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Abstract High temperature stress is a major obstacle in

rice productivity. Considerable progress has been made on

studying heat tolerance (HT) at different stages. However,

the genetic basis of HT at the booting stage is poorly

understood. In this study, we analyzed the morphological

features of a heat-sensitive japonica cultivar Sasanishiki

under natural high temperature stress at the booting stage.

The anthers became smaller and the number, and fertility,

of pollen grains were decreased significantly. As a result,

there was a dramatic reduction in spikelet fertility. In

contrast, the indica cultivar Habataki showed high HT and

normal spikelet fertility under high temperature stress.

Additonally, a set of chromosome segment substitution

lines, derived from Sasanishiki and Habataki, were

evaluated for HT related quantitative trait loci (QTLs)

across two environments in the natural field. A total of 12

QTLs associated with HT were detected, of which, 5 were

identified in two environments, and 7 in one environment.

Furthermore, one of the major-effect QTLs (qHTB3-3)

detected on the long arm of chromosome 3, was confirmed

using overlapping substituted lines. qHTB3-3 was finally

mapped between the two markers RM3525 and 3-M95,

approximately 2.8 Mb apart. These findings and further

gene cloning of qHTB3-3 will help us better understand the

molecular control of HT in rice, and may contribute to the

development of high HT rice varieties.

Keywords Rice (Oryza sativa L.) � Heat tolerance �

Booting stage � CSSL � QTL � qHTB3-3

Introduction

Rice is one of the thermophilic crops. Optimal temperature

for the normal development of rice is between 27 and

32 �C (Yin et al. 1996). Temperature above the tolerance

threshold of growth can cause heat stress. Unfortunately,

high temperature events have increased resulting in

reduced rice yields in recent years (Shi et al. 2015).

According to the investigation on high-temperature events,

occurrence of rice heat stress increased significantly from

1983 to 2010 in Jiangxi province, China (Yang et al. 2012).

Two severe heat stress events occurred during the flower-

ing, or grain-filling stage, in 2003 and 2013. These events

caused a great reduction of rice yield in many countries of

south China (Tao et al. 2007; Gong and Shao 2013). As

extreme high temperature events occur more frequently, it

is becoming much more important to breed heat-tolerant

varieties or identify varieties from pre-existing germplasm.
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Two strategies have been proposed for breeding. One is to

use the highly heat-tolerant cultivars as the donor, such as

N22 (Rang et al. 2011). Another is to breed cultivars with

the early-morning flowering (EMF) trait, to escape high

temperature at flowering. qEMF3, which was identified

recently from wild rice O. officinalis, has the potential to

shift flower opening time of cultivars to an earlier time in

morning, when the temperature is lower (Hirabayashi et al.

2015).

In rice, the flowering stage is the most susceptible to

high temperatures, followed by the booting stage (Satake

and Yoshida 1978; Shah et al. 2011). Many studies have

focused on HT at the flowering stage. For example,

spikelet sterility was induced in two rice cultivars (IR64

and Azucena) exposed to C33.7 �C, for more than 1 h at

anthesis (Jagadish et al. 2007). High temperature stress

causes bad anther dehiscence and represses germination

of pollen grains on the stigma (Matsui and Omasa 2002;

Prasad et al. 2006; Jagadish et al. 2010). Interestingly,

female fertility was more tolerant to high temperature, as

long as the environmental temperature was below 41 �C

(Satake and Yoshida 1978). Additionally, QTL mapping

studies for HT at flowering stage have been carried out

on various rice populations. A number of related QTLs

have been identified and located on all 12 chromosomes,

showing a complex genetic basis of HT (Chen et al.

2008; Zhang et al. 2008; Xiao et al. 2011; Ye et al.

2012, 2015; Buu et al. 2014; Zhao et al. 2016; Prasanth

et al. 2016). One major QTL (TT1) was recently cloned

from African rice (O. glaberrima), which encodes an a2

subunit of the 26S proteasome involved in the degrada-

tion of ubiquitinated proteins. TT1 has shown great value

in improving HT at seedling, flowering and filling stages

(Li et al. 2015).

Much progress has been made on HT at the flowering

stage; however, few studies focus on HT at booting stage.

