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Abstract: Secondary forest succession on abandoned agricultural land has played a 

significant role in land cover changes in Europe over the past several decades. However, it is 

difficult to quantify over large areas. In this paper, we present a conceptual framework for 

mapping forest succession patterns using vegetation structure information derived from 

LiDAR data supported by national topographic vector data. This work was performed in the 

Szczawnica commune in the Polish Carpathians. Using object-based image analysis 

segments of no vegetation, and sparse/dense low/medium/high vegetation were distinguished 

and subsequently compared to the national topographic dataset to delineate agricultural land 

that is covered by vegetation, which indicates secondary succession on abandoned fields. 

The results showed that 18.7% of the arable land and 40.4% of grasslands, that is 31.0% of 

the agricultural land in the Szczawnica commune, may currently be experiencing secondary 

forest succession. The overall accuracy of the approach was assessed using georeferenced 

terrestrial photographs and was found to be 95.0%. The results of this study indicate that the 

proposed methodology can potentially be applied in large-scale mapping of secondary forest 

succession patterns on abandoned land in mountain areas. 
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1. Introduction 

Quantification of secondary forest succession is critical for the sustainable management of forestry 

and agricultural resources, biodiversity monitoring and climate change modeling [1]. For more than 

100 years, Europe has experienced an increase in forest cover [2–4] due to afforestation and forest 

expansion on abandoned agricultural land. The latter has played a significant role in land cover 

changes in Europe over the past several decades [5–8], particularly in marginal mountain areas [9–14]. 

The Polish Carpathians have experienced a gradual decline of agricultural areas since World War II that 

accelerated after the collapse of the Soviet Union and related socio-economic transformations [15–18] 

as well as a significant increase in fallow or abandoned agricultural land with visible signs of forest 

succession. For instance, the recent Polish agricultural census [19,20] reported a notable decrease in 

agricultural land area between 2002 and 2010 in the Carpathian provinces of Małopolska and 

Podkarpacie (by 16.5% and 14.9%, respectively). Ostafin [21] showed that between 14.9% and 46.6% 

of the agricultural land in nine communes in the Beskid Średni Mountains showed signs of 

abandonment with visible secondary forest succession, and Kaim [22] documented the importance of 

the land abandonment process for the long-term increase in forest cover in the Polish Carpathians 

using repeat terrestrial photography. Secondary forest succession on abandoned land in the Polish 

Carpathians typically occurs at high elevations, on steep slopes, and near forest edges [17]. Because of 

the small farm and land parcel sizes, secondary forest succession on abandoned land is a spatially 

dispersed process [17,23,24]. 

Secondary forest succession on abandoned land can be easily observed and mapped over small 

areas in the field [25,26] but is difficult to monitor with remote sensing because the related changes in 

land cover are subtle, dispersed and difficult to discriminate from other land uses, such as gardens, 

orchards, tree nurseries or even parks [17,27]. Several studies have used optical imagery at  

various spatial resolutions to document land abandonment and forest succession in different  

regions [15,16,18,24,28–30]. In particular, Kuemmerle et al. [16] mapped farmland abandonment from 

1986 to 2000 with an overall accuracy of 91% using a support vector machine (SVM)-based approach 

with Landsat TM/ETM+ imagery. Using similar methods, Hostert et al. [18] analyzed farmland 

changes related to land abandonment from 1986 to 1992 (the period after the Chernobyl disaster) and 

after 1992 (post-Soviet period); their change map had an overall accuracy of 80% [14]. 

Airborne LiDAR (Light Detection and Ranging) data have been shown to have the potential to 

quantify vegetation cover and three-dimensional (3D) vegetation structures [31–36]. Forest 

successional stages and regeneration patterns have been mapped with sufficiently high accuracy in 

several LiDAR-based studies [25,32,37,38]. Many of them, however, were seeking for the best case-

specific solution, even at the expense of laborious production of LiDAR-derived layers. For example, 

Falkowski et al. [25] mapped six stages of succession in a mountainous conifer forest using the 

Random Forest procedure with a variety of LiDAR-derived metrics. Similarly, LiDAR-derived indices 
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were used by Ewijk et al. [32] to characterize four stages of forest succession in a mixed forest. 

Martinuzzi et al. [37] classified forest types and delineated the status of forest succession by applying 

classification-tree techniques to LiDAR-derived metrics, Landsat imagery, and Shuttle Radar 

Topography Mission (SRTM) elevation models, and found significantly better performance with the 

LiDAR-based analysis. Asmare [38] explored the role of LiDAR data in supporting sustainable 

community forest management and forest certification in Nepal. Kane et al. [26] demonstrated that if 

field measurements are not available, forest successional stages can be accurately characterized by 

LiDAR data. Recently, object-based image analysis (OBIA; [39–41]) has been used to process LiDAR 

data and particularly LiDAR-derived canopy height models (CHM), to delineate individual trees [42–44] 

and forest stands [31,45,46] and to discriminate between different land cover types [47]. Several 

studies have integrated LiDAR data with other sources to increase the accuracy of vegetation mapping 

at various scales [48–50] and find the best case-specific solutions. Overall, many studies have 

demonstrated the outstanding capacity of LiDAR data to monitor various stages of forest succession. 

