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Abstract: The conformal symmetry algebra in 2D (Diff(S1)⊕Diff(S1)) is shown to be
related to its ultra/non-relativistic version (BMS3≈GCA2) through a nonlinear map of the
generators, without any sort of limiting process. For a generic classical CFT2, the BMS3
generators then emerge as composites built out from the chiral (holomorphic) components
of the stress-energy tensor, T and T̄ , closing in the Poisson brackets at equal time slices.
Nevertheless, supertranslation generators do not span Noetherian symmetries. BMS3 be-
comes a bona fide symmetry once the CFT2 is marginally deformed by the addition of a√
T T̄ term to the Hamiltonian. The generic deformed theory is manifestly invariant under

diffeomorphisms and local scalings, but it is no longer a CFT2 because its energy and mo-
mentum densities fulfill the BMS3 algebra. The deformation can also be described through
the original CFT2 on a curved metric whose Beltrami differentials are determined by the
variation of the deformed Hamiltonian with respect to T and T̄ . BMS3 symmetries then
arise from deformed conformal Killing equations, corresponding to diffeomorphisms that
preserve the deformed metric and stress-energy tensor up to local scalings. As an example,
we briefly address the deformation of N free bosons, which coincides with ultra-relativistic
limits only for N = 1. Furthermore, Cardy formula and the S-modular transformation of
the torus become mapped to their corresponding BMS3 (or flat) versions.
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1 Introduction

Conformal symmetries enhance those of special relativity, and become pivotal in the de-
scription of generic relativistic systems enjoying scale invariance. Conformal field theories
(CFT’s), built in terms of these extended symmetries, are well-known to play a fundamen-
tal role in a broad variety of subjects. Their power turns out to be particularly impressive
in two spacetime dimensions, as a direct consequence of the fact that the conformal group
exceptionally becomes infinite-dimensional. The conformal algebra in 2D is described by
two copies of the Witt or centerless Virasoro algebra, being isomorphic to two copies of the
algebra of diffeomorphisms on the circle (Diff(S1)⊕Diff(S1)), spanned by

[Lm, Ln] = (m− n)Lm+n ,
[
L̄m, L̄n

]
= (m− n) L̄m+n , (1.1)

with
[
Lm, L̄n

]
= 0 and m,n ∈ Z.

Another interesting accident that occurs in 2D is that the ultra and non-relativistic lim-
its of the conformal algebra are isomorphic (see e.g., [1]). Intuitively, ultra/non-relativistic
limits are such that the light cone tends to shrink towards the vertical/horizontal axis,
and so one limit can be attained from the other by swapping the role of time and space
coordinates. As an additional curiosity, the ultra/non-relativistic algebra also becomes iso-
morphic to the Bondi-Metzner-Sachs one in 3D without central extensions [2–4]. In other
words, the so-called Galilean Conformal and Conformal Carrollian algebras in 2D turn out
to be isomorphic to the BMS3 algebra (GCA2≈CCA2≈BMS3), given by the semidirect
sum of the Witt algebra and supertranslations:

[Jm, Jn] = (m− n) Jm+n , [Jm, Pn] = (m− n)Pm+n , (1.2)
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where [Pm, Pn] = 0. The algebra (1.2) and its centrally-extended version appeared long
ago in the context of the tensionless limit of string theory [5–7], and more recently in the
“flat” analog of Liouville theory [8, 9] as well as in fluid dynamics and integrable systems in
2D [10–12]. It also plays a leading role for nonrelativistic and flat holography [13, 14], and
it emerges from the spacetime structure near generic horizons [15–19]. Induced, coadjoint
and unitary representations have also been developed in [20–22].1

It is worth emphasizing that the conformal algebra in 2D (1.1) and the BMS3 alge-
bra (1.2) are not isomorphic. Nevertheless, the latter can be obtained from the former
through suitable Inönü-Wigner contractions. Indeed, changing the basis of the conformal
algebra (1.1) according to

Pm = `−1
(
Lm + L̄−m

)
, Jm = Lm − L̄−m , (1.3)

one recovers the BMS3 algebra (1.2) in the limit ` → ∞ (see e.g., [9, 40]). Alternatively,
the following change of basis: Pm = `

(
Lm − L̄m

)
, Jm = Lm + L̄m yields the same result

provided that ` → 0 [13, 41]. The parameter ` can then be naturally identified with the
inverse of the speed of light.