High temperature ([33 �C) at the meiosis stage affects

spikelet fertility. With the increase in temperature, and its

duration, the seed-setting rate gradually decreases (Shi

et al. 2008). Zhao et al. (2006) mapped 2 QTLs for the heat

susceptibility index of spikelet fertility at the booting stage

by using a backcross population of USSR5/Guangjie 9//

USSR5. The two QTLs (located on chromosome 4 and 8)

explained 16.8 and 9.9% of the phenotypic variance,

respectively. There has been no systematic analysis per-

formed on HT of rice at the booting stage. Here, we studied

the performance of a heat-sensitive japonica cultivar

Sasanishiki under high temperature stress at the booting

stage. Furthermore, a set of CSSLs, derived from the

backcross between Sasanishiki and an indica donor cultivar

Habataki, were used to detect QTLs associated with HT at

the booting stage.

Materials and methods

Plant materials

A set of 39 CSSLs, derived from the backcrossed progenies

involving the japonica variety Sasanishiki (recurrent par-

ent) and an indica elite variety Habataki (donor parent)

(Ando et al. 2008), were used. In 2016, CSSLs and their

parents were grown in the paddy field of Jiangxi Academy

of Agricultural Sciences, Nanchang, China. Field experi-

ments consisted of four sowing dates (March 24, 30, May

17 and 23, 2016), hereafter referred to as E1, E2, E3 and

E4, respectively. The seedlings from E1 and E2 were

transplanted on April 27, and the others were transplanted

on June 16. Each line was planted in 5 rows, with 8 plants

per row, spaced at 20 9 20 cm2. The field management

was conducted according to the normal procedures for rice.

Phenotypic measurements

Air temperature in the field was recorded from 1 July to 30

August 2016 using a copper–constantan thermocouple

(Zeda Instruments Co. LTD, Hangzhou, China). The details

of temperature at the booting stage are shown in Fig. 1.

Pollen fertility was observed under an optical microscope

with 1% I2-IK staining method at flowering prior to

anthesis. Images were captured using a digital microscope

camera (Motic China Group Co., Ltd.). The spikelet fer-

tility under different environments was used as indicator of

tolerance to high temperature for the QTL mapping. At

maturity, 15 panicles per line were randomly harvested for

spikelet fertility investigation.

QTL detection

A QTL was considered to be present, when the average

value of a trait was significantly different between a CSSL

and the recurrent parent (Sasanishiki) according to Dun-

nett’s multiple comparison test using the SPSS software.

The additive effect and percentage of phenotypic variance

explained by each QTL independently, were also calcu-

lated (Eshed and Zamir 1995). The positive additive effect

indicates that Habataki contributes to the positive allele,

whereas the negative additive effect indicates that the

positive allele is contributed by Sasanishiki.

QTL validation

A cross was made between SL411 and Sasanishiki. SSR

markers and new developed insertion/deletion (indel)

makers were used to identify the progenies. Finally, the

backcross inbred lines (BILs) were obtained from the F3
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generation. The BILs were treated the same as CSSLs in

E3 and E4. Primers were designed using Primer3 (Unter-

gasser et al. 2012) and synthesized by Genscript Technol-

ogy (Nanjing) Co., Ltd (Table S1). The PCR program

included 4 min at 94 �C, followed by 32 cycles at 94 �C

for 20 s, 55 �C for 20 s, and 72 �C for 30 s, and a final

extension at 72 �C for 5 min. PCR products were separated

on 3.5% agarose gels or 6% polyacrylamide gels stained

with Gel Red or silver, respectively.

Results

The spikelet fertility of CSSLs in E1 and E2

In E1 and E2, there was no extreme high temperature

during the process of rice growth. The two parents,

Sasanishiki and Habataki, showed normal spikelet fertility

(Table 1). Of the 39 CSSLs, 37 lines (SL401–SL437)

showed normal spikelet fertility. Therefore, E1 and E2

could be served as normal growth conditions. However,

SL438 and SL439 showed very low seed-set percentage

with 23.84 and 22.19%, respectively. Because the spikelet

fertility would be used as a screening index for HT, the two

lines obviously contained genetic factors decreasing the

spikelet fertility under normal conditions, thus they could

not reflect real effects on HT and were not considered for

further investigation under high temperature.

