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METHODOLOGY ARTICLE Open Access

Mapping single molecule sequencing reads
using basic local alignment with successive
refinement (BLASR): application and theory
Mark J Chaisson1 and Glenn Tesler2*

Abstract

Background: Recent methods have been developed to perform high-throughput sequencing of DNA by Single

Molecule Sequencing (SMS). While Next-Generation sequencing methods may produce reads up to several hundred

bases long, SMS sequencing produces reads up to tens of kilobases long. Existing alignment methods are either too

inefficient for high-throughput datasets, or not sensitive enough to align SMS reads, which have a higher error rate

than Next-Generation sequencing.

Results: We describe the method BLASR (Basic Local Alignment with Successive Refinement) for mapping Single

Molecule Sequencing (SMS) reads that are thousands of bases long, with divergence between the read and genome

dominated by insertion and deletion error. The method is benchmarked using both simulated reads and reads from a

bacterial sequencing project. We also present a combinatorial model of sequencing error that motivates why our

approach is effective.

Conclusions: The results indicate that it is possible to map SMS reads with high accuracy and speed. Furthermore,

the inferences made on the mapability of SMS reads using our combinatorial model of sequencing error are in

agreement with the mapping accuracy demonstrated on simulated reads.

Background
The first step in a resequencing study is to map reads

from a sample genome onto a reference, accounting for

sample variance and sequencing error. An accurate and

sensitive approach is to use Smith-Waterman [1] align-

ment; however, this is computationally infeasible for map-

ping to nearly any genome. Instead, methods have been

created using heuristics and data structures that are

appropriate for rapid mapping of the type of read consid-

ered. For example, reads produced by Sanger sequencing

that are highly accurate and nearly 1000 bases long are

successfully mapped using hash-based methods such as

MEGABLAST [2], cross match (Green P., www.phrap.org,

unpublished), and BLAT [3]. These methods are too inef-

ficient to map read sets from next generation sequencing

(NGS) instruments by Illumina (San Diego, CA, USA)
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Dr, La Jolla, CA, USA

Full list of author information is available at the end of the article

and Life Technologies (Carlsbad, CA, USA), since they

contain hundreds of millions of short reads. Instead,

methods such as Bowtie, Bwa, and Soap2 are used

[4-6]. These are based on querying the Burrows-Wheeler

Transform Full-text Minute-space index (BWT-FM) [7]

of a genome. They are able to rapidly align reads

when there is little variation between the read and the

genome.

Sequencing methods based on single molecule sequenc-

ing (SMS) also produce large datasets that have high com-

putational demands for mapping. SMS datasets do not

have the length limitations of NGS or Sanger sequencing,

but have a higher number of errors, and the errors are pri-

marily insertions and deletions rather than substitutions.

Thus, mapping methods created for NGS sequencing do

not extend well to SMS reads. A recent study using the

PacBioRS platform [8] included a large number of reads

over 10 kilobases long. As reads become longer, the com-

putational problem begins to resemble the whole genome

alignment (WGA) problems that were examined when

multiple mammalian genomes were sequenced [9-11].

© 2012 Chaisson and Tesler; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chaisson and Tesler BMC Bioinformatics 2012, 13:238 Page 2 of 17

http://www.biomedcentral.com/1471-2105/13/238

The problem arises of how to align long (many kilobase)

reads with moderate divergence from the genome (up to

20% divergence, concentrated in insertions and deletions)

at the speed and sensitivity that NGS alignment methods

operate.

Many alignment methods in similar application areas

share related algorithmic approaches or data structures

that are tailored to optimize the particular targeted appli-

cation. The relationship between many existing align-

ment methods [1,3-5,10-23] is qualitatively illustrated in

Figure 1. We present an approach, Basic Local Align-

ment via Successive Refinement (BLASR), which maps

reads using coarse alignment methods developed during

WGA studies, while speeding up these methods by using

the advanced data structures employed in many NGS

mapping studies.

Advances in isolation and detection of single molecules

and reactions have enabled SMS methods [24-26]. These

SMS methods monitor processes in real time. The

PacBioRS instrument produces reads by detecting which

fluorescently labeled nucleotides are incorporated into

a DNA chain as a template sequence is replicated by

DNA polymerase. Other SMS methods have been pro-

posed using detection of cleaved bases that pass through

a protein nanopore [25], and identifying bases that have

translocated through a nanopore fabricated in a graphene

membrane [27]. In the case of the PacBioRS sequenc-

ing, a missing or weak signal of nucleotide incorpora-

tion results in a deleted base, and nucleotides that give

fluorescence signal without being incorporated lead to

insertions.

We propose aligning SMS reads with high indel rates

to genomes as follows. First, find clusters of short exact

matches between the read and the genome using either a

suffix array or BWT-FM index [7]. Then, perform a more

detailed alignment of the regions where reads are matched

to assign the alignment. To investigate the feasibility of

doing this in the human genome, we need to determine

two metrics: (1) the number of matches of minimal length

expected to exist between a read and the genome at a

given sequencing accuracy and read length, and (2) the

number of false positive clusters the read is expected to

have elsewhere in the genome. If the chances of finding

a match between the read and the genome are low, or if

there are many regions a read may map to incorrectly with

high identity, our proposed approach would not be feasi-

ble. For a particular read length and accuracy, we present

a method to determine the probability that the read con-

tains a sufficient number of anchors tomap; this method is

based on counting integer compositions.We next examine

the repeat structure of the human genome to determine

how difficult it is to map to due to the repetitive nature

of the genome. Rather than defining repeat content as

the amount of sequence sharing high percent identity,

we measure a different similarity metric on the human

genome, the anchor similarity, where sequence similarity

is measured as the number of shared anchors between the

two sequences from the genome. We find that there are

both a high number of expectedmatches between the read

and the genome, and few false positive clusters of matches

of the same size elsewhere in the genome, indicating that

the proposed approach is feasible for mapping reads to the

human genome.

