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ABSTRACT

Rice is the single most important crop for food security in Asia. Knowledge about
the distribution of rice fields is also relevant in the context of green-house relevant
methane emissions, disease transmission and water resource management. Coperni-
cus Sentinel-1 provides the first openly available archive of C-band SAR (Synthetic
Aperture Radar) data at high spatial and temporal resolution. We developed one
of the first methods that shows the potential of this data for accurate and timely
mapping of rice growing areas. We used superpixel segmentation to create spatially
averaged backscatter time-series, which are robust to speckle and reduce the amount
of data to process. This method has been applied to six study sites in different rice
growing regions of the world and achieved an average overall accuracy of 0.83.
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1. Introduction

Rice agriculture plays a significant role in the context of climate change, water resource
management and, most importantly, food security. Rice is the staple food for a majority
of the world’s population, especially in developing regions in Asia, Latin America and
Africa (Kuenzer and Knauer 2013; Dobermann and Fairhurst 2000; Alexandratos and
Bruinsma 2012). The global population is constantly growing and expected to surpass
the 8 billion threshold by 2040 (United Nations 2015). This leads to a growing demand
in rice, wheat and other cereals that make up a large portion of the caloric intake
for a majority of the global population (Alexandratos and Bruinsma 2012). While
the demand for rice is growing, our ability to forecast rice production is still limited
and dominated by costly and labour intensive surveys and error prone extrapolation
methods. At the same time climate change is leading to an increase in weather extremes
such as droughts and floods (Field et al. 2012), which can destroy rice crops and
impact the food security and farmers livelihoods at local and regional scales. A key to
understanding how much rice is produced at any given time are accurate and timely
maps of paddy rice area. Satellite based remote sensing can aid the production of such
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maps for large areas in a timely and reproducible manner (Xiao et al. 2006; Bouvet
and Le Toan 2011). Paddy rice fields are periodically flooded and, as a result, paddy
rice agriculture consumes up to one third of the globally available freshwater (Bouman
2009). Globally there is an estimated 129 million hectares (Mha) of paddy cropland of
which 66 Mha is irrigated and 63 Mha rainfed (Salmon et al. 2015). The temporarily
flooded fields are a man-made wetland and habitat for mosquitoes, waterfowl and
other water organisms impacting biodiversity and disease transmission (Richards et al.
2010; Donald 2004; Longoni 2010). Anaerobic conditions in the flooded soil lead to
significant CH4 (methane) emissions and make paddy rice ecosystems one of the main
contributors of this green-house relevant gas (Keppler et al. 2006). Understanding the
when and where of rice is therefore important in the context of, but not limited to,
food security, water resource planning, run-off water management, disease and pest
control and climate modelling.

Rice is the only cereal that is commonly grown under flooded conditions and requires
an abundance of water during the initial growing stages. Rice can be transplanted or
directly seeded into flooded or wet soils and the subsequent growth of the plants can be
divided into 10 growing stages which are grouped into three growing phases (De Datta
1981). First is the vegetative phase consisting of the germination, seedling, tillering and
stem elongation stages. The reproductive phase consists of the stages panicle initiation,
heading and flowering. Finally, the ripening phase includes the milk, dough and mature
grain stages. Each change in stage is linked to a change in plant morphology. These
changes in plant morphology also affect how the rice plants interact with waves that are
detected by active or passive remote sensing sensors. This unique temporal variability
of wave-plant-water interactions can be exploited to map rice growing areas with space-
borne multispectral and SAR sensors. This feature is especially visible in the analysis
of time-series of remotely sensed data, where the analysis of the temporal signal enables
the distinction between rice and other land cover classes, especially other commodity
crops. Multiple reviews on the remote sensing of rice showed that the analysis of time-
series has been the most prolific technique for rice mapping (Kuenzer and Knauer
2013; Mosleh, Hassan, and Chowdhury 2015; Dong and Xiao 2016).

In the domain of microwave remote sensing two major methodologies for rice map-
ping have evolved. One uses radar polarimetry and sensor with the ability to acquire
images at multiple polarisations to differentiate rice crops from other land cover or
detect rice growing stages, exploiting the fact that the structure of rice plants atten-
uates vertically polarised waves more than horizontally polarised waves (Ribbes 1999;
Le Toan et al. 1997; Lopez-Sanchez et al. 2014). This study can be grouped into the
second category, which exploits the temporal variation in received backscatter from
rice fields for their detection. The temporal signal of SAR backscatter can be regarded
as a function of rice crop growth. In the early stages the rice seedlings are completely
submerged in the water of the flooded fields. During this stage the specular reflection
(figure 1 - a) on the water surface is the dominant backscatter mechanism resulting
in very little backscatter. As the plant emerges through the water surface the mech-
anisms of double bounce and multiple bounces (figure 1 - b, c) cause an increase in
backscatter. The backscatter increases with the rice plants vertical growth until it
reaches the heading stage. In the later growth stages the mechanism of volume scat-
tering (figure 1 - d) dominates and the backscatter decreases. This temporal behaviour
has been observed at the Ka-, Ku-, X-, C- and L-band wavelengths and was, for C-
band, theoretically explained by backscatter models from Monte Carlo simulations (Le
Toan et al. 1997; Wang et al. 2005; Inoue et al. 2002). Rice areas have been mapped
with data from C-, L- and X-band sensors, with the majority of the studies using data
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Figure 1. Backscatter mechanisms in dependence of rice crop growth (a - d). Sentinel-1 images of rice fields
near Giao Thuy during the flooding (e), heading (f) and mature grain stages (g).
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acquired at the C-band.
Time-series of spaceborne SAR sensors have been used to map rice growing regions