However, while many studies have examined forest structure and dynamics with these data, less 

attention has been paid to mapping secondary forest succession on abandoned fields over large areas, 

though the results of some small-scale studies are available [51]. 

Terrestrial photographs play an important role in landscape research [52] because of their ability to 

illustrate landscape changes [30,53–56]. For example, visual analysis of repeated terrestrial 

photographs in several areas of the Polish Carpathians demonstrated their potential in assessing  

long-term, gradual landscape changes that are related to forest succession and expansion on 

agricultural land [22]. While attempts to support the analysis of terrestrial photographs by developing 

georeferencing software emerged in the mid-1990s [57–60], the developed products did not meet the 

user requirements in terms of flexibility and user-friendliness [61]. The recently developed 

AVALMAPPER software allows the creation of an orthoimage from a terrestrial (oblique) photograph 

using photogrammetric and computer vision rules and has been successfully applied in the manual 

vectorization of avalanche areas [62–64]. Bozzini et al. and Bozzini et al. [61,65] proposed the WSL 

Monoplotting Tool, which allows different features to be measured directly on a previously 

georeferenced terrestrial photograph. The software has been used to map old channels for wood 

transport and past flood damage [61], to reconstruct the states of the Rhone glacier since the 19th 

century [66,67], and to quantify the evolution of vegetation cover [65]. These software developments 

may increase the potential of using terrestrial photographs in landscape change research through 

improved integration with other georeferenced data. 

The present amount of secondary forest succession in the Polish Carpathians is still unknown. In 

many cases, land owners are not aware of how much of their land has been overgrown with shrubs and 

trees, and census data are not consistent with the ground conditions because they are not updated [68]. 

Update of the census would be a long and laborious process, but of high importance for sustainable 

development and spatial management of the region. The integration of new types of data acquisition 

technologies, such as LiDAR and georeferenced terrestrial photographs, may improve the mapping 

efficiency and accuracy of secondary forest succession dynamics in diverse mountain environments. 

The aim of our study was therefore (1) to develop a robust methodology to map secondary forest 

succession patterns on abandoned lands in the Polish Carpathians based primarily on LiDAR data that 

are acquired through airborne laser scanning (ALS) and (2) to test the ALS classification results with 
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georeferenced terrestrial photographs. In addition, because our aim was to provide wide area mapping 

of secondary forest succession in Poland, we limited our methodology to standard ALS data that are 

available within the national coverage in Poland.  

2. Materials and Methods 

Our goal was to develop an OBIA-based automated classification procedure of ALS data that would 

allow mapping of secondary forest succession on abandoned lands. Thus, central to our interest was 

agricultural land that was covered with vegetation typical of secondary forest succession—particularly 

tall herb communities, shrubs, bushes, and single young trees—that progressively occupy former 

arable land [68,69]. OBIA was selected for two reasons: it facilitated the reduction of the raw ALS 

data, and the spatial segments that are delineated on the ALS data represent real world objects because 

succession patterns reflect field and parcel boundaries. We tested our approach with georeferenced 

terrestrial photographs assuming that the terrestrial photographs will facilitate ground truthing of the 

classification while ensuring sufficiently high accuracy. Ancillary topographic data were also used to 

eliminate various land use types that might contain vegetation similar to secondary forest succession 

but that had a completely different legal or land use status. 

The general approach consisted of the following steps: (1) Derivation of gridded vegetation indices 

based on LiDAR point clouds; (2) Segmentation of the raster data; (3) Classification of image 

segments based on vegetation indices; (4) Analysis of vegetation patterns for the selected land use 

classes that were extracted from the national topographic dataset and delineation of secondary forest  

succession areas; (5) Verification of the mapped secondary forest succession using georeferenced 

terrestrial photographs. 

2.1. Study Area 

The study area was the Szczawnica commune, which is located in the Polish Carpathians in the 

Małopolska Province at the Slovak-Polish border (Figure 1a). The town of Szczawnica has been a 

popular spa resort since the mid-19th century due to the presence of many mineral springs, the 

favorable climatic conditions and the unique surroundings. The commune, which has an area of  

87.90 km2 [70], is located within the Grajcarek catchment and is surrounded by ridges of the Beskid 

Sądecki (1266 m a.s.l.) and the Małe Pieniny Mountains (1050 m a.s.l.). The mountainous terrain with 

steep slopes and deep valleys covers approximately three quarters of the commune area. According to 

the agricultural census data [19], forests (68%) and agricultural land (28%) cover most of the 

commune’s area. Approximately half of the forest belongs to the State Forests National Forest Holding. 