2 Map between relativistic and ultra/non-relativistic conformal algebras
in 2D

Intriguingly, the conformal symmetry algebra in 2D (1.1) can be shown to be related to its
ultra/non-relativistic version (1.2) by means of a precise nonlinear map of the generators,
without the need of performing any sort of limiting process.

In order to explicitly see the map it is useful to work in the continuum, so that the
generators of the conformal algebra (1.1) can be trade by two arbitrary periodic functions
defined on the circle, according to Lm =

∫
dφT̄ (φ) e−imφ, L̄m =

∫
dφT (φ) eimφ. Thus, the

conformal algebra is equivalently expressed as

{T (ϕ) , T (θ)} = (2T (ϕ) ∂ϕ + ∂ϕT (ϕ)) δ (ϕ− θ) ,{
T̄ (ϕ) , T̄ (θ)

}
= −

(
2T̄ (ϕ) ∂ϕ + ∂ϕT̄ (ϕ)

)
δ (ϕ− θ) , (2.1)

with
{
T (ϕ) , T̄ (θ)

}
= 0, and [·, ·] = i {·, ·}. Note that the continuous version of the

conformal algebra (2.1) can be naturally interpreted as a Poisson structure.
The searched for mapping is then defined as follows

P = T + T̄ + 2
√
T T̄ , J = T − T̄ , (2.2)

so that the corresponding brackets involving J and P can be readily found by virtue of the
“fundamental” ones in (2.1), which exactly reproduce the continuous version of the BMS3
algebra, given by

{J (ϕ) , J (θ)} = (2J (ϕ) ∂ϕ + ∂ϕJ (ϕ)) δ (ϕ− θ) ,
{J (ϕ) , P (θ)} = (2P (ϕ) ∂ϕ + ∂ϕP (ϕ)) δ (ϕ− θ) , (2.3)

1The algebra (1.2) also manifests as nonlocal symmetries of a massless Klein-Gordon field in 3D [23].
Different extensions of the BMS3 algebra have been constructed in [24–39].

– 2 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
3

with {P (ϕ) , P (θ)} = 0. In Fourier modes, Jm =
∫
dφJ (φ) eimφ, Pm =

∫
dφP (φ) eimφ, the

algebra (2.3) then reduces to (1.2).
Bearing in mind that supertranslation generators are defined up to a global scale

factor, making P → αP with constant α in the map (2.2), yields the same result. Thus,
for simplicity and later convenience, we keep assuming α = 1 afterwards.

In sum, the nonisomorphic conformal and BMS3 algebras, in (2.1) and (2.3) respec-
tively, are nonlinearly related by virtue of the map defined through (2.2), and it is worth
highlighting that no limiting process is involved in the mapping.

3 BMS3 generators within CFT2

The mapping in (2.2) naturally makes one wondering about how precisely the BMS3 algebra
manifests itself for a generic (nonanomalous) classical CFT2. Indeed, the mapping directly
prescribes a way in which BMS3 generators emerge as composites of those of the conformal
symmetries. Nonetheless, it can be shown that the composite generators do not span a
Noetherian symmetry of the CFT2.

In order to see that, let us consider a generic CFT2 on a cyllinder. In the conformal
gauge, using null coordinates x = t + φ and x̄ = t − φ, the canonical generators of the
conformal symmetries are given by

QCFT [ε, ε̄] =
∫
dφ
(
εT + ε̄T̄

)
, (3.1)

being conserved (Q̇CFT = 0) by virtue of the (anti-)chirality of the components of the
stress-energy tensor and the parameters (∂T̄ = ∂̄T = ∂ε̄ = ∂̄ε = 0). The transforma-
tion laws of T and T̄ then read from the conformal algebra (2.1), since δη1QCFT [η2] =
{QCFT [η2] ,QCFT [η1]} with ηi = (εi, ε̄i), so that