We implemented our method in a program called

BLASR (Basic Local Alignment with Successive Refine-

ment), which combines the data structures used in short

read mapping with alignment methods used in whole

genome alignment. A BWT-FM index or suffix array of a

Figure 1 An illustration of relationships between alignment methods. The applications / corresponding computational restrictions shown are

(green) short pairwise alignment / detailed edit model; (yellow) database search / divergent homology detection; (red) whole genome alignment /

alignment of long sequences with structural rearrangements; and (blue) short read mapping / rapid alignment of massive numbers of short

sequences. Although solely illustrative, methods with more similar data structures or algorithmic approaches are on closer branches. The BLASR

method combines data structures from short read alignment with optimization methods from whole genome alignment.
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genome is queried to generate short exactmatches that are

clustered and give approximate coordinates in the genome

for where a read should align. A rough alignment is gener-

ated using sparse dynamic programming on a set of short

exact matches in the read to the region it maps to, and a

final detailed alignment is generated using dynamic pro-

gramming within an area guided by the sparse dynamic

programming alignment.

Results and discussion
Our results are broken down into two sections; in the first,

we examine characteristics of PacBioRS reads, and present

theory on how these sequences contain matches that may

be used to anchor alignments to the genome. In the next,

we present a practical comparison of alignment methods

on PacBioRS sequences.

Mapping feasibility

Our strategy to map SMS reads is to locate a relatively

small number of candidate intervals where the read may

map and then use detailed pairwise alignments to deter-

mine the best candidate. The candidate intervals may be

found by locating all exact matches between the read

and the genome, and then finding dense clusters of exact

matches (anchors) in spans of similar length and the same

(or reverse complement) order and orientation in both the

genome and read, as described in detail in Methods. The

feasibility of the method depends on the balance of hav-

ing enough anchors to detect the correct interval to align

a read to, vs. having so many anchors that clustering takes

a prohibitive amount of time.

One approach to limiting the number of anchors is to

limit to a set of anchors of low multiplicity in the genome;

this is commonly done by using longer anchors. When

the sequencing error rate is ρ per position, without posi-

tional bias, the average length of an exact match is 1
ρ

− 1

bases. For ρ = 0.15, the average length is 1
ρ

− 1 ≈ 5.67.

Every word of length 5 occurs on average over 3 million

times in the human genome, far too many times to be

suitable as an anchor for rapid alignment. Fortunately, the

condition that a sequencing error occurs precisely every

⌊1/ρ⌋ bases is worst-case, and is exceedingly rare: for a

sequence of length L with roughly E = ρL sequencing

errors, this only happens with probability on the order of

1/
(L
E

)

. Rather than focusing on the average case, it is more

informative to consider the distribution of runs of error-

free sequences; for a uniform distribution of errors across

a read, this is a geometric distribution. To look at the

empirical distribution of error-free sequences, a sample of

reads from Escherichia coli sequenced by a PacBioRS was

aligned back to the reference. The resulting distribution

of spans of error-free sequences is shown in Figure 2, and

closely follows the geometric distribution for over 95% of

the data.
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Figure 2 The distribution of lengths of error-free segments of

reads. The line fitted to the points weighted by frequency has slope

−0.071, corresponding to a geometric distribution with parameter

0.848, in close agreement with the 84.5% accuracy of the dataset

used. Over 95% of segments are of length 20 less.

We may model SMS sequencing as a process that gen-
erates a series of error-free words with a geometric length
distribution, each separated by a single erroneous base.
With this model, it is possible to determine how many
words must be sequenced until there is a high probabil-
ity that a word of length K or greater (suitable for use in
anchoring an alignment) has been sequenced. Denoting
the length of a word asW, Pr{W = K} = (1 − ρ)Kρ, and
Pr{W ≥ K} = (1 − ρ)K , where K ≥ 0. In order to have
a probability of 1 − ǫ that a word of length K or greater
is sequenced without error, t words must be sequenced,

where t = log(ǫ)

log(1−(1−ρ)K )
. The waiting length is the corre-

sponding number of bases for t words, each followed by
one incorrect base. The waiting length is

t

(

1+
K−1
∑

i=1

iPr(W = i|W <K)

)

= t

(

1 +
K−1
∑

i=1

i
(1 − ρ)iρ

(1 − (1 − ρ)K )

)

= t

(

1

ρ
− K(1 − ρ)K

1 − (1 − ρ)K

)

.

The waiting lengths for words of size 15, 20, and 25 are

shown for ǫ = 0.05 and varying ρ in Figure 3. We refer to

error-free sequences of length K or greater as anchors.

Other alignment methods such as Gapped BLAST [28]

and BLAT [3] have shown that it is useful to initiate align-

ments at pairs of anchors. The waiting lengths may be

used to compute the length of read required to be cer-

tain of having at least N anchors. Instead of using waiting

lengths, it is possible to directly compute the probability

of sequencing a certain number of anchors when the error

rate is known. We do this with a model that approximates

all errors as point mutations on a scan across a tem-

plate. Given a fixed template length L, a minimal anchor
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Figure 3Waiting length to sequence a word of length ≥ k at

ǫ = 0.05. The waiting lengths to sequence a word of length ≥ k at

ǫ = 0.05 at varrying accuracy. This gives an estimate of the number of

bases required to sequence before having an error free stretch that

may serve as an alignment anchor.

length K, a number of errorsM, and a number of anchors

N, define NumConfigurations(M,N,K,L) as the number

ways to distribute the positions ofM errors when reading

from the template such that there are at least N maxi-

mal substrings of length ≥ K not interrupted by error. In

Appendix 1, we compute this using generating functions,

allowing us to apply the result across the read lengths

and error profiles found in SMS sequencing. Weese et

al. [29] considered a similar problem for short reads and

low error rates, and set bounds for filtering alignment hits

in a q-gram based mapping method by using a dynamic

programming approach.

Assuming all permutations of errors are equally likely,

NumConfigurations(M,N ,K , L)/
( L
M

)

gives the probability

of sequencing at leastN anchors. We computed this prob-

ability for the parameters L = 1000, and K = 15, 20,

and 25, to study the number of anchors to use for map-

ping. The results are shown in Figure 4 forM = 200, 150,

100, and 50, corresponding to read accuracies of 80%, 85%,

90%, and 95%. At an accuracy of 85%, nearly all configu-

rations have at least 10 anchors of length at least 15. This

indicates that with minimum anchor size K = 15, one

would expect to find at least 10 anchors at the correctly

mapped interval in the genome.
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for parameters similar to SMS sequencing. The fraction of configurations allowing

at least N anchors of length 15, 20, and 25 for N between 0 and 50 are shown for a 1000 base read when placing (A) 200, (B) 150, (C) 100, and (D) 50

errors.
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When a read is sampled from a repeat in the genome,