Since the mid-20th century, the area has been subject to dynamic changes in land use. The eastern 

part of the commune was depopulated after World War II, and the former croplands were mostly 

collectivised and converted to pastures or forests [71]. Agricultural activities, and particularly sheep 

grazing, declined after 1990, which initiated forest succession on abandoned lands as well as 

afforestation (Figure 1b) [71–73]. 
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Figure 1. (a) The study area of the Szczawnica commune; (b) repeat terrestrial 

photographs from 1975 (left, courtesy and permission for the archive photograph: Pieniny 

National Park) and 2009 (right) showing changes in land cover in the Małe Pieniny 

Mountains (Source: Kaim [22]). 

2.2. Data 

LiDAR point clouds were acquired on 15 October 2012 within the national ISOK (Informatyczny 

System Osłony Kraju) project [74] at a minimum density of 4 points/m2. The data were collected in a 

multi-return mode with a maximum of five return echoes registered for each emitted pulse and a field 

of view of less than ±25°. The accuracy assessment showed vertical and horizontal root mean square 

errors (RMSEs) of 0.10 m and 0.23 m, respectively [75]. Within the ISOK project, the data were 

already classified according to the American Society for Photogrammetry and Remote Sensing 

standards [76] into ground (class 2), low (3), medium (4) and high (5) vegetation, buildings (6), low 

points (7), model key-points (8), water (9) and others. Data classification in ISOK was performed 
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automatically, but the classification process was followed by a visual inspection and manual correction 

of misclassified points. The automatic classification of the ground points was performed using the 

progressive densification filtering algorithm developed by Axelsson [77], which produces high 

accuracy results [78]. Threshold values of 0.4 m and 2 m were set to distinguish low, medium and high 

vegetation. The acceptable error for the ground point classification was 1%, whereas the threshold for 

the other classes was 6% [74]. The pre-processed LiDAR data with classified features were received 

from CODGiK (Centralny Ośrodek Dokumentacji Geodezyjnej i Kartograficznej; the Main Center of 

Geodetic and Cartographic Documentation in Poland) in a series of 92 1:2500 scale map sheets in  

LAS format. 

The national database of topographic objects (Baza Danych Obiektów Topograficznych 10k; 

BDOT10k) represents accurate and up-to-date topographic information of the terrain in Poland [79]. It 

was completed in 2013 and is based on complementary datasets (e.g., cadaster, records of 

infrastructure networks, State Boundary Register, orthophotomaps, and digital terrain models) and 

public resort records with a level of detail that corresponds to 1:10,000 scale topographic maps. 

BDOT10k consists of feature classes that are grouped into nine categories (hydrography, 

communication, utilities, land cover, buildings and infrastructure, land use complexes, protected areas, 

administrative units, and others). The continuous-coverage land cover layer includes twelve feature 

classes: water bodies, residential land, forest and woodland, shrubland, permanent crops, grassland and 

arable land, transport units, wasteland, open spaces, mine sites, waste dumps, and other industrial 

areas. The land use complexes layer includes additional information on sports and recreational 

facilities, such as parks, botanical gardens, zoos, sport centers and summer houses. The BDOT10k data 

were received from CODGiK in geodatabase format. 

Terrestrial photographs used for the accuracy assessment can be divided into two sets, including 

photographs (1) taken with the intention of being used in the research, and (2) taken incidentally 

during mountain hiking trips with no intention for use in the accuracy assessment. Photographs from 

the first set were taken during field work on 31 May 2014 and 18 September 2014 with a Nikon D5100 

camera (16 Mpix matrix) equipped with an 18–105 mm zoom lens. Photographs from the second set 

were taken on 10 August 2010, 23 May 2014 and 19 July 2014 with different digital cameras with 

different matrix sizes and focal lengths. From the collection of approximately 250 photographs, the 13 

best examples taken in late spring and summer, with leaf-on conditions (1 from 10 August 2010,  

2 from 31 May 2014, 5 from 19 July 2014, and 5 from 18 September 2014) were selected for further 

processing by visual inspection. The prerequisite for the selection was that the photograph showed an 

illustrative portion of the study area in a clear and undisturbed way. The usefulness of each photo was 

determined mainly by the perspective, lighting, distance to the photographed objects and presence of 

objects (ground control points) that would enable georeferencing. The camera matrix size and focal 

length were also taken into account. The selected photographs were distributed regularly over the study 

area. They provided views of opposite slopes at several distances to ensure a good perspective with as 

few obstacles in the foreground as possible (Figure 2). 