δT = 2T∂ε+ ∂Tε , δT̄ = 2T̄ ∂̄ε̄+ ∂̄T̄ ε̄ . (3.2)

The nonlinear map (2.2) implies that the generators (3.1) and transformation laws (3.2),
can be expressed as

QCFT [ε, ε̄] =
∫
dφ (εJJ + εPP ) , (3.3)

δP = 2Pε′J + P ′εJ , δJ = 2Pε′P + P ′εP + 2Jε′J + J ′εJ , (3.4)

where prime stands for ∂φ, while the parameters εJ , εP , relate to ε and ε̄ through

ε = εJ +

1 +

√
T̄

T

 εP , ε̄ = −εJ +

1 +

√
T

T̄

 εP . (3.5)

Thus, the generators and transformation laws in (3.3), (3.4), acquire the expected form of
those for the BMS3 algebra (see e.g., [8, 11]).2

2A warning note is in order: if the parameters ε and ε̄ were still assumed to be chiral, this would
be just a mirage; because in that case, the new ones, εJ , εP , would become state-dependent, and hence,
this would only amount to an alternative way of expressing the original conformal algebra generators and
transformation laws in (3.1), (3.2), in terms of different variables.
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Legitimate BMS3 generators are obtained when the parameters ε, ε̄ are no longer
chiral, but instead, being manifestly state-dependent according to (3.5). Hence, at fixed
time slices, the parameters εJ , εP can be consistently assumed to be state-independent
arbitrary functions, so that the Poisson brackets of the generators

Q̃ [εJ , εP ] =
∫
dφ (εJJ + εPP ) , (3.6)

clearly close according to the BMS3 algebra by virtue of (2.3).
It is worth emphasizing that since J stands for the momentum density, superrotation

generators yield the corresponding conserved charges. Nevertheless, supertranslation gen-
erators are not conserved, as it can bee seen from the time evolution of P , that can be
obtained from that of the (anti-)chiral T and T̄ by virtue of the map (2.2), given by

Ṗ = 2J ′ − J (logP )′ . (3.7)

Therefore, supertranslations do not correspond to Noetherian symmetries of the CFT2.

4 BMS3 symmetries from
√

T T̄ deformations

According to the map (2.2), the supertranslation density P can be seen as a finite nontrivial
marginal deformation of the CFT2 energy density H = T + T̄ . Hence, a simple way to
achieve conservation of supertranslations consists in deforming the original Hamiltonian of
the CFT2 to coincide with the supertranslation generator. Thus, starting from the CFT2
in the conformal gauge, the simplest deformation is implemented through the Hamiltonian
density H̃ = H + 2

√
T T̄ = P , so that the deformed action reads

Ĩ = ICFT −
∫
dxdx̄

√
T T̄ . (4.1)

Note that since only the Hamiltonian was deformed, the Poisson brackets remain the same
as those of the original CFT2 in (2.1). Hence, the time evolution of supertranslation and
superrotation densities can be readily obtained from (2.3)

Ṗ =
{
P, H̃

}
= 0 , J̇ =

{
J, H̃

}
= P ′ ,

with H̃ =
∫
dφP ; so that the canonical BMS3 generators (3.6) are now manifestly con-

served ( ˙̃Q = 0) provided that the parameters fulfill ε̇P = ε′J and ε̇J = 0, being apparently
state independent.

Therefore, the BMS3 generators (3.6) span a bona fide Noetherian symmetry of the
deformed action (4.1).

It is also worth pointing out that the deformed theory (4.1) retains the integrabil-
ity properties of the original CFT2, since the universal enveloping algebra of BMS3 also
contains an infinite number of independent commuting (KdV-like) charges [11].3

3This last property resembles that of the T T̄ deformation [42–44] (being widely studied in e.g., [45–50]);
nonetheless, some differences must be stressed. Indeed, in that case the conformal weight of the deformation
implies that it is an irrelevant one, also depending on a single continuous parameter, and where T and T̄
stand for those of the deformed theory; while in our case, they correspond to those of the original CFT2

and yield to a rigid finite marginal deformation.
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For a generic gauge choice, the deformation (4.1) can be written as

Ĩ = ICFT −
∫
d2x

√
detTµν . (4.2)

where it is implicitly assumed that ICFT is written in Hamiltonian form, and Tµν stands for
the stress-energy tensor of the undeformed CFT2. Remarkably, the action (4.2) keeps being
invariant under diffeomorphisms and local scalings, but it is no longer a CFT2 because the
energy and momentum densities of the deformed theory yield to generators that fulfill the
BMS3 algebra (2.3) instead of the conformal one in (2.1).