there are likely to be many dense clusters of anchors map-

ping the read across the genome. Assuming the repeat is

divergent, it is necessary to perform a detailed alignment

(Smith-Waterman) to all intervals containing dense clus-

ters of anchors in order to distinguish the correct mapping

location from other repeats. For copies of a repeat such

as Alu or LINE in the human genome, the computational

demands are too prohibitive to align the read against all

instances of the repeat. On the other hand, if only a lim-

ited number of mapped locations are aligned in detail, the

chance of finding the correct location is small. The simi-

larity of repeats in a genome is typically defined by percent

identity from a pairwise alignment of the two sequences

[30]. However, sequences that have a high percent similar-

ity may not share many long stretches of exact matches,

which is how they are compared when using anchor-

based mapping. To characterize repeats with respect to

anchor-based mapping, we introduce an alternative met-

ric: the anchor similarity of two sequences is the max-

imum number of fixed-length, non-overlapping, ordered

anchors, shared between two sequences, with certain con-

straints on anchor spacing. If the anchor similarity is S,

we also say the two sequences are S-similar, and ≥S-

similar when two sequences have anchor similarity that

is at least S. Using fixed-length anchors simplifies the

presentation, although the BLASR method uses variable

length anchors. Anchor similarity requires two parame-

ters: K, the minimum anchor size; and δ, the indel rate,

which may change the spacing between anchors. The con-

straints reflect the spacing one would expect between

anchors of a read with indel errors and a genome. For

example, consider a sequence that contains anchors at

coordinates a and b, matching anchors at coordinates a′

and b′ in another sequence. If the ratio of the gaps between
anchors is bounded by 1 − δ ≤ b−a

b′−a′ ≤ 1 + δ (consistent

with the indel rate), then a and b may be included in the

count for the anchor similarity of the two sequences. Fur-

ther details on computing anchor similarity are given in

the Additional file 1: Text S1, Section 1.1.

To characterize the repetitiveness by anchor similarity

of sequences in the human genome, we took a sample of

1 million random intervals of length L = 1 kb in the

genome, and computed anchor similarity of each inter-

val with all other intervals up to length (1 + δ)L = 1150

(assuming an indel rate δ = 0.15) in the rest of genome.

We used anchors of lengths 15, 20, and 25. For each inter-

val and anchor length, a histogram is generated for the

number of times ≥S-similar intervals are found in the

genome. A hypothetical sample sequence withK =15may

have 50 thousand ≥1-similar intervals in the genome; one

thousand ≥2-similar intervals; one hundred ≥3-similar

sequences; ten ≥4-similar sequences; and one ≥5-similar

sequence. This results in one million histograms (for each

anchor length). To summarize these, we examined the

cumulative distribution of values of all histograms for

≥1, ≥5, ≥10, and ≥20-similar sequences, as shown in

Figure 5.

We compared the distribution of values of anchor

similarity from the human genome with values of

NumConfigurations(M,N ,K , L)/
( L
M

)

to see how the

mapability of sequences compares to the expected dis-

tributions of matching anchors. Reads from intervals

of a genome that have low anchor-similarity to the

rest of the genome are likely to have few spurious

matching clusters and are thus likely to be uniquely

mapped. Conversely, a read sampled from an interval

that has high anchor-similarity with many other inter-

vals likely has many clusters of matches to the genome.

Figure 5 shows an estimate of the number of intervals

that must be searched when using anchor-based seed-

ing to gain a certain degree of sensitivity of finding

the true match. For example, when requiring only one

or more matches of length 15 to find an interval, 22%

of the sequences have up to 100 matching intervals in

the genome (Figure 5A, point P). If instead 20 or more

matches were required in order to find an interval, 97%

of the regions sampled have up to 100 matching inter-

vals in the genome (Figure 5D, point Q). The combination

of the values of NumConfigurations(M,N ,K , L)/
( L
M

)

and

≥S-similarity search give intuition for the feasibility of

mapping sequences at various error rates in the human

genome. From Figure 4, for reads sequenced at 85% accu-

racy, it is very likely there are least 8 anchors of length 20

or greater in any read. The green points in C show the

number of matching intervals when using a similar set of

parameters: at least 10 anchors of length 20. Importantly,

95% of the samples match uniquely in the genome.

To gauge the mapability of sequences to various

genomes, we simulated reads from Escherichia coli, Ara-

bidopsis thaliana, and human, for read lengths that vary

from 100 to 10000 bases, and error rates from 20% down

to 0%. We mapped them back to their reference genomes

with BLASR (see Methods). The results are shown in

Figure 6. We note for mapping to the human genome,

while it is difficult to have precise predictions on the

mapability of sequences, the results are in agreement with

the inferences drawn from the distributions of number

of anchors and anchor-similarity measures. For example,

95% of 1000-base reads from the human genome simu-

lated with a 15% error rate map to the correct location in

the genome.

As shown in Figure 4B, a read with a 15% error rate has

a 97% chance of having 10 anchors of length 15 or more.

The anchor similarity corresponding to these reads uses

parameters δ = 0.15, L = 1000, and k = 15, and is shown

by the red curve in Figure 5A. Over 90% of the sampled

intervals only have one location with at least 10 anchors of
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A B

C D

Figure 5 ≥S-similar sequences measured in the human genome. 1 million query intervals, each 1000 bases long, were randomly sampled from

the genome. Each query interval was searched against the human genome to determine the number of non-overlapping 1000 base intervals in the

genome that are ≥S-similar to the query. The cumulative distribution for the number of target intervals that are (A) ≥1-similar, (B) ≥5-similar, (C)

≥10-similar, and (D) ≥20-similar to these 1 million query intervals, is shown. Each panel uses minimum anchor lengths k = 15, 20, and 25 and indel

rate δ = 0.15. From this, one may interpret the number of intervals that must be searched when mapping a read using anchors. For example, when

mapping with a minimum of a single 25 base match, 80% of the queries match to 100 other intervals in the genome with at least one 25 base

match (point X). On the other extreme, the top 3% of queries map to over 1 million other intervals with at least one matchpoint Y), due to the high

repeat content of the genome. This indicates that 80% of sequences may be correctly mapped to the human genome using a single 25 base match

by only searching 100 candidates, however for full sensitivity many more candidates must be searched. Points P and Q show a contrast of the

fraction of intervals that have 100 or fewer matches in the genome when matching using 1 or more anchors versus 20 or more anchors, for an

anchor length of 15. Only 20% of the samples are limited to 100 or fewer additional matching intervals with at least 1 anchor (point P), and 97.5% of

the samples have 100 or fewer matches when requiring at least 20 anchors in a match (point Q).

length 15, indicating they map uniquely under this repeat

metric. The other two genomes, E. coli, and A. thaliana,

are shown for guidance.