RGB orthophotomaps with a spatial resolution of 0.25 m that were computed from aerial images 

acquired in 2009 were received from CODGiK. They were used as auxiliary data for georeferencing 

the terrestrial photographs and for the visual inspection of the land cover classification. 
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Figure 2. (a) Camera standpoints and directions of the selected terrestrial photographs that 

were used for the accuracy assessment (basemap source: CODGiK); (b) example of  

the terrestrial photographs that were used in the accuracy assessment (dsc1256,  

18 September 2014). 

2.3. ALS Processing 

Based on field observations and previous studies [80], we decided to stratify the land cover types 

using vegetation height and vegetation canopy cover, which is the proportion of the ground that is 

covered by the vertical projection of the tree crowns or vegetation [81]. The vegetation height was 

derived from the Vegetation Height Model (VHM), which represents the difference in elevation 
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between the Digital Terrain Model (DTM) and the Digital Vegetation Model (DVM). The DTM and 

DVM were interpolated from the ALS point clouds and had resolutions of 1 m. 

The DTM represented the mean elevation of the ground points (ASPRS class 2), whereas the DVM 

represented the maximum elevation of the vegetation points (ASPRS classes 3, 4, 5); if vegetation was 

not recorded, the DVM represented the bare ground (ASPRS class 2). The vegetation cover (VC) was 

computed as the percentage of first returns from the medium and high vegetation (ASPRS classes 4 and 5) 

compared to the total number of first returns, which is a modified formula proposed by Smith et al. [82] 

who used all returns instead of first ones. VC was computed with a spatial resolution of 2 m to ensure 

the identification of more than one point within each cell. Nevertheless, some cells contained no data, 

especially within water bodies; they were assigned a value of zero. The LiDAR point clouds were 

processed in the ESRI ArcGIS 10.1 [83] and ERDAS Imagine [84] software. 

For the entire study area, the VHM and VC layers were segmented and classified using the 

eCognition software [85], which offers a multiresolution segmentation that consecutively merges 

pixels or existing image objects based on the local homogeneity criterion [39,85]. In segmentation 

process, he VHM and VC layers were equally weighted and the output resolution was set to the higher 

value of both layers (1 m). To create most meaningful objects reflecting the heterogeneity of 

vegetation patterns the segmentation scale parameter was set to 70 using the estimation of scale 

parameter (ESP) tool [86,87]. The ESP tool iteratively segments the image with fixed increments of 

the scale parameter and calculates the local variance (LV) of the object heterogeneity for each scale and 

the rate of change in LV (ROC-LV) across the scales. Local ROC-LV maxima indicate statistically 

significant scales at the image level [87]. The other two segmentation parameters (shape and 

compactness) were set to 0.3 and 0.5, respectively using a trial-and-error approach, as there are no 

automatic procedures facilitating their calibration. Here we used also our previous experience from 

tests carried out in various sites located in the Polish Carpathians. Through combining scale, shape and 

compactness parameters we emphasized importance of differences in values of vegetation height and 

canopy cover and considered also the tendency of land cover objects in anthropogenic landscapes to 

have regular shapes. The relevance of the selected segmentation parameters was approved by visual 

inspection of the created objects against the input layers and the orthophotomap. 

The classification of the segments was performed in two successive steps (Figure 3). The mean VC 

values of the segments were used to stratify the segments into three classes: no vegetation (mean  

VC < 2%), sparse vegetation (2% < mean VC < 20%) and dense vegetation (mean VC > 20%). The no 

vegetation class included mostly bare ground, water and urban areas. The sparsely vegetated areas 

were grasslands or arable land with single shrubs and trees, and the dense vegetation was represented 

by areas that were completely covered by shrubs and trees, such as forests. The latter two classes were 

divided using the segment mean VHM into low (mean VHM < 1 m), medium (1 m < mean VHM < 10 m) 

and high vegetation (mean VHM > 10 m). These thresholds were determined in test studies of 

randomly sampled segments using classification and regression trees (CART) [80]. CART is a 

recursive partitioning method that analyzes data via a tree-building algorithm and determines a set of 

if-then logical conditions to accurately predict or classify cases [88]. 
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Figure 3. Rules of the vegetation classification based on ALS data. 