since 1991 with the availability of data from the European Remote Sensing Satellite
1 (ERS-1) in Canada (McNairn and Brisco 2004; Jia et al. 2013), India (Patel et al.
1995; Chakraborty, Panigrahy, and Sharma 1997; Panigrahy et al. 1997; Premalatha
and Nageswara Rao 1994), Indonesia (Le Toan et al. 1997), Japan (Le Toan et al.
1997; Kurosu, Fujita, and Chiba 1995, 1997), Thailand (Aschbacher et al. 1995) and
Vietnam (Liew et al. 1998a). These initial studies laid important ground work in re-
gards to method development, which was successfully transferred to succeeding SAR
sensors. Radarsat-1 had a shorter repeat cycle and has been used to map rice areas
with horizontal co-polarised time-series in India (Choudhury and Chakraborty 2006;
Chakraborty et al. 2005; Panigrahy et al. 1999), Indonesia (Ribbes 1999), China (Li
et al. 2003; Shao et al. 2001; Wu et al. 2011; Zhang et al. 2016) and Japan (Yonezawa
et al. 2012) as well as the first multi-sensor studies in conjunction with ERS-1/2 data
(Liew et al. 1998a). Envisat ASARs (Advanced Synthetic Aperture Radar) Wide-
Swath mode enabled rice mapping at regional scales (Bouvet and Le Toan 2011; Bou-
vet, Le Toan, and Lam-Dao 2009; Nguyen et al. 2015) and X-band sensors TerraSAR-
X and COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin
Observation) enabled paddy rice mapping at unprecedented spatial resolution (Lopez-
Sanchez, Ballester-Berman, and Hajnsek 2011; Koppe et al. 2013; Nguyen et al. 2012;
Nelson et al. 2014). These studies employed SAR time-series for mapping rice areas,
have focused on rice grown under flooded conditions, and report accuracies ranging
from 81% to 98%.

Most studies employing the time-series backscatter change method highlight the
SAR sensors capabilities to acquire images unaffected by frequent cloud cover and
availability of daylight, distinguishing them from methods developed for multi-spectral
optical sensors. However, most studies also mention, that the largest limiting factor for
this method is a lack of available data. In contrast to the open archives of multi-spectral
data from sensors such as MODIS (Moderate Resolution Imaging Spectroradiometer)
and the Landsat missions there has been no open archive of SAR data. Classifying
rice areas requires temporally dense time-series, for which the acquisition is costly
and archives often have limited temporal and spatial coverage. This changed with the
launch of the first satellite of the Copernicus programme - Sentinel-1A. It is the first
SAR C-band mission that has the goals of global coverage, continuity, temporally dense
coverage and free and open data access built-in from the start. Today the archive of
Sentinel-1A/B data grows at a rate of 10 Terabytes a day. This study is one of the first
seeking to exploit this archive in regards to remote sensing of rice growing regions. We
aim to show that time-series of Sentinel-1 data can be used to map rice in a variety
of regions, paving the way forward for globally consistent, high resolution rice maps.

The goal of this study is to evaluate the performance of a paddy rice classification
method that is: 1) able to analyse dense Sentinel-1 C-band SAR time-series and 2)
can be spatially transferred to different rice growing regions in order to help in the
timely mapping and monitoring of paddy rice areas with Sentinel-1 data.

2. Study Sites and Data

Rice is grown in climates ranging from tropical to temperate regions, between 50◦

north and 40◦ south and at elevations up to 2600 m (De Datta 1981). To reflect this
diversity, we developed our method on six study sites scattered around the globe (see
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Figure 2. Study site locations and Sentinel-1A coverage 2015. (a) - Giao Thuy, Red River Delta, Vietnam.
(b) - Soc Trang, Mekong Delta, Vietnam. (c) - Poyang Lake, China. (d) - California, USA. (e) - Ebro Delta,
Spain. (f) - Isla Mayor, Spain.
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figure 2). In Asia, these study sites are located at the Poyang Lake in China, the Red
River Delta in northern Vietnam and the Mekong Delta in southern Vietnam. These
areas are characteristic for rice growing regions in Asia with comparatively small field
sizes, irregular field shapes, a moderate amount of mechanization, diverse cropping
calendars and often the growth of multiple (rice)-crops per field and year. According
to Köppen-Geiger the climate zones in these study sites range from Monsoon (Am)
in Soc Trang to humid subtropical (Cwa) in Giao Thuy and warm oceanic (Cfa) at
Poyang Lake (Peel, Finlayson, and McMahon 2007). The variety in climate is also
visible in the climate charts for 2015 (see figure 3) where Soc Trang has monthly
mean minimum temperatures exceeding 20◦C and enabling rice growth throughout
the whole year with up to three rice seasons. The first season is planted October
or November of the previous year and lasts until February to May. It is followed
by the Summer-Autumn season from around March to August and finally the Winter
season from August to November. Favourable climate conditions allow for diverse shifts
in the exact transplanting and harvest dates depending on farmer’s choice resulting
heterogenous crop calendars within our study site. In Giao Thuy up to two rice seasons
are cultivated in the Spring or Early Rice season from February to July followed by
the Summer or Late Rice season from July to September. In our study site, as well
as large parts of the Red River Delta, these are followed by a season for winter crops,
mainly vegetables such as cabbage, leek, onions, lettuce or cucumber, lasting from
October to February. The Poyang Lake region has a temperature profile with a higher
amplitude and lower winter temperatures than both Vietnam study sites enabling
up to two rice crops in a year. The first season, Early rice, is transplanted around
March, harvested end of July and immediately followed by the Late rice season which
is harvested in November. Due to little time between the two seasons the process is
locally referred to as rush-harvesting and rush-transplanting (Li et al. 2012). The main
planting technique throughout these three study sites is transplanting of rice seedlings
from seedbeds into the paddy fields.