Mapping benchmarks

We generated three datasets for evaluating mapping

speed and accuracy of different aligners on SMS reads

(see Table 1). For all E. coli datasets, reads were aligned

to the genome of an isolate of the O104:H4 strain

(doi: 10.5524/100001). The source reads are available

at http://bix.ucsd.edu/projects/blasr. Performance was

measured additionally with both BLAT and the BWA-SW

aligners [18]. BWA-SW was the first mapping method

written that used both the BWT-FM index used in short

read mapping and methods that allow mapping long

reads with indel error. This method is very compact

(under 5 GB of memory for human genome alignments),

and very sensitive to mapping reads with indel error, as

compared to other existing methods. Other methods

that were tested either did not run or produced insuf-

ficient results. This may be expected, as these methods

are highly optimized for other types of data that is either

short read or whole genome sequences. Of the programs

that did not run, Soap2 and Lagan crashed, while Bowtie

did not accept the read input due to read length, and the

mapping sensitivity was low on reads truncated to the

maximum allowed length. The Mosaik (Strömberg M.,

http://bioinformatics.bc.edu/marthlab/Mosaik, unpub-

lished), Mummer, and RazerS methods did execute,

however the first two could only align to one chromosome

of the human genome at a time due to space limitations,

and were orders of magnitude slower than either BLASR
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Figure 6 The mapability of simulated sequences from the E. coli, A. thaliana, and human genomes.Mapping accuracy is shown on a Phred

scale (−10 log
missing+mismapped

total ) for all three plots. Reads were simulated with base accuracies 1 − ρ = 80%, 85%, . . . , 100%. In the fraction ρ of

positions that are erroneous, we simulated 10% substitutions, 62% insertions, and 28% deletions. Missing values have no mismapped reads.

or BWA-SW while finding very few hits. Finally, the

RazerS method was only tested on E. coli reads, and found

few hits across all tested parameters. Because of the low

mapping sensitivity, these methods were excluded from

benchmarking results. The BLAT method is included as

a reference for comparison to methods optimized for

mapping Sanger sequences, though it is slower and less

sensitive than both BLASR and BWA-SW.

The E. coli-PacBioRS dataset contains 123,246 reads

comprising 261.7 M bases after filtering, with lengths

and error rate shown in Figure 7 (Short Read Archive

accession numbers SRR305922, SRR305923, SRR305924,

and SRR305925). The reads contain 10.7% insertion, 4.3%

deletion, and 0.9% substitution error, though the details

are sensitive to alignment penalty parameters. A summary

of the mapping statistics from each of the three programs

is shown in Table 2. All programs were executed on a

single core of a 2.9 GHz Xeon processor. The parame-

ters used for each program are given in Additional file 2:

Table S1.

To test the sensitivity and specificity of mapping, reads

were simulated using an empirical model (described in

Additional file 1: Text S1, Section 1.2) based on the mea-

surement of error rates from reads aligned to E. coli. The

Table 1 Datasets used in benchmarking

Dataset Description

E. coli-PacBioRS E. coli O104:H4 sequenced at 48× coverage by the

Pacific Biosciences-RS sequencer.

E. coli-simulated 50× coverage of reads simulated from E. coli O104:H4.

H. sapiens 100 MB of reads simulated from the human genome.

results are shown in Table 3. The methods are largely

in agreement on the reads that are correctly mapped,

as well as in the number of bases from every read, and

BLASR is marginally faster. The slight differences in map-

ping statistics between BLASR-SA and BLASR-BWT are

due to implementation differences in the order anchors

are generated: using a suffix array, sequences are searched

left to right, but for a BWT-FM index, sequences are

searched right to left. One difference between BLASR
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Figure 7 Statistics of reads from E. coli O104:H4 produced by the

PacBioRS sequencing platform. (Black) The fraction of reads with

length at least x. This is roughly the survival curve of an exponential

distribution. (Blue) The fraction of reads (of length at least x) that are

correct at position x. Accuracy is nearly position independent, so the

blue curve is roughly the constant 1 − ρ , where ρ is the error rate per

position.
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Table 2 A comparison of the BLASR, BWA-SW, and BLAT

methods on E. coli reads

Method Number of
aligned reads

Number of
aligned bases

Run time

BLASR-SA 94057 230.8 M 20m 54s

BLASR-BWT 94527 230.1 M 33m 57s

BWA-SW 97729 132.4 M 434m 5s

BLAT 99530 181.7 M 4724m 40s

Each method was used to align 48× coverage of reads from E. coli O104:H4.

BLASR-SA uses a suffix array index of the genome, while BLASR-BWT uses a

BWT-FM index of the genome.

and BWA-SW is that BWA-SW often produces several

short alignments of possibly overlapping substrings of a

read rather than one contiguous alignment. We consider

the number of bases mapped by BWA-SW as the sum of

uniquely mapped bases from each read. Usually this does

not affect mapping and consensus quality, but occasion-

ally there are subsequences from reads that are incorrectly

mapped while the rest of the read is mapped correctly.

In addition to the information encoding the alignment,

BLASR produces a mapping quality value for every align-

ment. This value represents the PHRED scale probability

that the coordinates the read is aligned to in the genome

are incorrect, similar to the mapping quality values pro-

duced by Maq [20]. To test mapping quality values, we

created three datasets of 10M simulated reads sampled

from the genome with fixed read lengths of one, two, and

three kilobases each. Errors were added to the reads using

the empirical read simulator (Additional file 1: Text S1,

Section 1.2). For each mapped read, we classified it as cor-

rectly and incorrectly mapped, allowing a measurement of

accuracy of mapping quality value. The frequency of com-

puted mapping quality values are shown in Figure 8A. The

mapping quality values are largely binary, owing to the fact

most reads contain sequences that align uniquely to the

genome. The empirical mapping quality values are shown

in Figure 8B.