In order to see that, let us consider the original CFT2 in a generic (non-conformal)
gauge, so that in a local patch, the two-dimensional metric can be brought to the same
conformal class as the following one, cf. [51]

ds2 = −N2dt2 +
(
dφ+Nφdt

)2
, (4.3)

where N and Nφ stand for the lapse and shift functions, respectively.4 The total Hamilto-
nian of the CFT2 then reads

HCFT =
∫
dφ
[
N
(
T + T̄

)
+Nφ

(
T − T̄

)]
=
∫
dφ
(
NH +NφJ

)
. (4.4)

The deformation in (4.2) has the net effect of deforming the energy density of the CFT2
to be that of a supertranslation, i.e., H → P , so that the total Hamiltonian deforms as
HCFT → H̃ , with

H̃ =
∫
dφ
(
NP +NφJ

)
. (4.5)

Supertranslation and superrotation densities evolution is then spanned by the deformed
Hamiltonian H̃ , which by virtue of (2.3) reads

Ṗ = {P, H̃ } = 2PNφ′ + P ′Nφ ,

J̇ = {J, H̃ } = 2PN ′ + P ′N + 2JNφ′ + J ′Nφ . (4.6)

In absence of global obstructions, the canonical generators become expressed as an integral
over the spatial circle precisely as in (3.6), but now being conserved provided that the
state-independent parameters fulfill

ε̇P = Nε′J −N ′εJ +Nφε′P −Nφ′εP , ε̇J = Nφε′J −Nφ′εJ . (4.7)

Thus, the transformation law of supertranslation and superrotation densities is given
by (3.4), corresponding to Noetherian BMS3 symmetries.

5 Geometric aspects

Since the deformed action is manifestly invariant under diffeomorphisms ξ = ξµ∂µ, it is
reassuring to verify that the Noether current jµ = T̃ µνξν , with

T̃ µν =
(

NP +NφJ J

−Nφ
(
NφJ + 2NP

)
−
(
NP +NφJ

)) , (5.1)

4In null (holomorphic) coordinates, this would amount to switch on the Beltrami differentials.

– 5 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
3

is conserved (∂µjµ = 0) provided that the evolution equations of the energy and momentum
densities (4.6), as well as those of the parameters in (4.7) hold. The precise form of the
diffeomorphisms is then identified as

ξµ = N−1
(
εP , NεJ −NφεP

)
, (5.2)

which close in the Lie brackets, [ξ1, ξ2] = ξ3, with

ε3P = ε1J

(
ε2P

)′
+ ε1P

(
ε2J

)′
− (1↔ 2) , ε3J = ε1J

(
ε2J

)′
− (1↔ 2) , (5.3)

according to the BMS3 algebra when the parameters εiP , εiJ obey (4.7).
Note that one might be tempted to extract an stress-energy tensor Θµ

ν from the corre-
sponding density in (5.1) by making use of the metric of the undeformed theory gµν in (4.3),
according to T̃ µν =

√
−gΘµ

ν . However, this tensor is not conserved (∇µΘµ
ν 6= 0), reflect-

ing the fact that the metric the of CFT2 is not preserved under BMS3 diffeomorphisms ξµ

up to a local scaling, i.e.,
∇µξν +∇νξµ − λgµν 6= 0 . (5.4)

Hence, the metric of the undeformed CFT2 is not a suitable object to describe the geometric
properties of the deformed theory.