In Europe, we selected two study sites in Spain - in the Delta of the Ebro River in
eastern Spain and the Isla Mayor region in south-west Spain. Both study sites have
less precipitation than the ones located in Asia but no shortage of irrigation water
due the location close to major rivers, a higher degree of mechanization and grow
longer duration rice varieties. Their climate zone is warm Mediterranean (Csa) (Peel,
Finlayson, and McMahon 2007). The temperature profile throughout 2015 is similar to
the Poyang Lake region, albeit with higher temperatures from November to February,
and in both a single rice crop is cultivated per year starting around May and lasting
up to October or November. In contrast to the study sites in Vietnam and China a rice
variety with a longer growing cycle is transplanted. The sixth focus region is located
near Sacramento, USA, in the rice growing region of California. Rice is grown on large
farms, on clay soils and with a high degree of mechanization. Rice is an important
crop in California despite an ongoing drought, associated water shortage and water
rationing for agricultural areas. California had the lowest amount of precipitation in
2015 from all our study sites and is located in the warm Mediterranean climate zone
(Csa) (Peel, Finlayson, and McMahon 2007). One rice crop with a long growing cycle
duration is grown from May to August. In contrast to the study sites in Asia, direct
seeding over the transplanting technique is employed in California and Spain. Rice
seeds are soaked in water and brought out into the furrowed and flooded fields by
planes or tractors. Due to the drought, not all paddy fields in California are cultivated
in 2015, depending on water availability. All study sites feature paddy fields where
the water level is managed through irrigation from channels or wells. To enhance the
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Figure 3. Climate charts for 2015 for the study sites. Monthly mean temperatures are aggregated from the
Climate Forecast System (NCEP CFSv2) (Saha et al. 2014). Monthly precipitation data is summed from the
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al. 2015)

comparability of our results all study sites are defined by a 10 km × 10 km rectangle.
We used time-series of images acquired by the Sentinel-1A Synthetic Aperture Radar

sensor at C-band. The Sentinel-1A satellite was launched on 3 April 2014 and the
regular publication of datasets started after the In-Orbit Commission Review on 3
October 2014. The revisit time of this polar-orbiting satellite is 12 days at the equator.
The SAR sensor aboard the satellite is right looking and acquires images at C-band
with a centre frequency of 5.405 GHz. Incidence angles can range from 20◦ to 47◦,
radiometric accuracy is within 1 dB and the Noise Equivalent Sigma Zero (NESZ) is
-22 dB. Available polarisations in the default operation mode over land are vertically
transmitted and received (VV) and vertically transmitted horizontally received (VH)
in Interferometric Wide Swath (IW) acquisition mode with a swath width of 250 km.
The geometric resolution is 5 m × 20 m Incidence angles for the IW acquisition mode
range from 29◦ to 46◦. Datasets are delivered as L1C products in Single-Look Complex
(SLC) format or as multi-looked intensity images in Ground Range Detected (GRD)
format with a pixel spacing of 10 m (Sentinel-1 Team 2013). On 25 April 2016 Sentinel-
1B was launched, which is functionally identical to Sentinel-1A, uses the same orbit
plane and effectively halves the revisit time and doubles the amount of acquisitions
allowing for the creation of SAR time-series with an unprecedented temporal density
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at this resolution.
As the source for our rice classifications we used all Sentinel-1 Interferometric Wide

Swath (IW) data in Ground Range Detected High Resolution (GRDH) format and
dual polarisation available for each study site and the complete year 2015. Sentinel-1
data in the IW acquisition mode and GRDH format was acquired from the Copernicus
Open Access Hub (https://scihub.copernicus.eu). Product names for all 137 Sentinel-
1 scenes used in this study are given in the supplement S1. To minimize the effects
of orbit direction and look angle we only used scenes from an ascending orbit for
the study sites in China and USA and descending orbit for study sites in Spain and
Vietnam.

3. Methodology

3.1. Rice classification with Sentinel-1 time-series

The data was pre-processed to generate the backscatter coefficient σ
0, also known

as sigma0 or sigma nought, using pre-processing steps implemented in the Sentinel
Application Platforms (SNAP) Sentinel-1 Toolbox software. First, an orbit file was
applied using restituted orbits and thermal noise present at the range direction scene
edges was removed. After radiometric calibration orthorectification was performed to
remove terrain effects using the Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM) with 1 arc second resolution. These pre-processing steps have
been performed by the Google Earth Engine (https://earthengine.google.com/) team
prior to ingesting the scenes into an analysis ready data cube (figure 4 - 1). For each
study site we selected scenes from this data cube, which have been recorded in the
year 2015.

For our study sites in China and the USA more scenes are available in ascending
orbit and for the study sites in Spain and Vietnam we selected scenes from descending
orbits. This results in six subsets of the Sentinel-1 data cube - one for each study site.