Heading dates of CSSLs and high temperature

at the booting stage in E3 and E4

In E3, Sasanishiki and Habataki headed on 29 July and 2

August 2016, respectively. The heading dates of CSSLs

varied between 28 July to 2 August, except SL428, which

headed on 5 August. In E4, all lines including the two

parents headed about 3 days later than in E3. Small vari-

ations in heading time existed between CSSLs in each

condition, and all lines showed different reductions of

spikelet fertility.

Generally, the booting stage is about 30 days before

heading in rice. Therefore, to assess the impact of high

temperatures at the booting stage, the period from 7 July to

5 August 2016 was considered as the booting stage. During

this period, the highest daily temperature reached 39 �C

and temperatures above 37 �C lasted for 10 days (Fig. 1),

which might affect the floral organ development. To

examine whether the CSSLs suffered from high tempera-

tures at flowering stage, the temperatures of 15 days from 1

August to 15 August 2016 were checked. The temperatures

appeared lower than that at the booting stage, and moderate

daily high-temperatures below 35 �C lasted for 8 days

from 3 August to 10 August (Table S2). In addition, no

extreme high temperatures were observed at the filling

stage. Thus, it can be concluded that the reductions in

spikelet fertility were due to the high temperatures at the

booting stage.
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Fig. 1 Maximum and minimum temperatures recorded at the booting stage in 2016

Table 1 Phenotype data of

spikelet fertility under high

temperature for CSSLs (SL401–

SL437) and parents (Sasanishiki

and Habataki) across four

environments

Environment Parents CSSLs

Sasanishiki (%) Habataki (%) Mean (%) Min (%) Max (%)

E1 96.99 95.11 95.50 93.21 98.77

E2 98.47 94.36 96.17 93.79 98.85

E3 19.71 84.36** 30.51 12.25 58.60

E4 18.56 82.40** 23.23 5.99 56.62

** Mean the significance levels of 0.01 between Habataki and Sasanishiki
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Phenotypic performance

The lasting high temperature at booting stage (in mid to

late July, 2016) caused great damage to the mid-season

rice, including many of the japonica varieties and a few of

the indica varieties in Jiangxi province of China (data not

shown). Sasanishiki extremely suffered from the high

temperature, while Habataki was slightly affected

(Fig. 2a). In E3, the mean spikelet fertility in panicles of

Sasanishiki and Habataki was 19.71 and 84.36%, respec-

tively. The value of CSSLs ranged from 12.25 to 58.6%

with the mean of 30.51%. Similar variations were observed

in E4 (Table 1). The CSSL population segregation for

spikelet fertility distributed continuously in the two envi-

ronments (Fig. 3). Furthermore, a significant positive cor-

relation of spikelet fertility was found between the two

environments (r = 0.462, P\ 0.05).

To understand how the high temperature at the booting

stage affected spikelet fertility, we observed the flowering

spikelets of Sasanishiki in the paddy field and found

defects of stamen development. Compared with the normal

stamens, the anthers appeared small and light yellow, or

white and curly, after the high temperature stress (Fig. 2b).

Moreover, the pollen stainability test revealed that the high

temperature treated anthers produced much fewer pollen

grains, some of which were aborted (Fig. 2c). These results

indicate that the high temperature at the booting stage

hindered the production of pollens and caused partial male

Fig. 2 Fertility performances. a Spikelet fertility of Habataki (left)

and Sasanishiki (right) under E3 condition. b Flowering spikelet of

Sasanishiki. Normal spikelets (left), white and light yellow curly

anthers after high temperature stress (right). c Pollen of Sasanishiki.

Pollens from normal anthers (left), fewer pollens from high temper-

ature treated anthers (right)
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Fig. 3 Frequency distribution for spikelet fertility in the CSSLs

population in E3 and E4

820 Physiol Mol Biol Plants (October–December 2017) 23(4):817–825

123



sterility of Sasanishiki, which eventually led to decreased

spikelet fertility.