While the object-based classification of ALS data shows the actual patterns of vegetation (actual 

land cover), BDOT10k includes additional information about formal and functional land use and land 

cover which helped to confine the analysis to forest and agricultural areas. First, various land use and 

land cover types in BDOT10k like water bodies, residential land, transport units, wasteland, open 

spaces, mine sites, waste dump, other industrial areas, as well as sports and recreational facilities 

(3.5% of the Szczawnica commune) were excluded from the analysis. In this way, forest and 

agricultural mask was created. Next, results of the object-based classification of ALS data and the 

BDOT10k forest and agricultural mask were juxtaposed to determine where the land formally 

classified as agricultural (arable lands and grasslands) was covered by vegetation indicating secondary 

succession on abandoned fields, meadows and pastures. A simple map overlay of the ALS-derived 

vegetation map and the BDOT10k land use and land cover vector layers was applied. A cross-

tabulation matrix was computed to provide detailed information about the correspondence between the 

two data sets. The distribution of secondary forest succession areas within the agricultural land was 

then analyzed using the ESRI ArcGIS 10.1 software (ESRI, Redlands, CA, USA). 

2.4. Accuracy Assessment 

A critical issue in land cover change research is accuracy assessment [89]. Originating from 

traditional validation methods for pixel-based classifications, many OBIA classification results have 

been assessed by point-based sampling, although object-based strategies are highly recommended [90,91]. 

A polygon that represents a meaningful and homogenous patch of land is more suitable for accuracy 

assessments of maps that are produced with OBIA [89,92,93]. In general, the spatial and thematic 

properties of the output segments are compared to reference features, such as those obtained from 

manual vectorization or surveyed on the ground [93,94]. 

For the accuracy assessment, segments that represent no vegetation, sparse vegetation, and dense 

vegetation classes were selected as long as they were entirely within the BDOT10k grassland or arable 

land classes and they had an area greater than 1000 m2. A total of 4699 candidate segments were 

selected, which represents 88% of the grassland and arable land area. 

To be used for the accuracy assessment, the terrestrial photographs needed to be accurately 

georeferenced; in particular, the position and orientation of the camera and the focal distance had to be 

reproduced. The photographs were processed with the WSL Monoplotting Tool [61,65]. At least six 

control points were measured in each photograph. The real world coordinates were manually obtained 

from the DTM and orthophotomaps, and the accuracies of the georeferencing process was analyzed. 

The accuracy of the georeferencing of the terrestrial photographs was expressed in image pixels as the 

no vegetation
VC < 2%

sparse vegetation
2% < VC < 20%

dense vegetation
VC >= 20%

dense medium
1 m <= VHM < 10 m

dense low
VHM < 1 m

dense high
VHM >= 10 m

sparse medium
1 m <= VHM < 10 m

sparse low
VHM < 1 m

sparse high
VHM >= 10 m

step 1

step 2
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mean of the distances between the original and re-calculated coordinates of the control points within 

each photograph. The errors ranged from 2.7 pix to 13.7 pix, and the mean error for all of the 

photographs was 5.4 ± 3.1 pix, which represents distances of 2 m to 10 m in the field depending on a 

photograph. The terrain pixel sizes were calculated according to the photogrammetric formula for scale  

determination [95]. Large errors occurred if a control point was located much closer to or much further 

from the camera than the other points, such as beyond the area of interest. The error-prone control 

points were sometimes necessary to correctly orientate the photograph due to the instability of the 

algorithm implemented within the WSL Monoplotting Tool. 

The selected segments were then overlaid on the georeferenced terrestrial photographs using the 

WSL Monoplotting Tool, and the segment boundaries were back-projected onto the appropriate 

terrestrial photograph. For the accuracy assessment, 989 segments were retained after rejecting those 

that had less than 50% of their area visible in the photograph or were partially or completely occluded 

by trees or buildings. These segments were relatively evenly distributed from west to east over the 

entire study area (Figure 4); however, no segments were located in the northern part of the study area, 

which has high elevations and is mainly covered by forest. The sample included 529 no vegetation 

segments, 141 sparse low vegetation segments, 172 sparse medium vegetation segments, 135 dense 

medium vegetation segments, and 12 dense high vegetation segments. There were no sparse high or 

dense low vegetation segments in the samples, but they represent 5.5% of the grasslands and arable 

lands in the study area and 0.2% of the area of all of the candidate segments. The sample size allowed 

a 2.8% margin of error at a 95% confidence level [89,96]. 

 

Figure 4. Distribution of the sample reference segments over the study area (basemap 

source: CODGiK). 

The segments were then evaluated against the terrestrial photographs using the object fate analysis 

(OFA) method, which involves both spatial and thematic accuracy [91,97,98]. Following the 

recommendation of Schöpfer and Lang [97], the spatial relationships between the segments and the 

ground truth data were categorized by the following states of transition: good (falling completely 

within the 5–10 m buffered outline of the land cover patch (S1), which corresponded to 1–2 pixels in 
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the photographs, considering distance from the camera to the specific location in terrain, and matrix 

size) and expanding (exceeding the boundary with a 10-20% overlap (S2)). We also assessed the 

thematic accuracy, which represents if the segments were correctly or incorrectly classified (referred to 

as T1 or T2, respectively). The segments were assessed visually and subsequently attributed with 

appropriate scores that represent the spatial and thematic accuracy. The overall accuracy (OA) was 

determined as the percentage of segments that were classified correctly both spatially and thematically. 