We calculated three temporal metrics for each study site. Multi-temporal metrics
are a well-established method used for land cover classification and are able to cap-
ture temporal patterns even in irregular spaced time-series (Hansen et al. 2014; Müller
et al. 2015). For the VH polarisation we calculated the 50th percentile and the stan-
dard deviation of σ0 for the year 2015. Additionally, the 10th percentile of the VV
polarised data was calculated. These temporal metrics were chosen as they create a
well-defined contrast of land cover with high σ

0 time-series amplitudes, such as agri-
culture, compared to land cover with lower time-series amplitudes, such as water and
built-up. The temporal evolution of σ0 time-series for five exemplary land cover classes
is given in figure 5, which shows that the use of metrics such as the median and 10th
percentile are able to distinguish rice and other agricultural areas from land cover with
high backscatter, i.e. mangrove and built-up and from land cover with constant low
backscatter, i.e. rivers and aquaculture. The resulting three band images are used as
input for our segmentation procedure and have been exported out of the Earth Engine
platform in GeoTiff format, with the original coordinate reference system at a pixel
resolution of 10 m.

We then performed image segmentation using the simple linear iterative clustering
(SLIC) superpixel algorithm (Achanta et al. 2012) implemented in the scikit-image
Python package in version 0.12 (van der Walt et al. 2014). SLIC was selected due to
its speed and ability to perform well in all study sites with a single set of parameters.
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Figure 4. Rice classification based on Sentinel-1 time-series.
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Figure 5. Temporal evolution of Sentinel-1 backscatter at VH (a) and VV polarisation (b) for five land cover

classes in Giao Thuy.

9



Our aim was to create a method that would work well in different rice growing regions
without the need for empirical parameter selection in each study area, which was
why we chose to use a superpixel algorithm. SLIC is one of the fastest superpixel
algorithms while also requiring a minimum amount of parameters to select and ‘groups
pixels into perceptually meaningful atomic regions’ (Achanta et al. 2012). While SLIC
is a very robust segmentation algorithm, the selection of the number of segments it
should create per study site as well as the compactness of each segment still has a
discernible influence on the resulting segments. We selected the values empirically
based on local knowledge of the study areas. Since our study areas represent a wide
array of different climates, crop calendar, farming strategies and field sizes, we assume
that these parameters should be applicable to most rice growing regions of the world.
For segmentation parameters we selected values of 2500 for the number of segments
(n segments) and 75 for compactness, which balances colour and space proximity of the
segments. Image segmentation was performed with identical parameters on all study
sites. The resulting raster images with labelled segments have been ingested back into
the Earth Engine platform. There we performed a vectorization procedure resulting
in a multi-polygon vector dataset with uniquely labelled polygons for each superpixel
object (figure 4 - 2).

These superpixel polygons were then used in conjunction with the Sentinel-1 data
cube subsets to extract σ0 time-series. We limited the data cube to VH polarised data.
We chose VH over VV polarisation due to the higher dynamic range of backscatter over
rice areas caused by agronomic flooding followed by vertical plant growth. For each
polygon, we then calculated the spatial median of σ0 values and the acquisition date,
given in the metadata as ’beginposition’, for each Sentinel-1 scene. Scene boundaries
of Sentinel-1 GRD scenes for a single orbit path can differ significantly in azimuth
direction and are not rectangular due to the TOPSAR (Terrain Observation with
Progressive Scans SAR) scanning technique (Sentinel-1 Team 2013). If one of those
scene boundaries intersects a polygon it is only partially filled with valid measurements
and data for this polygon-scene combination was discarded.

This results in a spatially averaged σ
0 time-series at VH polarisation for each super-

pixel object (figure 6). These time-series have been exported out of the Earth Engine
platform in comma separated value (CSV) format for further analysis (figure 4 - 3).

Classification of the time-series was performed with a simple, phenology based de-
cision tree with five decision nodes. Classification of the time-series is the final step
in our processing system (figure 3 - 4). We used a phenology based decision tree and
the extracted time-series to classify each object as either rice or no rice. Decision trees
are commonly used for classification of rice areas from remotely sensed time-series of
multispectral (Xiao et al. 2006; Wang et al. 2015; Shi and Huang 2015; Dong et al.
2016; Clauss, Yan, and Kuenzer 2016) and SAR data (Liew et al. 1998b; Choudhury
and Chakraborty 2006; Torbick et al. 2011a; Nguyen et al. 2015; Nelson et al. 2014)
or a combination of both (Torbick et al. 2011b, 2017). We chose this classification
method due to its proven performance and replicability and wanted to test its regional
transferability and performance using Sentinel-1 time-series. A phenology based deci-
sion tree requires no training data, is not computationally intensive and thus enables
scaling and transferability to other rice growing regions. Our choice of decision crite-
ria was guided by previous studies in the Mekong Delta as well as input from local
experts (Bouvet, Le Toan, and Lam-Dao 2009; Nguyen et al. 2015). The thresholds
have not been adapted to the other study regions, as we aimed to devise a method
that could be regionally transferred without the need for study site specific training
data. Our decision tree consists of five decision nodes. The first features we considered
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Figure 6. Spatially averaged superpixel time-series in Soc Trang over rice (a) and aquaculture (b) areas.

