dimensional poverty prediction using a combination of crowd-

sourced geospatial data and satellite data in the unique context 

of a developing nation in Southeast Asia. 

 

 

5. RESULTS AND DISCUSSION 

5.1 Poverty Prediction using Satellite Imagery and 

Transfer Learning 

Past studies have published results on using deep learning 

methods for predicting wealth in sub-Saharan African countries 

(Jean et al., 2016) as well as non-African countries (Head et al., 

2017). Predictive models achieved r-squared results ranging 

from 0.51 to 0.75 (Haiti: 0.51; Malawi: 0.55; Tanzania: 0.57; 

Nepal: 0.64 Nigeria: 0.68; Uganda: 0.69; Rwanda: 0.75). In this 

study, we tested how well the satellite based deep learning 

approach performs in the Philippine setting. 

 

Note that the Philippines, being an archipelago that consists of 

over 7,000 islands, required additional pre-processing steps in 

order to reduce noise in the dataset. Specifically, we removed 

satellite images composed mainly of bodies of water as well as 

images containing no human settlements using the High 

Resolution Settlement Layer (HRSL) developed by Tiecke et 

al.; by doing so we were able to see a notable rise in the r 

squared score from 0.56 to 0.59 for wealth prediction. By 

increasing the number of nighttime light bins from the 3 to 5 

and incorporating binary regional indicators as predictors, we 

were able to further improve the wealth index r-squared score to 

0.63. As proof of concept, we show in Figure 3 a reconstruction 

of provincial-level poverty maps by aggregating cluster-level 

wealth estimates. 
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(a) Ground Truth Wealth Index   (b) Predicted Wealth Index 

 

Figure 3. Ground-truth wealth indices and cross-validated 

Philippine poverty predictions using the satellite-based transfer 

learning model aggregated to the provincial level. 

 

 

Our findings also indicate that the method does not generalize 

for other socioeconomic indicators with the same r-squared as 

wealth (education: 0.47, access to electricity: 0.27, access to 

water: 0.10). We note that these results are consistent with the 

conclusions reached in (Head et al., 2017), which states that 

high model performance cannot be expected when there is no 

clear relationship between the development indicator and 

nighttime lights. 

          (a) Wealth Index                         (b) Education 

        (c) Electricity Access                 (d) Water Access 

 

Figure 4. Ground-truth wealth index and cross-validated 

Philippine poverty predictions using the satellite-based deep 

learning model. 

 

 

5.1.1 Visualizing Nighttime Light Classification Model To 

visualize the nighttime light classification model, we generate 

class saliency maps based on a given image and class 

(Simonyan et al., 2013). The image-specific saliency is 

computed by getting the magnitude of the class score derivative, 

which indicates the weight of each pixel in affecting the class 

score. We see in Figure 4 that the model identifies pixels related 

to roads and buildings as important for classifying medium to 

high nighttime light intensity; whereas, pixels related to trees 

and crops are given more weight for low nighttime light 

intensity classes. 

 

 

 

(a) Low Nighttime Light Intensity Class 

(b) Medium Nighttime Light Intensity Class 

(c) Moderately High Nighttime Light Intensity Class 

 

Figure 5. Class saliency maps for test satellite images in the 

nighttime light classification task. Maps were generated using a 

single back-propagation pass through the trained CNN. 

 

 

5.2 Poverty Prediction using Crowd-sourced Geospatial 

Information 

We trained separate random forest regression models for each 

type of OSM feature (road, building, or POI). We found that 

using roads, buildings, or points of interests alone already 

explain 49-55% of the variance, with roads being the best 

predictor (R2: 0.55). Training a model on all three types of OSM 

features results in a higher r-squared (0.59). Furthermore, by 

combining OSM features with nighttime lights data and binary 

regional indicators, we were able to obtain an r-squared of 0.63 

for wealth prediction. The r-squared results for education, 

electricity access, water access are 0.49, 0.36, and 0.09, 

respectively. Since our poverty prediction approach was 

optimized for predicting asset-based wealth, a more indicator-

specific feature engineering and feature selection process may 

likely bolster performance. 
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          (a) Wealth Index                         (b) Education 

        (c) Electricity Access                 (d) Water Access 

 

Figure 6. Ground-truth wealth index and cross-validated 

Philippine poverty predictions using the OpenStreetMap model. 

 

 

We find that the performance of the the OSM-nightlights hybrid 

model (R2: 0.63) achieves similar results as that of state-of-

theart satellite-based transfer learning model (R2: 0.63). 

However, unlike satellite images from Google Static Maps 

which are proprietary and limited by licensing terms, both OSM 

and NTL data are publicly available and freely redistributable, 

making them an inexpensive alternative to daytime satellite 

images, which cost approximately 3,000 USD to acquire in 

order to generate granular poverty maps for the entire 

Philippines. 

 

We also draw attention to some of the drawbacks of using OSM 

for poverty prediction. One major disadvantage of using OSM 

is that it is difficult to assess the accuracy and completeness of 

the data. The method is also highly dependent on human input, 

i.e. it requires on-the-ground expert surveyors with domain 

knowledge to map the area. For hard-to-access regions in far-

flung or warstricken areas, obtaining reliable information can be 

a challenge. 

 

While our initial work does show that despite not being a 

perfect data source, the OSM method does achieve good results. 

However, more research needs to be done to confirm the 

reliability of the method, and we urge researchers, practitioners, 

and stakeholders to consider these drawbacks, when adapting 

the method. 

 

6. CONCLUSIONS 

In this study, we implemented the satellite-based deep learning 

approach described by Xie et al. and Jean et al. in the Philippine 

setting. Our results confirm the applicability of the 

methodology, with the best model achieving an r-squared of 

0.63 for estimating asset-based wealth. We also proposed an 

alternative costeffective approach to poverty prediction that 

uses free and publicly available crowd-sourced geospatial 

information. Our findings indicate that a model trained on a 

combination of OSM and NTL-derived features also achieves 

an R2 of 0.63. We conclude that both satellite images and 

volunteered geographic information are valuable tools for high 

resolution, real-time poverty mapping. Efforts in poverty 

mapping have great potential to help governments and 

humanitarian organizations better understand the spatial 

distribution of poverty and implement more evidence-based 

targeted interventions in developing countries. 
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