The individual class accuracies were expressed by the producer’s (PA) and user’s (UA) accuracies.  

3. Results 

3.1. Object-Based Classification of LiDAR Data 

The study area was divided into 36,934 segments, each of which was assigned one of the seven 

vegetation classes (Figure 5 and Table 1). Areas of no vegetation covered 18.2% of the analyzed area 

and were mainly concentrated at higher elevations than the built-up area, on the lower slopes, and near 

the Małe Pieniny ridge to the south. Dense high and medium vegetation and sparse medium vegetation 

covered 52.2%, 16.9% and 8.6% of the analyzed area, respectively, and represented the large forest 

stands of the Beskid Sądecki and Pieniny ranges. The remaining classes (dense low vegetation, sparse 

low and high vegetation) covered only very small percentages of the commune. The average segment 

size was 2294 m2; however, the sizes of the different classes varied (Table 1). The no vegetation class 

had the largest segments, whereas the patches of dense low vegetation were significantly smaller than 

the others. The sparse low, dense medium and high vegetation patches exceeded the average segment 

size, while the sparse medium and high vegetation patches were smaller than the average. 

 

Figure 5. Results of the object-based classification within the agricultural class of BDOT10k. 
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Table 1. Characteristics of the object-based image analysis (OBIA) segmentation and 

classification within the agricultural class of BDOT10k. 

OBIA Class 
Number of  

Classified Objects 

Mean Area of  

Classified Objects 

[m2] 

% of  

Analyzed Area 

Number of Classified Objects in 

Sample Used for the  

Accuracy Assessment 

no veg. 2936 5254 18.21 529 

sparse low veg. 917 2465 2.67 141 

sparse medium veg. 4821 1510 8.59 172 

sparse high veg. 1137 999 1.34 0 

dense low veg. 30 957 0.03 0 

dense medium veg. 8823 1625 16.92 135 

dense high veg. 18270 2423 52.24 12 

Total 36934  100 989 

3.2. Relationships between the BDOT10k and LiDAR-Based Classification 

Of the analyzed area, 74.8% was in the BDOT10k forest and woodland class, most of which were 

classified as dense high (51.6%) and dense medium (14.5%) vegetation (Table 2). The BDOT10k 

classes of arable land and grassland, which made up 11.0% and 14.1% of the analyzed area, 

respectively, contained mostly the no vegetation class. Within these two classes, however, we found 

also large areas of sparse and dense low, medium and high vegetation. They covered 18.7% of the 

arable land and 40.4% of the grasslands, which is 31.0% of the agricultural land in the Szczawnica 

commune, and could be labelled as secondary forest succession areas (Figure 6). The remaining 

BDOT10k class of shrubland did not exceed 0.5% of the study area and contained mostly sparse or 

dense, low, medium or high vegetation (>94%). 

 

Figure 6. Secondary forest succession areas (Basemap Source: CODGiK). 
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Table 2. Cross tabulation of the object-based classification results and selected BDOT10k 

classes. “% of SA” represents the percentage of OBIA classes within the study area, and  

“% of BDOT10k” represents the percentage of OBIA classes within the selected  

BDOT10k classes. 

BDOT10k Class 

OBIA Class 

Arable Land Grassland Forest, Woodland and Grove Shrubland Total 

% of  

SA 

% of 

BDOT10k 

% of 

SA 

% of 

BDOT10k 

% of  

SA 

% of 

BDOT10k 

% of  

SA 

% of 

BDOT10k 

% of 

SA 

no vegetation 8.9 81.3 8.4 59.6 0.9 1.2 0.0 5.7 18.2 

sparse low veg 0.8 6.7 1.4 10.0 0.5 0.7 0.0 10.4 2.7 

sparse medium veg 0.5 4.9 2.0 14.2 6.0 8.0 0.0 25.7 8.5 

sparse high veg 0.0 0.0 0.0 0.1 1.3 1.8 0.0 0.0 1.3 

dense low veg 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

dense medium veg 0.6 5.6 1.7 12.1 14.5 19.4 0.1 57.2 16.9 

dense high veg 0.2 1.4 0.6 3.9 51.6 68.9 0.0 1.0 52.4 

TOTAL 11.0 100 14.1 100 74.8 100 0.1 100 100 

sum of vegetated area 2.1 18.7 5.7 40.4 73.9 98.8 0.1 94.3 81.8 

A total of 56.9% of the high/medium/low sparse or dense vegetation segments within the arable 

land and 71.1% of these segments within the grasslands were adjacent to forests. Of all of the segments 

with signs of secondary forest succession on agricultural land, 62.4% were adjacent to forests. The 

remaining segments were mainly located along the cart tracks and streams and at balks, where they 

formed linear features. They were also located near the residential area, where they could represent 

urban vegetation, and in the fields as single trees or groups of trees and/or shrubs.  