QTL mapping

Analysis of variance (one-way ANOVA) was carried out

on the spikelet fertility. Compared to Sasanishiki, a total of

14 CSSLs showed significant differences, of which, 9

CSSLs were found in one environment, the rest were

identified under two environments. The additive effects

ranged from -6.28 to 18.48%. Most of the CSSLs exhib-

ited significant increases in spikelet fertility, except 2

CSSLs (SL409 and SL433) (Table 2). In total, 12 QTLs

were detected and mapped on 7 out of the 12 rice chro-

mosomes (Fig. 4). Among these loci, 5 QTLs (qHTB3-1,

qHTB3-3, qHTB4-2, qHTB5-1, and qHTB11) were detected

in two environments, while 7 QTLs were detected in one

environment. SL419 and SL420 contained an overlapping

segment on chromosome 6, so the QTL (qHTB6) was

limited to the region between SSR markers RM5963 and

RM3330, which was detected in E3. Two QTLs (qHTB3-2

and qHTB10-2), with negative additive effect on HT, were

detected in E4. The spikelet fertility of SL408, which

harbored qHTB3-1 with the largest additive effect in E3,

was 58.60 and 42.07% in two environments, respectively

(Table 2). This presented a relatively large phenotypic

variation between two environments. The other 4 QTLs

(qHTB3-3, qHTB4-2, qHTB5-1, and qHTB11) detected in

two environments, showed fairly similar effects on

increasing HT.

Validation of a major QTL for HT

In order to verify the existence of the major QTL (qHTB3-

3) for HT, three CSSLs (SL410, SL411, and SL422) were

used. After high-temperature stress at the booting stage, a

significant difference was observed in the spikelet fertility

between two adjacent CSSLs (SL410 and SL411). SL411

performed much better than SL410 in the paddy field

(Fig. 5a). SL411 and SL422 carried an overlapping seg-

ment of Habataki located between RM3525 and RM6970

on chromosome 3 (Ando et al. 2008) (Fig. 5b), and the two

CSSLs showed much higher spikelet fertility than Sasan-

ishiki. Therefore, it was believed that they contained the

same QTL (qHTB3-3), with the positive allele contributed

by Habataki. To further confirm the existence of qHTB3-3,

BILs were developed from a cross between SL411 and

Sasanishiki. Four overlapping substituted homozygous F3
lines were identified and used for phenotyping. The results

showed that the spikelet fertility of the three lines (SL411-

Table 2 QTLs for spikelet

fertility under high temperature

detected in Sasanishiki/

Habataki CSSLs population

across two environments

QTL Chr. Flanking maker interval SF (%) Add (%) Environment CSSL

qHTB1 1 RM1387–RM8137 45.30 12.80 E3 SL404

qHTB3-1 3 RM4108 58.60 19.45 E3 SL408

42.07 11.75 E4

qHTB3-2 3 RM5748–RM5864 6.87 -5.84 E4 SL409

qHTB3-3 3 RM3525–RM6970 54.14 17.22 E3 SL411

52.73 17.08 E4 SL422

47.13 13.71 E3

44.74 13.09 E4

qHTB4-1 4 RM7585–RM5633 56.67 18.48 E3 SL412

qHTB4-2 4 RM3534–RM2431 48.36 14.33 E3 SL414

45.06 13.25 E4

qHTB5-1 5 RM1248–RM5579 48.14 14.22 E3 SL415

43.02 12.23 E4

qHTB5-2 5 RM3236 39.67 9.98 E3 SL418

qHTB6 6 RM5963–RM3330 38.44 9.37 E3 SL419

34.77 8.87 E3 SL420

qHTB10-1 10 RM3882–RM4455 42.48 11.96 E4 SL431

qHTB10-2 10 RM3773–RM6673 5.99 -6.28 E4 SL433

qHTB11 11 RM286–RM7283 30.86 6.31 E3 SL434

33.41 7.42 E4

Positive additive effect means Habataki allele increasing the trait values, negative additive effect means

Habataki allele decreasing the trait values

SF spikelet fertility, Add additive effect
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L3, SL411-L5, and SL411-L16) exhibited more than twice

as high as SL411-L9, which was similar to Sasanishiki,

after high-temperature stress. According to genotype and

phenotype data, qHTB3-3 was mapped between RM3525

and an indel marker 3-M95, approximately 2.8 Mb apart

(Fig. 5C).

Discussion

The effects of high temperature stress at the booting

stage

High temperature is already a major environmental stress

limiting rice productivity. Extreme high temperatures

occurred in Nanchang, Jiangxi province, from 2011 to 2016
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822 Physiol Mol Biol Plants (October–December 2017) 23(4):817–825

123



(except 2014 and 2015) according to our temperature

records. The CSSL population derived from Sasanishiki

and Habataki was used to test HT under natural field

conditions. Bian et al. 2013, have used CSSL lines to

identify QTLs for another trait (1000-grain weight PGWC).