for classification were annual maxima and minima of the measured backscatter. The
temporal σ0 signal of rice fields has very distinct minima when the paddy fields are
flooded and maxima at the heading stage of the rice plants. From previous studies
we know that these first two decision nodes are valid to differentiate seasonal vege-
tation, such as crops and deciduous forests, from land cover with a constantly low
backscatter, such as water bodies, or high backscatter, such as urban areas (Zhu et al.
2012; Kuenzer et al. 2013; Shimada et al. 2014; Nguyen et al. 2015; Clauss, Yan, and
Kuenzer 2016). If the annual minimum of the σ0 time-series was larger than -20 dB or
the annual maximum was smaller than -17 dB the object was classified as no rice. The
flooding and heading stages of rice plants can be detected as local minima and maxima
in backscatter time-series. We calculated the local extrema of our time-series within
90 day windows. The temporal distance was chosen based on the shortest possible
growing season for rice plants within the regions of our study sites. Local minima and
their following local maxima were grouped into pairs for further calculation. This is
necessary due to the effects of multi-cropping, the practice of farmers planting multiple
crops within a year on the same field, which also results in multiple peaks and troughs
in our observed backscatter time-series. For each pair we regarded the backscatter
difference between a local maximum and the preceding local minimum. The difference
between the local extrema has to exceed 6 dB to be considered as a rice area. The final
classification criterion is fulfilled if either the local minimum is smaller than -23 dB
or the local maximum exceeds -17 dB. If these three decision tree nodes were fulfilled
by any extrema pair within the time-series, the object was classified as rice, since at
least one crop during the year can be considered rice.

3.2. Accuracy Assessment

We performed our accuracy assessment based on stratified random sampling and clas-
sification by remote sensing and local experts. Each study site was stratified into two
classes according to our classification result and 100 points have been randomly sam-
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Table 1. Very high resolution satellite images used as reference data.

Study site Acquisition date Sensor Source

Giao Thuy 30 May 2015 SPOT-6 DeltAdapt project
Soc Trang 2 February 2015 SPOT-6 DeltAdapt project
Poyang Lake 12 July 2015 Google Earth (Airbus)
California 16 December 2015 RapidEye Planet Open California archive
Ebro Delta 31 March 2015 Google Earth
Isla Mayor 15 May 2015 Google Earth

pled for each of the classes rice and no rice. Using 100 samples per class is twice the
recommend sample size for study areas less than 1 million acres in size (Congalton
and Green 2009). The resulting dataset of 1200 points was then manually classified by
two remote sensing specialists. For points of disagreement in the Vietnam and China
regions we gathered input from local experts for the labels. Points of disagreement in
the remaining regions were labelled by a third remote sensing specialist and classified
according to majority vote. As reference data we selected very high resolution (VHR)
satellite images acquired in 2015 available to us via the DeltAdapt project, the Planet
Open California archive and Google Earth (see table 1).

In a first step, all points were tested for no rice based on their location. Every
point visibly located outside a field or agricultural area and at land cover belonging
to the no rice class, such as built-up, water and forest, was classified as no rice. The
remaining points belonged to the class agriculture and needed further reference data
to determine whether they are located at rice fields or other crops.

For all remaining points we selected valid Landsat-8 observations in 2015 at pixel
level, calculated the indexes LSWI (Land Surface Water Index) and EVI (Enhanced
Vegetation Index) and plotted the resulting time-series. Those time-series plots were
then manually inspected for visible inversions followed by a rapid EVI increase , which
indicates rice growth (Dong et al. 2016; Xiao et al. 2002, 2006; Clauss, Yan, and
Kuenzer 2016). If a point was located within a field and fulfilled this inversion criterion
it was labelled as rice. However, if no inversion was visible it was labelled as no rice.

The resulting dataset has 1200 points with two labels each, the class based on our
Sentinel-1 time-series methodology and the class from the manual interpretation of
VHR imagery and Landsat-8 time-series. For calculation of accuracy metrics the latter
was regarded as ground truth. For each study site we calculated the overall accuracy
as the number of correctly classified points divided by the total number of points. The
producer’s accuracy was calculated for each class as the fraction of correctly classified
points regarding all ground truth points of that class, whereas the user’s accuracy was
calculated as the fraction of correctly classified points regarding all points classified as
this class.

4. Results

We mapped paddy rice areas with overall accuracies ranging from 0.78 in California
to 0.87 in Giao Thuy and the Ebro Delta (table 2). The user’s accuracy for our target
class rice is always greater or equal 0.82 in six different study sites. For the rice
class the lowest producer’s and user’s accuracy was achieved in California, whereas
the highest producer’s accuracy was accomplished in the Ebro Delta and the highest
user’s accuracy at the Isla Mayor study site. For the no rice class producer’s accuracy
was lowest in the Ebro Delta and highest in Soc Trang and Isla Mayor, while the user’s
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Table 2. Accuracy assessment per study site - Overall

Accuracy (OA), Producer’s Accuracy (PA) and User’s
Accuracy (UA) given for the classes rice (r) and no rice
(nr).

Study site OA PAr PAnr UAr UAnr

Giao Thuy 0.87 0.88 0.85 0.85 0.88
Soc Trang 0.85 0.82 0.88 0.89 0.81
Poyang Lake 0.81 0.78 0.85 0.87 0.75
California 0.78 0.73 0.86 0.89 0.67
Ebro Delta 0.87 0.90 0.83 0.82 0.91
Isla Mayor 0.82 0.78 0.88 0.90 0.74

accuracy was highest in the Ebro Delta and lowest in California.
The accuracy assessment was performed for each study site individually. For Giao

Thuy 85 of 100 points and 88 of 100 points have been correctly classified as rice and
no rice respectively. In Soc Trang 89 of 100 rice and 81 of 100 no rice points have
been correctly classified. In the study site at the Poyang Lake 87 of 100 and 75 of 100
points have been correctly classified as rice and no rice, respectively. In California we
achieved 89 of 100 correctly classified rice and 67 of 100 no rice points. For the study
sites in Spain we correctly classified 82 of 100 rice points in the Ebro Delta and 90 of
100 at Isla Mayor. In the 91 of 100 and 74 of 100 no rice points have been correctly
classified in the Ebro Delta and Isla Mayor, respectively.