3.3. Accuracy Assessment of the Extended National Database 

All of the sample segments were assigned good spatial accuracy (S1) because no segment extension 

was identified. A total of 940 segments were thematically classified correctly (Table 3), which 

represents an overall accuracy of 95.0%. The producer’s accuracies for the no vegetation, sparse low, 

sparse medium, dense medium and dense high vegetation classes were all greater than 85%, while the 

user’s accuracies were greater than 90% except for the sparse low vegetation (88.7%). For rare classes 

such as dense low vegetation, where only 3 segments were assessed, the accuracy was 0% because all 

of the segments were classified incorrectly as sparse low vegetation. The accuracy of the class that 

represents sparse high vegetation was not determined due to the lack of sample segments used for the 

accuracy assessment, and the accuracy of the class that represents dense low vegetation was not 

determined due to the lack of reference objects that are visible on terrestrial photographs. 

4. Discussion 

This study was intended to design and test a robust approach for mapping forest succession patterns 

in a mountainous area of the Polish Carpathians using LiDAR-derived vegetation structure information 

with object-based analysis supported by national topographic vector data. The OBIA concept was 

shown to be applicable for extracting real-world features, such as land cover patches, where the level 

of detail can be adjusted to the desired scale of the derived objects [41,86,99]. 
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Table 3. Confusion matrix for the object-based classification expressed in terms of the 

numbers of segments. 

Reference 

Map 

No 

Veg 

Sparse 

Low Veg 

Sparse 

Medium Veg 

Sparse 

High Veg 

Dense 

Low Veg 

Dense 

Medium Veg 

Dense 

High Veg 
Total 

Users 

Accuracy 

No veg 514 10 3 2    529 97.2 

Sparse low veg  125 13  3   141 88.7 

Sparse medium veg  9 158   5  172 91.9 

Sparse high veg    0    0 0.0 

Dense low veg     0   0 0.0 

Dense medium veg   3   131 1 135 97.0 

Dense high veg       12 12 100.0 

Total 514 144 177 2 3 136 13 989 

Producers accuracy 100.0 86.8 89.3 0.0 0.0 96.3 92.3 

Overall accuracy 95.0   

Because the purpose of this study was to detect secondary forest succession, the accuracy of the 

ground and vegetation ALS point classes was extremely important. Overton et al. [100] stated that it is 

difficult to differentiate LiDAR returns from ground and low vegetation, which may cause 

misclassifications. On the other hand, Hopkinson et al. [101] demonstrated that grass and herbs do not 

influence the accuracy of ground point classification. We assume that the classification accuracy 

requirements for ground points within the ISOK project (1%) ensured sufficient data reliability. 

The method was tested on data collected during the transition between leaf-on and leaf-off 

conditions because the scanning was completed in mid-October. Moreover, the point clouds were not 

homogeneous due to the different point densities in the overlapping adjacent stripes. In spite of these 

constraints, a minimal set of two LiDAR-derived metrics, VHM and VC, accurately detected seven 

vegetation-related classes that are important for secondary forest succession mapping. Therefore, we 

assume that the methodology may also work with other LiDAR data that are acquired at a similar 

density in either the spring (April/May) or fall (October/November), as is the case with most national 

LiDAR datasets that were collected within the Polish ISOK project. Although our approach differs 

from several case-specific and site-specific studies that incorporated a large number of input layers to 

segment and classify land cover [25,31,32,37], it is more universal and has sufficient accuracy. 

Two input layers, VHM and VC, were used to segment the study area into homogeneous patches of 

land. The ESP tool [86,99] was found to be useful for determining the scale parameter; however, the 

other segmentation parameters were set by trial-and-error because of the lack of an automatic solution. 

In segmentation we emphasized importance of both vegetation height and canopy cover, as well as 

regular shapes of land cover objects in a forest-agricultural landscape significantly altered in the past 

by humans. To tune the segmentation parameters and receive segments resembling real land cover 

objects as close as possible, extensive preliminary tests in various sites located in the Polish 

Carpathians were carried out, with a visual inspection of the resulting segmentation against real-world 

land cover objects visible on high resolution orthophotos. These tests confirmed that the input 

parameters were suitable for further classification based on the size, shape and homogeneity of the 

objects. We note, however, that a full automation of segmentation parametrization across a variety of 
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landscapes quite likely cannot be achieved, as it has to involve specific land cover patterns in a region 

in combination with the research goals the segments have to fulfil. 

For most of the segments, VHM and VC were sufficient to accurately label the vegetation structure. 