Habataki, the elite indica variety, performed well at HT in

different environments at both booting and flowering

stages, whereas the japonica Sasanishiki showed the

opposite. The remarkable change of Sasanishiki was the

anther development defects induced by high temperature

stress at the booting stage. The anthers became smaller, and

the number and fertility of pollen grains were decreased

significantly (Fig. 2b). It was different from the perfor-

mance after high temperature at the flowering stage, which

showed poor anther dehiscence resulting in few germinated

pollen grains on the stigma (Jagadish et al. 2010; Matsui

and Omasa 2002; Prasad et al. 2006).

The characteristics caused by high temperature stress at

the booting stage was very similar to the effects induced by

cool-temperature damage (Oda et al. 2010; Sakata et al.

2014). The most sensitive stage to environmental stress

during booting is just after meiosis (Satake and Hayase

1970), which is the microsporogenesis stage. The micro-

spore and pollen grain form through meiosis and mitosis

during 10–12 days before anthesis in rice. Short period of

exposure to high-temperature stress at this stage could

reduce spikelet fertility in a heat-sensitive rice variety

(Satake and Yoshida 1978). Recently, Martı́nez-Eixarch

and Ellis (2015) conducted an experiment under extreme

high and low temperatures during reproductive develop-

ment using two japonica cultivars. They found that the

spikelet fertility and seed yield were severely reduced by

extreme temperatures 14–7 days before anthesis. In the

present study, the heading dates of Sasanishiki under two

conditions were 28 and 31 July 2016, respectively. There

were 13 hot days with the maximum temperature C35 �C

from 21 July to 2 August 2016 that coincided with

microsporogenesis.

Identifying QTLs for HT at the booting stage

To create strong subspecies heterosis, intercrossing japonica

and indica has been utilized in current rice breeding prac-

tices. However, japonica cultivars usually show worse HT
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ance at the booting stage. a SL411 (right) showed much higher

spikelet fertility than SL410 (left) in the paddy field after high-

temperature stress. b Substitution mapping of qHTB3-3 on chromo-

some 3. The white and black regions represent Sasanishiki and

Habataki alleles, respectively. c Graphical genotypes of 4 homozy-

gous F3 lines derived from SL411 9 Sasanishiki. qHTB3-3 is

indicated at the bottom (left). Mean spikelet fertility for each of the

lines. Error bars represent the standard deviation (right)
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than indica cultivars. The risk of high temperature induced

heat damage is possibly increased in introgression lines or

new cultivars carrying japonica alleles. Therefore, it is

necessary to uncover the genetic basis of HT and discover

related genes, which can be applied in HT breeding to reduce

the negative effects of heat. Although extreme high tem-

peratures appear frequently, experiments on heat stress

under field conditions were rarely reported. Thirty-seven

CSSL lines (SL401–SL437), treated under natural high

temperature, showed similar heading dates, except SL428.

Additionally, there was significant segregation of spikelet

fertility in the CSSL population, indicating that the field

conditions used in this study were appropriate for detecting

theQTLs. A total of 12QTLs, associatedwith heat-tolerance

at the booting stage, were identified (Table 2). They were all

different from the results of Zhao et al. (2006). Compared

with the QTLs detected at flowering stage in our previous

study (Zhao et al. 2016), 6 QTLs (qHTB3-2, qHTB4-1,

qHTB4-2, qHTB5-1, qHTB10-1, and qHTB10-2) were

overlapped. Only 2 QTLs (qHTB4-2, qHTB5-1) were

detected at both the booting stage and flowering stage in all

environments, showing their potential breeding value.

qHTB3-3 was verified to be an important QTL responsible

for HT at the booting stage, however, it was not detected at

the flowering stage in previous work (Zhao et al. 2016).

According to the linkage map of the CSSLs, both of SL411

and SL422 carried one segment of chromosome 3 from

Habataki, containing the qHTB3-3 allele (Fig. 5b). There

was a difference in spikelet fertility between the two lines

such that SL422 showed a little lower spikelet fertility than

SL411 (Fig. 5c). It is possible that a segment of Habataki on

chromosome 7 carrying in SL422 has a small negative effect

on HT. Further mapping of qHTB3-3 is under progress.
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