An appropriate Riemannian metric for the geometric description of the deformation
is obtained as follows. Note that the total deformed Hamiltonian (4.5) is a homogeneous
functional of T and T̄ of degree one, so that it fulfills the following identity

H̃ =
∫
dφ

(
δH̃

δT
T + δH̃

δT̄
T̄

)
=
∫
dφ

(
δH̃

δH
H + δH̃

δJ
J

)
. (5.5)

Therefore, the deformed theory can be equivalently described by placing the original CFT2
on a state-dependent curved metric, whose lapse and shift functions, Ñ and Ñφ, are re-
spectively given by the variation of the deformed Hamiltonian with respect to the energy
and momentum densities of the undeformed theory, i.e.,5

ds̃2 = −
(
δH̃

δH

)2

dt2 +
(
dφ+ δH̃

δJ
dt

)2

. (5.6)

The mapping (2.2) allows to express the deformed metric (5.6) in terms of the supertrans-
lation and superrotation densities, so that it reads

ds̃2 =−N2
(

2P 2

J2 − P 2

)2

dt2 +
(
dφ+

(
Nφ +N

2JP
J2 − P 2

)
dt

)2
, (5.7)

where N and Nφ correspond to the (state-independent) lapse and shift functions of the
original undeformed metric in (4.3), respectively.6

5Beltrami differentials are determined by the variation of the deformed Hamiltonian with respect to T
and T̄ .

6Note that the Ricci scalar of the deformed metric g̃µν differs from that of the undeformed one gµν
(R̃ 6= R). In contradistinction, the corresponding metrics in the geometric interpretation of the T T̄ defor-
mation [52–55] are related through state-dependent diffeomorphisms.

– 6 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
3

It must be emphasized that the manifest state dependence of the lapse and shift func-
tions (or Beltrami differentials) of the deformed metric (5.7) provides a local obstruction
to gauge them away, preventing the possibility of choosing the standard conformal gauge
once the theory is deformed.

A proper stress-energy tensor Θ̃µ
ν , consistent with invariance under diffeomorphisms

and local scalings of the deformed action (4.2), is then readily obtained from T̃ µν =√
−g̃Θ̃µ

ν , where g̃µν stands for the state-dependent metric in (5.7). Indeed, the deformed
stress-energy tensor fulfills

Θ̃µν = Θ̃νµ , Θ̃µ
µ = 0 , ∇̃µΘ̃µ

ν = 0 , (5.8)

being automatically symmetric and traceless, while its conservation implies the evolution
equations of supertranslation and superrotation densities (4.6). Therefore, the canonical
BMS3 generators (3.6) can be written in manifestly covariant way as

Q̃ [εJ , εP ] =
∫
dφ
√
γ̃ñµΘ̃µ

νξ
ν , (5.9)

with ξµ given by (5.2), and according to the deformed metric g̃µν in (5.7), the unit timelike
normal is given by ñµ = (Ñ , 0), and γ̃ = 1.

The geometric description of the deformed theory is then suitably carried out in terms
of the two relevant structures, g̃µν and Θ̃µ

ν , being inextricably intertwined. In fact, since
both objects are state dependent, they acquire nontrivial functional variations when acting
on them under diffeomorphisms, given by

δξ g̃µν = δg̃µν
δP

δξP + δg̃µν
δJ

δξJ , δξΘ̃µν = δΘ̃µν

δP
δξP + δΘ̃µν

δJ
δξJ . (5.10)

Therefore, since the functional variations (5.10) must be taken into account, BMS3 sym-
metries geometrically arise from diffeomorphisms ξ that preserve the form of both relevant
structures up to a local scaling, i.e., from the solutions of the following deformed conformal
Killing equations

∇̃µξν + ∇̃νξµ − λg̃µν = δξ g̃µν ,

LξΘ̃µν = δξΘ̃µν , (5.11)

where Lξ stands for the Lie derivative.
It is amusing to verify that starting from scratch with the deformed metric and stress-

energy tensor, g̃µν and Θ̃µ
ν , the deformed conformal Killing equations (5.11) can be exactly

solved. Indeed, the solution is precisely given by the BMS3 diffeomorphisms ξµ in (5.2)
with parameters εP , εJ fulfilling (4.7), where the transformation law of supertranslation
and superrotation densities is also found to be given by (3.4).