The proposed classification scheme into sparse or dense and low, medium or high vegetation reflects 

the slow and gradual process of secondary forest succession well; the overall accuracy (OA) of the 

classification was 95%, and most of the class-specific accuracies were very high. The results are 

comparable to those of Falkowski et al. [25] who achieved an overall accuracy of 95%, and better than 

those of Ewijk et al. [32] (OA = 90%) and Martinuzzi et al [37] (kappa = 0.9), which is encouraging. 

Future studies using this workflow are therefore recommended. Potential improvements of 

classification results may also be achieved using other variables, like intensity [102] or full waveform 

LiDAR data recommended in several studies on vegetation patterns [103]. 

We found terrestrial photography to be extremely useful in the accuracy assessment of high-resolution 

LiDAR-based analysis and propose this solution as a novel way to assess high-resolution, detailed land 

cover products. Terrestrial photographs can be interpreted easier than orthophotomaps, which are a 

common source of the ground truth in many studies (e.g., [15]). The oblique imagery provides views 

that users are familiar with, and horizontal perspective that is unique for geo-data. An indisputable 

advantage over aerial imagery is that the terrestrial photographs clearly show the relative vegetation 

height, which is a key factor in secondary forest succession mapping. Vegetation height interpretation 

from orthophotomaps is difficult or even impossible if no reference objects or shadow cast by trees are 

visible. On the other hand, terrestrial photographs show a small portion of land, whereas 

orthophotomaps cover large areas. Moreover, the varying image scale may be an obstacle in precise 

determination of the land cover patches, but at the same time georeferencing provides accuracy 

measures by means of known terrain pixel size. In our study, however, the terrestrial photographs were 

not used for the delineation of vegetation patches, but rather for the assessment of existing ones 

delineated with ALS data. A compromise solution may be an integration of both terrestrial 

photographs and orthophotomaps. In this case, orthophotomaps provide spatial extents of 

homogeneous vegetation patches, while terrestrial photographs support determination of vegetation 

height. Such an approach may eliminate also problems resulting from the varying image scale. 

Compared to field-based verification, the use of terrestrial photography may limit the time that is 

required for field work without compromising its accuracy. Each image that was taken intentionally for 

accuracy assessment showed a large area of land and therefore included many ground control objects. 

In this study, 13 photographs (six of them were not taken for use in the accuracy assessment) provided 

989 reference polygons, which represented more than 21.3% of the BDOT10k cropland and grassland 

area. When carefully georectified, terrestrial photographs also have an advantage over point samples 

collected in the field because they present the spatial context of the examined features. Photographs 

that are not taken specifically for accuracy assessment require very careful selection because they do 

not offer as many advantages and are sometimes not useful in the analysis. 

The amount of forest succession on abandoned agricultural land in the Szczawnica commune was 

found to be significant. Various classes of vegetation were identified on 31% of the agricultural land, 

which represents 664 hectares. The patches of arable land and grassland that were covered by 

secondary succession were mostly located along forest edges, which is consistent with the results of 

other studies [7,10,17,18,24,51]. In 2014, agricultural land in farms in Małopolska province had an 
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average area of 3.95 ha [104]; thus, the area of identified secondary succession in the Szczawnica 

commune exceeded the size of 168 average farms, which confirms the significance of the agricultural 

decline in the study area [71,73]. 

In addition, our findings indicate that the forested area in several locations in the Polish Carpathians 

may be underestimated. Dense or sparse high and medium vegetation, which may be identified as 

forests and woodlands, covered 79% of the analyzed area, which is significantly greater than the 

officially reported forest cover in the Szczawnica commune (68%; [19]). This finding confirms a view 

that the effects of secondary forest succession may exceed the rates of forest increase resulting from 

the official afforestation plans in Poland [68,105,106]. The outdated census data [68] may 

consequently produce the statistics that are misleading because the uncontrolled abandonment and 

forest succession process leads to an increase in the real forest cover and subsequent changes in the 

forest composition. 

5. Conclusions 

This study highlights the potential of using LiDAR data for mapping forest succession patterns in a 

mountainous area and usefulness of terrestrial photography in the accuracy assessment. Only two 

LiDAR-derived metrics, vegetation height model and vegetation cover, supported by national 

topographic vector data allowed an accurate (95%) detection of forest succession on abandoned 

agricultural land. The study was unique in application of terrestrial photographs in the process of 

accuracy assessment. 

Prior to this study, the process of secondary forest succession over the entire region of the Polish 

Carpathians has not been the subject of scientific research. This study confirmed the significance of 

contemporary secondary forest succession in the study area and indicated that the proposed method is 

transferable and may be applied to large-scale studies without major modifications. Future studies 

should therefore focus on applications of the developed method to larger areas in order to assess 

various driving factors of land abandonment and secondary succession in the mountain areas. 
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