Maps of paddy rice areas in six study sites based on Sentinel-1A time-series from
2015 are shown in figure 7. The area of paddy rice for each study site can be given as
38.13 km2 for Giao Thuy (figure 7 - a), 33.65 km2 for Soc Trang (figure 7 - b), 47.34
km2 for Poyang Lake (figure 7 - c), 28.45 km2 for California (figure 7 - d), 66.11 km2

for Ebro Delta (figure 7 - e) and 80.20 km2 for Isla Mayor (figure 7 - f).
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Figure 7. Paddy rice classification based on Sentinel-1A time-series from 2015 for Giao Thuy (a), Soc Trang
(b), Poyang Lake (c), California (d), Ebro Delta (e) and Isla Mayor (f). Classification results are superimposed
on grey scale images depicting the mean of all Sentinel-1 acquisitions at VH polarisation.
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5. Discussion

This paper presents a method to map rice growing areas with Sentinel-1 time-series
using superpixel segmentation and phenology based decision trees. Multi-temporal seg-
mentation helped mitigate the effects of speckle on our SAR time-series, which were
classified with a phenology based decision tree. The method was able to map rice grow-
ing areas with a user accuracy greater or equal 0.82 in six different rice growing regions
distributed around the globe, underlining the robustness of the approach. However,
there are sources of error and points of improvement that need to be discussed.

A key aspect of this method is the spatial averaging of σ
0 time-series based on

superpixel objects. We identified the need to perform a segmentation prior to classi-
fication for two reasons - reducing both speckle and the amount of data. Speckle can
be summarized as a granular disturbance of random nature appearing in SAR images
(Argenti et al. 2013). This noise causes sudden spikes or drops in pixel based time-
series and is difficult to distinguish from temporal features indicating changes in the
underlying land cover such as crop growth. We calculated a spatial average for each
time step to mitigate the effects of speckle on our time-series and reduce the amount
of data. Each study site is covered by one million Sentinel-1 pixels, which would result
in the classification of a million time-series per study site. Our segmentation procedure
reduces this amount to 2500 time-series of homogeneous regions, which we assume to
contain a single land cover class. This reduction in data sacrifices some spatial accu-
racy but helps mitigate the effects of speckle. It also reduces the amount of data to
process, which is becoming an issue especially after the launch of Sentinel-1B and the
increased coverage of both Sentinel-1 satellites.

Image segmentation can lead to mixed segments, when a segment not only contains
our target class rice but also other land cover. This effect is similar to the mixed pixel
effects regularly discussed in rice mapping efforts based on medium to low spatial
resolution time-series (Xiao et al. 2006; Clauss, Yan, and Kuenzer 2016) and is a
source of spatial error in our classification. This issue can be seen in the example given
in figure 6 and is mostly apparent at field boundaries. When a paddy field is bordered
by a narrow dyke or road , SLIC, as well as most other segmentation algorithms,
fails to delineate clear boundaries along the field edge. Using a sensor with a shorter
wavelength, such as X-band, could aid in the detection of smaller scatterers at the
boundary of flooded fields but at the cost of less canopy penetration of the fully grown
rice plants. Studies comparing different wavelengths have shown that C- and L-band
are best correlated with rice growth variables (Inoue et al. 2002). While the Sentinel-
1 GRD datasets are delivered at 10 m pixel size they are acquired at a geometric
resolution of 5 m × 20 m (Sentinel-1 Team 2013). When multiple fields are divided by
narrow objects Sentinel-1 might fail to detect them and subsequently our segmentation
procedure will fail to distinguish those fields. The effects of mixed segments might be
reduced by using a different data source for segmentation, such as very high resolution
satellite or aerial images, or by employing a different segmentation algorithm.

The classification method we employed in this paper relies on the detection of key
growing stages of rice - agronomic flooding and the heading stage. Flooding of the fields
prior to transplanting/seeding or shortly after is a common rice growing technique and
present in all our study sites. However, it is not the only rice cultivation practice. Rice
is not dependant on the flooding of paddy fields, which is mainly performed to manage
pests and weeds in order to provide ideal growing conditions for the plant. Rice grown
in non-flooded environments will not be detected by our method and SAR time-series
over such areas would show little distinctive features to differentiate rice from other
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cereals. A further source of misclassification is the possibility of flooding events that
are not related to rice cultivation but could be caused by high precipitation events,
especially during monsoon. This error source would also be present in our reference
dataset as agronomic and non-agronomic flooding could not be distinguished from
remote sensing reference data. Direct seeding of rice into paddy fields prior or post
flooding will result in a lower backscatter signal in the time-series in contrast to trans-
planting of seedlings, which act as small scatterers prohibiting specular reflection of
the SAR signal on the water surface. Water conservation techniques, such as alternat-
ing wetting and drying of the fields, could also lead to acquisitions without a clear
flooding signal and thus the potential for underestimation. These phenomena should
be carefully considered in conjunction with the density of the time-series when a phe-
nology based decision tree classifier is applied. The requirement of agronomic flooding
is fulfilled for most rice growing techniques but not all of them and is a limitation of
our method regarding its transferability to other regions.