Note that the geometric interpretation also allows to find the transformation law of
the fields in the deformed theory from those of the original undeformed (primary) fields,
collectively denoted by χ, by writing them in a manifestly covariant way, and then acting
with the Lie derivative along BMS3 symmetries spanned by ξ, i.e., δξχ = Lξχ.
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6 Deformed free bosons

Let us see how the deformation works in a simple and concrete example, given by the action
of N free bosons with flat target metric,

I
[
ΦI
]

= −1
2

∫
d2x
√
−gδIK∂µΦI∂µΦK . (6.1)

Before implementing the generic deformation (4.2), it is useful to express the background
metric gµν in the gauge choice (4.3), so that the Hamiltonian action reads

I
[
ΦI ,ΠJ

]
=
∫
dx2

(
ΠIΦ̇I −NH −NφJ

)
, (6.2)

where ΠI = δL
δΦ̇I , and H = 1

2

(
ΠIΠI + Φ′IΦ′I

)
, J = ΠIΦI′. The deformed Hamiltonian

action is then given by

Ĩ
[
ΦI ,ΠJ

]
=
∫
dx2

(
ΠIΦ̇I −NP −NφJ

)
, (6.3)

with P = H +
√
H2 − J2. The transformation law of the fields and their momenta under

BMS3 symmetries spanned by ξ in (5.2) are then found to be

δξΦI = {ΦI , Q̃} = εJΦI′ + εP

(
ΠI + HΠI − JΦI′

√
H2 − J2

)
, (6.4)

δξΠI = {ΠI , Q̃} =
[
εJΠI + εP

(
Φ′I + HΦ′I − JΠI√

H2 − J2

)]′
,

where Q̃ reads as in (3.6). The field equations Φ̇I = {ΦI , H̃ }, Π̇I = {ΠI , H̃ }, with H̃

given by (4.5), then follow from (6.4) by the replacement εP → N and εJ → Nφ. Note that
the transformation law of ΦI in the deformed theory also reads from δξΦI = LξΦI . The
transformation of supertranslation and superrotation densities in (3.4) is then recovered
from those in (6.4), which goes hand in hand with the fact that P and J now fulfill the BMS3
algebra (2.3) by virtue of the canonical Poisson bracket {ΦI(φ),ΠK(ϕ)} = δIKδ(φ − ϕ).
Moreover, the stress-energy tensor of the deformed theory is obtained from T̃ µν =

√
−g̃Θ̃µ

ν

with T̃ µν and g̃µν respectively given by (5.1) and (5.7).
It is worth highlighting that the deformed action (6.3) clearly cannot be obtained from

any standard limiting process of the undeformed one for N > 1. The peculiarity of the
deformed single free boson (N = 1) stems from the fact that the supertranslation density
simplifies as P = Π2, so that the momentum can be eliminated from its own field equation,
and the deformed action (6.3) can be written in Lagrangian form as

Ĩ [Φ] = 1
4

∫
d2x (V µ∂µΦ)2 , (6.5)

where V µ = (
√
−g)1/2 nµ stands for a vector density of weight 1/2, constructed out from the

metric gµν in (4.3) of the undeformed theory. Noteworthy, this vector density is invariant
under the BMS3 symmetries spanned by ξ in (5.2), since LξV µ = 0. Therefore, the

– 8 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
3

deformed action of a single free boson (6.5) coincides with the ultra-relativistic limit of the
undeformed theory (6.1) for N = 1, when the Carrollian limit is taken in a similar way as
for the tensionless string [56–59].

Additionally, the vector density can be reexpressed as V µ = 1√
2e

1/2τµ, where e and τµ

correspond to the einbein and the dual of the “clock one-form” of a Carrollian geometry [60],
respectively; so that action of the deformed free boson agrees with the Carrollian one
found in [61].

Remarkably, the action (6.5) can be understood in terms of two inequivalent geometric
structures. One of them is Riemannian and described through the state-dependent metric
g̃µν in (5.7), while the remaining structure stands for a Carrollian manifold.