Conclusion
Methods to produce reads through single molecule

sequencing were mostly theoretical a decade ago and

are now produced in high throughput on an industrial

platform. The different characteristics of the sequences

produced by SMS relative to Next Generation sequenc-

ing (sequences several orders of magnitude longer than

previous technologies, at the expense of a higher error

rate concentrated in insertions and deletions), require

new computational techniques to be efficiently analyzed.

Here, we addressed the problem of mapping SMS reads

to a reference genome by first examining the feasibility of

mapping SMS reads, and then by benchmarking our new

alignment method on reads produced by the PacBioRS

instrument. The source code is available under the BSD

license at https://github.com/PacificBiosciences/blasr and

is the default alignment method available to all running

the PacBioRS.

There are many emerging problems for processing SMS

sequences. As the length of the reads produced by SMS

increases, the computational problem resembles whole

genome alignment more than the read mapping problem.

This increases the need to have methods that accurately

detect structural rearrangements covered by single reads.

Furthermore, with the inevitable exponential increase in

sequencing throughput, the current methods will not be

sufficient to align SMS reads without a large amount of

time or computational resources, and further algorithmic

improvements will be necessary. We did not address the

issue of using multiple sequence alignment to produce a

consensus sequence or variant calls. It has been shown

that the additional information one may gain by observing

the signal from single-molecule events in real time may

indicate DNA modifications such as methylation [25,31].

Table 3 A comparison of the BLASR, and BWA-SWmethods on simulated reads

Method Correctly mapped Incorrectly mapped Skipped Runtime Memory

reads bases reads bases reads footprint

E. coli

BLASR-SA 108789 266.5M 229 0.38M 3766 48m 18s 202 MB

BLASR-BWT 108795 265.3M 259 0.45M 3604 59m 39s 46 MB

BWA-SW 111192 261.9M 1835 0.91M 3005 223m 57s 190 MB

H. sapiens

BLASR-SA 41726 102.3M 1074 1.89M 413 92m 26s 14.7 GB

BLASR-BWT 41582 101.7M 1159 1.75M 472 53m 26s 8.1 GB

BWA-SW 40381 96.3M 292 1.16M 1554 105m 24s 4.2 GB

Reads are simulated from E. coli and H. sapienswith length and accuracy parameters modeled from real reads from E. coli. Skipped reads are either marked as filtered

in the SAM output, or missing from the output.



Chaisson and Tesler BMC Bioinformatics 2012, 13:238 Page 9 of 17

http://www.biomedcentral.com/1471-2105/13/238

Figure 8Mapping quality values of reads simulated from the human genome. (A) The frequency of quality values for alignments of 106

simulated 1000, 2000, and 3000 base sequences from the human genome. (B) The empirical mapping quality values of the alignments.

Thus, methods that produce consensus calls from SMS

sequences may reveal more information about the sam-

ple sequence if this extra information is used. We aim to

address many of these problem in subsequent iterations of

the BLASR method.

Methods
We use a successive refinement approach to map SMS

reads. This approach operates in three phases: (1) detect-

ing candidate intervals by clustering short, exact matches;

(2) approximate alignment of reads to candidate inter-

vals using sparse dynamic programming; and (3) detailed

banded alignment using the sparse dynamic programming

alignment as a guide, as shown in Figure 9. It is not until

the third step that read base positions are assigned to

reference positions.

Detecting candidate intervals

The input to the BLASR method is a read r with

nucleotides r1, . . . , rR; a genome g with nucleotides

g1, . . . , gG; and a minimummatch length, K. Other param-

eters that modify small details of mapping are introduced

in their context later. We find all exact matches of sub-

strings (of length at least K) from the read and the

genome. An exact match of anchor a to the genome

may be described by a triplet (Read(a), Genome(a), l(a)),

where Read(a) is the start of the match in the read;

Genome(a) is the start of the match in the genome; and

l(a) is the length of the match. The set of all matches isA.

We use either a suffix array (SA) or BWT-FM index

on the genome to query for exact matches, depending on

time and space requirements.While someNGS alignment

methods such as mrFAST and RazerS match using hash

Figure 9 Overview of the BLASRmethod. (A) Candidate intervals are found by mapping short, exact matches as shown by colored arrows. Either

a suffix array or BWT-FM index of the genome are used to find the exact matches. Intervals are defined over clusters of matches and are ranked;

intervals with score 3, 6, and 4 are shown. (B) Matches scoring above a threshold are aligned using sparse dynamic programming on shorter exact

matches. (C) Alignments that have a high-scoring sparse-dynamic programming score are realigned by dynamic programming over a subset of

cells defined using the sparse dynamic programming alignment as a guide.
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tables on fixed width words (q-grams) [29,32], the SA and

BWT-FM index allowmatching long exact matches if they

exist, and also encode positions of shorter matches if a

more sensitive search is required. The two data structures

support the same queries: c = Count(q, t), the number of

times a query sequence r occurs exactly in a text g; and

P = {p1, . . . , pc} = Locate(q, t), the starting positions

of all instances of r in g. Without changing the computa-

tional complexity of these queries, they may be modified

to answer equivalent queries for counts and locations of

the longest common prefix (LCP) between a query and

a genome. Let (c, l) = COUNTLCP(q, t) be the operation

that finds the count c and length l of the LCP between

q and t. We locate anchors by greedily finding matches

slightly shorter than the LCP (specified by a parameter

defaulting to 1 base shorter than the LCP) to increase sen-

sitivity and avoid using an LCP that erroneously ends in

a sequencing error. The minimum length anchor that is

allowed is of length K, where K = 12 in most applica-

tions. To buildA, we scan across all positions in a read i ∈
{1, . . . ,R − k}; we compute (c, li) = COUNTLCP(ri,...,R, g)

and Pi = Locate(ri,...,i+li−e, g); and then for all positions

pij ∈ P i, we include in A a match a with Read(a) = i,

Genome(a) = pij , and l(a) = li. We choose a parameter

MAXCOUNT, which specifies the maximum number of

times we allow a match to appear to generate an anchor.

We exclude positions mapped when |P i| > MAXCOUNT,

or short matches when li < k.
Descriptions of the implementation and methods for

the Count and Locate queries using suffix arrays are given

in [33]. Similar descriptions for the BWT-FM index are

in [7] and [4]. The COUNTLCP operation is about 1.5×
faster using a suffix array than a BWT-FM index, in our

tests searching the human genome and limiting the num-

ber of times an LCP occurs to 10,000; however, the space

usage for the index on a human genome is 12.8 GB with a

suffix array, vs. 4.8 GB in our implementation of a BWT-

FM index. Our implementation of the Locate operation is

faster for larger genomes using the BWT-FM index than

the suffix array when using SIMD hardware optimization.