Decision trees are a robust and transparent classification method, that is easy to
adapt and reproduce. However, decision trees with few nodes are not a sophisticated
classification method and are therefore also a potential source of error themselves.
Fixed, global thresholds may lead to overestimation of rice areas in one study site and
underestimation in others. This error source is multiplied by our method classifying
at the segment and not pixel level. We achieved acceptable accuracies with this em-
pirical decision tree but expect the accuracies to be higher with the implementation
of more advanced methods such as Support Vector Machines, Dynamic Time Warping
or Hidden Markov Models. We therefore regard the phenology based decision tree as a
baseline classification method which can be improved upon in further implementations
of this rice mapping procedure.

Our method achieved the highest classification accuracies in the Giao Thuy and
Ebro Delta study sites. In the Giao Thuy study site rice fields are often grouped
together and separated by canals and built-up areas along streets (figure 8 - b). Built-
up areas form a high contrast against rice fields and are therefore divided well during
the segmentation stage of our procedure. A similar effect can be observed in the Soc
Trang study site, where the canal network separates clusters of rice fields from one
another (figure 8 - h). When rice fields are bounded by land cover which contrasts
well against the fields the segmentation performs well to distinguish those areas and
achieve high accuracies. Conversely this also means that our method has limitations
in areas with less prominent field boundaries. A contributing factor might also be,
that we were able to create temporally dense time-series in Giao Thuy, Soc Trang and
the Ebro Delta. For Giao Thuy we could use 23, in Soc Trang 38 and in the Ebro
Delta 24 Sentinel-1 observations. In California on the other hand only 8 observations
were available for time-series creation. We suspect that this largely contributes to the
low accuracy we achieved in this study site. The study site is characterized by large,
regular fields with clear boundaries, usually roads and pathways (figure 8 - e). Our
classification method sometimes failed to accurately capture rice fields in their entirety
and only classified parts of the field as rice area (figure 8 - d). This is also a possible
explanation for the low user’s accuracy for the no rice class in this study area, which
shows that our method had a high false negative rate in this region. Since the Ebro
Delta had a much lower false negative rate, while having similar characteristics we
suspect the main error source to be the temporal density of the time-series. If the
Sentinel-1 acquisitions are not frequent enough they fail to measure key phenological
stages in rice crop growth and subsequently our phenology based decision tree fails
to accurately classify these areas. This is a limitation of our method that could be
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alleviated with the launch of Sentinel-1B and improved acquisition plans. The Isla
Mayor study site exhibits false positives for the class rice in the south-east edge of the
study site, south of the river. These indicate, that our decision tree fails to accurately
discriminate rice from other field crops in this region. A likely explanation for this
is that our classifier relies on phenology based, empirical thresholds that have been
applied to all study sites. If the method is applied to regions where rice is confused
with other field crops an adaption of the threshold parameters is advisable in order to
better discriminate paddy rice areas.
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Figure 8. Comparison of our Sentinel-1A paddy rice classification (a, d, g) against VHR imagery of SPOT-6
from 30 May 2015 (b), 2 February 2015 (h) and RapidEye from 16 December 2015 (e) and ESA’s global CCI
Land Cover product for 2010 (c, f, i) for subsets of the study sites Giao Thuy (a - c), California (d - f) and
Soc Trang (g - i)
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6. Conclusions and Outlook

We showed that paddy rice areas exhibiting agronomic flooding can be mapped in
different regions with high resolution Sentinel-1 SAR time-series using a phenology
based decision tree in combination with multi-temporal segmentation based on the
SLIC (simple linear iterative clustering) algorithm. Accurate and timely mapping of
rice areas at high spatial resolution has long been identified as an important task in the
context of climate change, water management and food security. However, there is still
a distinct lack of globally available or applicable datasets and methods for this task,
despite its importance. One of the reasons for this is a lack of available remote sensing
data at high spatial and temporal resolution (Kuenzer and Knauer 2013; Dong and
Xiao 2016; Mosleh, Hassan, and Chowdhury 2015). The fleet of Sentinel-1 satellites
and their open data archive drastically changed data availability and enables free and
open access to C-band SAR time-series at high spatial and temporal resolution. We
present one of the first methods that aims to map rice areas using this archive.

Incorporating the co-location architecture of the Earth Engine, meaning that our
method is transported to the data archive and not vice versa, we can apply this
method to different areas fast and with minimal adaption. Google Earth Engine is a
cloud-based processing platform that is optimised for horizontal scaling of processes
(Gorelick et al. 2017), to enable large scale processing of geospatial data by making use
of Googles abundant compute resources. The co-location of remote sensing methods,
data and processing infrastructure will help in the creation of high resolution remote
sensing products at large scale.

Our rice mapping method uses the archive of Sentinel-1 GRD images acquired in
2015 which are delivered at a 10 m spatial resolution. Access to an archive of C-band
SAR images at this resolution enabled us to create dense time-series necessary for
the detection of rice fields in rice growing regions throughout the earth. This high
spatial resolution is necessary to accurately map rice area, which becomes apparent
when comparing our classification to a medium resolution, global land cover product
such as one produced by ESAs climate change initiative (CCI) (Herold et al. 2011).
For local to regional applications most global land cover products have neither the
spatial nor thematic accuracy to characterize rice growing regions. Examples for this
are given in figure 6, where we can see a confusion of agricultural and urban areas (c)
or misclassification of irrigated paddy rice fields as rainfed cropland (f). Accurate and
timely information about rice growing areas is important for issues in water resource
management and food security and our rice mapping method can be used to create
such maps, where the spatial or thematic accuracy of existing products is lacking.
Access to an archive of high spatial and temporal resolution SAR time-series is crucial
for these applications.