7 Ending remarks

Since the map (2.2) possesses a square root, our results also carry out for its negative
branch, i.e., when the supertranslation density is given by

P(−) = T + T̄ − 2
√
T T̄ . (7.1)

In particular, the deformed action of a single free boson for the negative branch reads

Ĩ(−) [Φ,Π] =
∫
dx2

(
ΠΦ̇−NP(−) −NφJ

)
, (7.2)

with P(−) = Φ′2. Curiously, the deformed action Ĩ(−) agrees with an inequivalent ultra-
relativistic limit of the single free boson defined by Φ→ Φ/c, Π→ cΠ, when c→ 0. This
limit coincides with that needed to pass from the standard Liouville theory to its “flat”
version [40]. Indeed, starting from a single free boson in the conformal gauge (N = 1,
Nφ = 0) the deformed free boson in the negative branch corresponds to the kinetic term
of the flat Liouville theory.

It is also worth to pointing out that the centrally extended conformal algebra (given
by two copies of the Virasoro algebra) can be shown to be related to BMS3 with central
extensions, in terms of a map that is necessarily nonlocal. Nevertheless, if only zero modes
are involved, the local nonlinear map in (2.2) still holds. Thus, blindly applying the
map (2.2) for the zero modes, the Cardy formula once expressed in terms of left and right
groundstate energies (L0, L̄0), given by

S = 4π
√
−L0L+ 4π

√
−L̄0L̄ , (7.3)

reduces to its BMS3 (or flat) version

S̃ = 2π 1√
−P0P

[PJ0 + P0J ] , (7.4)

when the deformed energy and momentum of the groundstate P0 and J0 are expressed in
terms of the BMS3 central charges [62–65].
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Noteworthy, the hypotheses that ensure positivity of the Cardy formula (7.3) (L0 < 0,
L̄0 < 0, L > 0, L̄ > 0), by virtue of both branches of the map, imply that the deformed
entropy (7.4) is also positive (S̃ > 0).

Furthermore, the map between the chemical potentials follows the same rule as that
of the parameters in (3.5), with (ε, ε̄)→(β, β̄) and (εP , εJ)→(β̃, θ̃), where left and right
temperatures relate to the modular parameter of the torus as τ = β/2π, and β̃, θ̃ stand
for the temperature and chemical potential of the deformed theory. Therefore, around
equilibrium, the S-modular transformation τ → −1/τ precisely maps into its BMS3 (flat)
version [62, 63].

β̃ → 4π2β̃

θ̃2 , θ̃ → −4π2

θ̃
. (7.5)

The fact that the standard Cardy formula and S-modular transformations map to
their corresponding “flat versions” naturally suggests that a holographic realization of the
mapping could be carried out through a suitable

√
T T̄ -like deformation of the standard

boundary conditions in three-dimensional gravity. Thus, asymptotically AdS3 spacetimes
would curiously enjoy asymptotic BMS3 symmetries, or conversely, asymptotically flat
three-dimensional spacetimes would possess those of the conformal group. Indeed, a re-
markable fact that provides strong support to the latter assertion is the following. Once
the map is applied for the zero modes, one readily verifies that the entropy of asymptot-
ically AdS3 black holes is exactly reproduced from the BMS3 (flat) version of the Cardy
formula in (7.4); and analogously, the entropy of flat cosmological spacetimes [62, 63] or
asymptotically locally flat black holes [66, 67] is precisely recovered from the standard
Cardy formula (7.3). Furthermore, since standard and flat S-modular transformations are
also mapped between themselves around equilibrium, the corresponding Hawking temper-
atures once expressed in terms of the global charges also do. Note that the intriguing
fact that black hole and flat cosmology thermodynamics can be successfully reproduced by
both (standard and flat) microscopic countings in each case, stems from the fact that the
counting is actually performed in different thermodynamics ensembles being connected by
the map.

As a closing remark, it would be worth exploring whether a suitable uplift of the
deformed theories to higher dimensions might be invariant under the conformal Carrollian
algebra, which is known to be isomorphic to BMSD+1 [4].
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