Because either index is shared across many threads, the

amortized space usage is modest for both data structures.

Once the set of anchors A is generated, we cluster

anchors using global chaining [34]. To do so, we first

sort A by position in the genome and then by position

in the read. Next, clusters of anchors are found in inter-

vals roughly the length of the read. For every anchor

ai ∈ A, a set Ai is created with Ai = {aj ∈ A : 0 ≤
Genome(aj)+ l(aj)−Genome(ai) ≤ R}. For every setAi, we

find a maximal subset (using global chaining) of anchors,

Ci ⊂ Ai, that are not overlapping and are increasing in

both Read(a) and Genome(a). For later use in evaluating

the mapping quality value of a read, for each cluster, we

record the sum of all l(a) values for all anchors in Ci.

The clusters are assigned a frequency weighted score

that is the sum
∑

aj∈Ci
log(1/Freq(aj)), where Freq(aj) is

the frequency of the sequence of aj in the genome, and

are ranked by this score. Only the top MAXCANDIDATES

clusters are retained (typically 10). The original index-

ing of clusters by anchor position is replaced by indexing

by rank of the frequency-weighted score. The subscript

notation is dropped and rank of a cluster is indicated

by the superscript. The remaining clusters are denoted

C1, C2, . . . , Cn, where rank(C1) ≤ rank(C2) ≤ . . . ≤
rank(Cn), and n ≤ MAXCANDIDATES.

While limiting the number of clusters retained may

miss alignments to repetitive regions, filtering clusters on

this frequency-weighted score was shown to be highly

discriminative in our tests.

Refining alignments

Each cluster Ci is used to define an interval to which the

read is realigned and rescored using sparse dynamic pro-

gramming (SDP) [35]. To help describe how the interval is

defined, let aFIRST (aLAST) be the anchors with least (great-

est) Genome(a) and Read(a) coordinates in Ci, ordered

by position in genome and then by read. The anchors in

Ci frequently do not contain the first and last bases in

the read, and the actual starting and ending positions of

the read are unknown due to insertion and deletion error

in the read. Considering δ to be the maximum insertion

rate of the instrument, the starting position of the interval

aligned from the genome is s = Genome(aFIRST) − (1 +
δ)Read(aFIRST), and ending position f = Genome(aLAST)+
(1 + δ)(R − (Read(aLAST) + l(aLAST))), of length lC = f − s.

The read must be quickly aligned to a candidate inter-

val, even if it is many tens of kilobases long. Similar to the

method of anchoring the interval to the genome but on

a smaller scale, a set of matches are found between the

read and the candidate interval. The matches used in SDP

are of a short fixed length, KSDP (typically 8–11 bases).

Let ASDP be the set of anchors of length KSDP that are

exact matches between the read and the genome interval

gs, . . . , gf . Sparse dynamic programming finds the largest

subset of anchors CSDP ⊆ ASDP that are of increasing

Read(a) and Genome(a) values.

The SDP alignment does not align all bases in a read,

and so it is necessary to realign a final time using banded

dynamic programming. For long reads with indels, the

size of the band used to contain the entire alignment

becomes prohibitively large. The set of anchors CSDP

forms a guide for performing a banded dynamic pro-

gramming alignment where the band follows the layout

of the anchors in CSDP, shown in Figure 9C. The subset

of cells included from full R × lC dynamic programming

grid include a band of length bSDP centered about the

diagonal where there are anchors, as well as a banded

alignment of size bdrift between anchors where bdrift is
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the off-diagonal distance between adjacent anchors +

bSDP.

In addition to the base sequences produced by the

PacBioRS, each base in the read is also given three qual-

ity values (insertion, deletion, and substitution) and two

alternative base calls (substituted base and deleted base).

Let I , S , D be the insertion, substitution, and deletion

quality value arrays for a read, and Ŝ and D̂ be the deletion

and substitution nucleotide arrays. We use these quality

values to compute the score of each cell si,j in the dynamic

programming matrix according to:

si,j=min

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

si−1,j−1 +

⎧

⎪

⎨

⎪

⎩

0 if ri=gj

Si if ri �=gj, Ŝi=gj

MISMATCHPRIOR otherwise

si−1,j + Ii

si,j−1 +
{

Di if D̂i = gj−1

DELETIONPRIOR otherwise.

The MISMATCHPRIOR and DELETIONPRIOR are

PHRED scaled penalties that reflect the global mismatch

and deletion rates. In practice, MISMATCHPRIOR is 20

and DELETIONPRIOR is 15.

Mapping quality values

Due to the repetitive nature of genomes, a read often

maps with a high alignment score to many locations. It is

informative to calculate the probability that the interval a

read is mapped to by an alignment is the correct location

in the genome. This probability may be interpreted as a

mapping quality valueQ for an alignment, allowing down-

stream analysis such as variant calling to filter alignment

by quality.

A Bayesian probability technique was presented in [20]

to compute the mapping quality for short reads with base

calling quality values. We present the formulation in [20]

using the notation in this paper: we are given read r and a

positionm that it is mapped to in a sequence g. The poste-

rior mapping probability that a read r is sampled from m

is computed as

Prs(m|r, g) = Pr(r|gm,...,m+R−1)Pr(m)
∑

i Pr(r|gi,...,i+R−1)Pr(i)
, (1)

where i runs over all positions in the genome. The prob-

ability that position i is sampled by the sequencer is

denoted Pr(i), and is considered to be uniform both here

and in [20]. The quantity Pr(r|gi,...,i+R−1) is the probabil-

ity of observing the read r if the sequence at positions

i, . . . , i + R − 1 in the genome is read by the sequencer.

For reads that include base quality values q, let qi denote

the probability that a base in a read is incorrect. Then

Pr(r|g) may be replaced by Pr(r|g, q). In [20], Pr(r|g, q) is
rapidly approximated by summing the quality values of

bases that mismatch in the ungapped alignment between r

and gi,...,i+R−1. When there are insertions and deletions in

the sequence, the value Pr(r|gi,...,i+R−1) may be computed

as Prf (r|gi,...,i+R−1,H); this denotes the forward algo-

rithm probability using a pairwise hidden Markov model

(Pair-HMM)H that encodes probabilities for substitution,

insertion, and deletion at every position.