Our method has proven robust in mapping rice areas in a variety of rice growing
regions, with an average overall accuracy of 0.83. We identified three points that could
improve these results further: the temporal density of Sentinel-1 acquisitions, accuracy
of the implemented segmentation algorithm and a different classification algorithm.
Before applying this rice mapping method to larger areas careful consideration should
be taken regarding the cost-accuracy trade-off, since changes to one of the three points
likely incurs an increase in processing time. Our method builds upon previous rice area
mapping approaches and helps understanding their adaption towards more accurate,
timely and globally consistent rice maps based on data from the Copernicus Sentinel-1
satellite fleet.
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and Georg Bareth. 2013. “Rice monitoring with multi-temporal and dual-polarimetric
TerraSAR-X data.” International Journal of Applied Earth Observation and Geoinforma-
tion 21: 568–576. http://linkinghub.elsevier.com/retrieve/pii/S0303243412001547.

Kuenzer, Claudia, Huadong Guo, Juliane Huth, Patrick Leinenkugel, Xinwu Li, and Stefan
Dech. 2013. “Flood mapping and flood dynamics of the mekong delta: ENVISAT-ASAR-
WSM based time series analyses.” Remote Sensing 5 (2): 687–715.

Kuenzer, Claudia, and Kim Knauer. 2013. “Remote sensing of rice crop areas.” International
Journal of Remote Sensing 34 (6): 2101–2139.

Kurosu, T., M. Fujita, and K. Chiba. 1997. “The identification of rice fields using multi-

21



temporal ERS-1 C band SAR data.” International Journal of Remote Sensing 18 (14):
2953–2965. http://www.tandfonline.com/doi/abs/10.1080/014311697217143.

Kurosu, Takashi, Masaharu Fujita, and Kazuo Chiba. 1995. “Monitoring of rice crop growth
from space using the ERS-1 C-band SAR.” IEEE Transactions on Geoscience and Remote
Sensing 33 (4): 1092–1096.

Le Toan, Thuy, F. Ribbes, Nicolas Floury, Masaharu Fujita, Takashi Kurosu, Li Fang Wang,
Nicolas Floury, et al. 1997. “Rice crop mapping and monitoring using ERS-1 data based on
experiment and modeling results.” IEEE Transactions on Geoscience and Remote Sensing
35 (1): 41–56.

Li, Peng, Zhiming Feng, Luguang Jiang, Yujie Liu, and Xiangming Xiao. 2012. “Changes
in rice cropping systems in the Poyang Lake Region, China during 20042010.” Journal of
Geographical Sciences 22 (4): 653–668. http://link.springer.com/10.1007/s11442-012-0954-
x.

Li, Yan, Qifang Liao, Xia Li, Shengdong Liao, Guobin Chi, and Shaolin Peng. 2003. “Towards
an operational system for regional-scale rice yield estimation using a time-series of Radarsat
ScanSAR images.” .

Liew, Soo Chin, Ping Chen, Suan-Pheng Kam, To-Phuc Tuong, Vo Quang Minh, and Hock
Lim. 1998a. “Rice crops monitoring in the Mekong river delta using combined ERS and
RADARSAT synthetic aperture radar.” IGARSS ’98. Sensing and Managing the Environ-
ment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings.
(Cat. No.98CH36174) 5 (c): 2746–2748.

Liew, Soo Chin, Suan-Pheng Kam, To-Phuc Tuong, Ping Chen, Vo Quang Minh, and Hock
Lim. 1998b. “Application of multitemporal ers-2 synthetic aperture radar in delineating rice
cropping systems in the mekong river delta, vietnam.” IEEE Transactions on Geoscience
and Remote Sensing 36 (5): 1412–1420.

Longoni, Violetta. 2010. “Rice Fields and Waterbirds in the Mediter-
ranean Region and the Middle East.” Waterbirds 33 (sp1): 83–96.
http://www.bioone.org/doi/abs/10.1675/063.033.s106.

Lopez-Sanchez, Juan M., J. David Ballester-Berman, and Irena Hajnsek. 2011. “First Results
of Rice Monitoring Practices in Spain by Means of Time Series of TerraSAR-X Dual-Pol Im-
ages.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
4 (2): 412–422. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5462990.

Lopez-Sanchez, Juan M., Fernando Vicente-Guijalba, J. David Ballester-Berman, and
Shane R. Cloude. 2014. “Polarimetric Response of Rice Fields at C-Band: Analysis
and Phenology Retrieval.” IEEE Transactions on Geoscience and Remote Sensing 52
(5): 2977–2993. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6562759
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6562759.

McNairn, H., and B. Brisco. 2004. “The application of C-band polarimetric SAR
for agriculture: a review.” Canadian Journal of Remote Sensing 30 (3): 525–542.
http://www.tandfonline.com/doi/abs/10.5589/m03-069.

Mosleh, Mostafa K, Quazi K Hassan, and Ehsan H Chowdhury. 2015. “Application of Remote
Sensors in Mapping Rice Area and Forecasting Its Production: A Review.” Sensors (Basel,
Switzerland) 15 (1): 769–791. http://www.ncbi.nlm.nih.gov/pubmed/25569753.

Müller, Hannes, Philippe Rufin, Patrick Griffiths, Auberto José Barros Siqueira, and Patrick
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