The denominator of Equation 1 gives the marginal

probability that the read is observed from anywhere in

the genome. Evaluating this full sum is computationally

infeasible even for short reads and ungapped alignments.

Since the probability of observing a read given a template

sequence drops geometrically with divergence, most posi-

tions in the genome do not contribute significantly to the

sum. For short reads, the sum is approximated in [20] as

the sum of the probability of the top scoring alignment

and all second best alignments.

In BLASR, the mapping quality value is calculated in a

similar manner. The sum in Equation 1 is limited to the

top MAXCANDIDATES alignments, and is then scaled by

a factor that reflects the limited sample size by aligning

only at mostMAXCANDIDATES clusters.When the read is

sampled from a unique region of the genome, there will be

few clusters of high score, and the highest scoring cluster

will likely contain the true match to the genome. How-

ever, when the read is sampled entirely from a repetitive

sequence, there will be many high scoripng clusters. In

this case, it is possible the cluster from the correct inter-

val on the genome will not have high enough score to

be retained in MAXCANDIDATES clusters. To account for

this, we assume that the correct interval in the genome

may correspond to any significantly highly scoring clus-

ter, and multiply the sum in Equation 1 by the ratio of

the number of significant clusters found in the genome to

MAXCANDIDATES, as long as the number of significantly

highly scoring clusters is greater than MAXCANDIDATES.

The significance of a cluster may be measured by compar-

ing the number of anchors in a cluster to the number of

anchors expected at the correctly mapped location. The

distributions of numbers of anchors expected to correctly

map were found using simulations of error processes for

different error rates and read lengths; however, it is possi-

ble to model this theoretically (see the next section). The

expected number of anchors a read has when mapped to

the correct location is genome-independent: it depends

only on the error rate, length of the read, and minimum

anchor length.We use a slightly different metric, the num-

ber of anchor-bases (the total number of bases in all

anchors) to measure cluster significance, and this is sim-

ilarly genome-independent. For efficiency, in BLASR we

precompute the expectation and variance for the num-

ber of anchor-bases for a range of feasible accuracies,

read lengths, and minimummatch lengths, and minimum

match size. The accuracy of the highest scoring alignment

is used as a proxy for the true accuracy of the read. Given
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the accuracy, the length of the aligned sequence, and the

minimum match length, we look up the mean μ and vari-

ance σ 2 for number of anchor bases, and count all clusters

with more than μ − 2σ anchor bases as significant.

Appendix 1

Enumeration of configurations with specified numbers of

errors and anchors

In this section, we will show how to explicitly compute

NumConfigurations(M,N ,K , L).

Consider a read of length L with exactly M errors, at

positions 1 ≤ x1 < x2 < . . . < xM ≤ L. Also set x0 = 0

and xM+1 = L + 1.

For the sake of simplicity, we assume all sequencing

errors are of length 1, but this can be generalized to

insertions and deletions that change the length of the read.

The error positions split the read into parts of sizes

λi = xi − xi−1 ≥ 1 for i = 1, . . . ,M + 1. Each part λi
(i = 1, . . . ,M) consists of λi − 1 matches followed by one

mismatch. The last part consists of λM+1 − 1 matches.

Note that if there are two consecutive mismatches, there

will be a part λi = 1 corresponding to 0 matches followed

by one mismatch.

Part sizes λi are related to the notationW of the Results

section by λi = W + 1. Note that W counted only the

correct positions, and we did not have a subscript (Wi)

to specify the word number. In this section, λi counts the

correct bases and also counts one incorrect base at the

end, based on our simplification that all sequencing errors

are of length one.

Set λ = (λ1, λ2, . . . , λM+1). These are positive integers

that add up to L + 1. In Combinatorics, this is called a

strict composition of L+1 intoM+1 parts. Let K be the

minimum anchor length (a parameter).

Consecutive errors greater than K apart (λi > K)

give segments that are anchors while consecutive errors

shorter than this (λi ≤ K) give segments called short

matches.

In Figure 10, we illustrate a read of length L = 7 with

M = 2 error positions. For a minimum anchor length

K = 3, there are 6 compositions where the first part is an

anchor:

(4, 3, 1), (4, 2, 2), (4, 1, 3), (5, 2, 1), (5, 1, 2), (6, 1, 1).

For reads of length 7 with 2 errors, and minimum

anchor length 3, the number of compositions with exactly

one anchor (allowing it to be any of the parts, via permu-

tations of these compositions) is 6 · 3 = 18.

For arbitrary values of the parameters, we first compute

the number of configurations where all N anchors come

first and all M + 1 − N short parts come last. Then we

multiply the count of these by
(M+1

N

)

to allow any of the N

parts to be the anchors.

A

λ = 3

2 3 4 5 6 7 80 1

C C T A G

C C A G

C

G AA... ...

Read

Coordinates
Errors

Parts

Genome

1λ = 4 3λ = 12

Figure 10 Toy example for counting components. A read of

length L = 7 withM = 2 errors is shown, with errors in red. In general,

M errors splits the read intoM + 1 parts, some of which may be null;

in this case, the third part is null. For anchor length threshold K = 3

(meaning parts of size > 3 are anchors, parts of size ≤ 3 are not), we

have N = 1 anchor (the first part).

Let N ≥ 0 be an integer. For given parameters

M,N ,K , L, we will enumerate the number of arrange-

ments of error positions that result in exactly N anchors.

This is equivalent to the combinatorial problem of count-

ing integer compositions of L+1 with certain restrictions

on the sizes of the parts. We will use generating function

techniques from combinatorics to count arrangements of

M error positions that give exactlyN anchors (so the other

N+1−M parts are short fragments). Let cM,N ,K (L) denote

the number of arrangements of M error positions that

result in exactlyN anchors, where the read length is L and

anchors are defined as parts λi > K . Let c′M,N ,K (L) be the

number of arrangements where all the anchors precede all

the short parts (λ1, . . . , λN > K) and λN+1, . . . , λM+1 ≤
K). These are related by cM,N ,K (L) =

(M+1
N

)

c′M,N ,K (L)

since we can select any N of the M + 1 parts to be the

anchors.

Note that

NumConfigurations(M,N ,K , L) =
∑

N ′≥N

cM,N ′,K (L)

(A1)

The compositions of L + 1 into M + 1 parts, where the

first N parts are anchors and the remaining M + 1 − N

parts are short, have the following constraints:

• λ1, . . . , λN ∈ 1, 2, . . . ,K (short parts).
• λN+1, λN+2, . . . , λM ∈ K + 1,K + 2, . . . (anchors).
• λ1 + · · · + λM = L + 1.

The generating functions for short parts, S(t), and

anchors, A(t), are

S(t) = t1 + t2 + · · · + tK = t(1 − tK )

1 − t
(A2)

A(t) = tK+1 + tK+2 + · · · = tK+1

1 − t
(A3)
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Standard methods for enumerating compositions with

generating functions give that

A(t)NS(t)M+1−N =
∑

L

c′M,N ,K (L)tL+1 (A4)

where we expand the left side in a MacLaurin series

(Taylor series centered at t = 0) to obtain the right side.

The counts c′M,N ,K (L) are the coefficients in this series.

Multiplying this by
(M+1

N

)

gives

GM,N ,K (t) =
(

M + 1

N

)

A(t)NS(t)M+1−N

=
∑

L

cM,N ,K (L)tL+1 (A5)

To compute cM,N ,K (L), we use Taylor series methods to

compute the coefficient of tL+1 in (A5). We present two

methods to do this.

First Taylor series method: The coefficient of tL+1

in (A5) may be determined by polynomial multiplication.

We truncate the middle expression in (A3) to terms of

degree ≤ L+ 1, which turns it into a polynomial; the mid-

dle expression of (A2) is already a polynomial. We take

powers and products of the polynomials, truncating terms

of degree > L+ 1 at intermediate steps. The coefficient of

tL+1 in the result is cM,N ,K (L). All intermediate products

and sums involve only nonnegative integers.

Second Taylor series method: We present an exact

closed-form solution. Mathematically, closed-form solu-

tions are usually preferred. However, the first method

above may be preferable for computation because inter-

mediate steps of this second method require much higher

precision, as discussed in Appendix 2.

Theorem A1. For K = 0: if N = M + 1 then cM,N ,K (L) =
( L
M

)

; otherwise, cM,N ,K (L) = 0.

For K ≥ 1, set D = L − NK − M and imax =
min (⌊D/K⌋,M + 1 − N).

If D < 0 or imax < 0 then cM,N ,K (L) = 0. Otherwise,

cM,N ,K (L)=
(

M+1

N

) imax
∑

i=0

(−1)i
(

M+1−N

i

)(

M+D−iK

M

)

.

(A6)

Proof. For K = 0, there are no short parts; all parts

are anchors. This is equivalent to counting the number of

strict compositions of L + 1 into M + 1 parts, which is

well-known to be
( L
M

)

.

For K ≥ 1, note that we may write

GM,N ,K (t) =
(

M + 1

N

)

A(t)NS(t)M+1−N

=
(

M + 1

N

)

tKN+M+1(1 − tK )M+1−N

(1 − t)M+1
(A7)

The binomial theorem and the negative binomial series

give

(1 − tK )M+1−N =
M+1−N

∑

i=0

(−1)i
(

M + 1 − N

i

)

tiK

1

(1 − t)M+1
=

∞
∑

j=0

(

M + j

M

)

tj

Plugging these into (A7), we obtain

GM,N ,K (t) =
(

M + 1

N

)M+1−N
∑

i=0

∞
∑

j=0

(

M + j

M

)

(−1)i

×
(

M + 1 − N

i

)

tKN+(M+1)+iK+j (A8)

In (A5), the coefficient of tL+1 is cM,N ,K (L). Collecting

together the terms in (A8) where the exponent of t is

L+1 gives (A6). We omit the detailed but straightforward

derivation.

Appendix 2

Numerical precision of the closed form solution for the

number of anchors

Theorem A1 (also called the “Second Taylor series

method”) gives a closed form expression (A6) to com-

pute cM,N ,K (L). This closed form solution has only a small

number of terms. However, for practical parameter values,

it may require more bits of precision than are available in a

finite precision computation, even if the final answer does

not overflow the variable size. This is because the expres-

sion has an alternating sum with terms of much higher

absolute value than the final answer. Consider this part of

the summation in Theorem A1, omitting the coefficient
(M+1

N

)

:

imax
∑

i=0

(−1)i
(

M + 1 − N

i

)(

M + D − iK

M

)

.

For M = 75, N = 1, K = 15, L = 1000, this has

61 alternating terms of magnitude between 293 and 2401,

while the value of the sum is much smaller, with mag-

nitude 2294. Using high precision floating point, we need

at least 110 bits for the mantissa to get the first decimal

digit correct. This is significantly more bits than is cur-

rently standard: the current standard for floating point,

IEEE 754, provides for a 53 bit mantissa in double pre-

cision. Alternatively, using high precision integers, we

would need 294 bits of integer precision, plus a sign bit.

However, software for arbitrary precision integers, such as

Maple orMathematica, will handle this example correctly.

By contrast, the “First Taylor series method” only

involves sums and products of positive integers, each
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bounded above by the value of cM,N ,K (L). Thus, if the inte-

ger precision is adequate to store the value of cM,N ,K (L), it

is also adequate to perform all intermediate calculations.

Appendix 3

Statistics of number of anchors

Wemay estimate the number of anchors using the follow-

ing theorem.

TheoremA2. FixM,K , L. Under the uniform distribution

on compositions of L+1 intoM+1 parts, the mean number

of anchors and its variance are given by

μ = E[N]=
(M + 1)

(L−K
M

)

( L
M

)
(A9)

σ 2 = Var[N]=
M(M + 1)

(L−2K
M

)

( L
M

)
+

(M + 1)
(L−K

M

)

( L
M

)

−
(

(M + 1)
(L−K

M

)

( L
M

)

)2

. (A10)

For fixedM and K, consider the two-variable generating

function

HM,K (t,u) =
∞
∑

N=0

∑

L

cM,N ,K (L)tL+1uN

=
∞
∑

N=0

GM,N ,K (t)uN (A11)

=
∞
∑

N=0

(

M + 1

N

) (

tK+1

1 − t

)N

uN

×
(

t(1 − tK )

1 − t

)M+1−N

=
(

u tK+1

1 − t
+ t(1 − tK )

1 − t

)M+1

=
(

(u − 1)tK+1 + t

1 − t

)M+1

(A12)

For fixedM,K , L, the probability of exactly N anchors is

cM,N ,K (L)/T , where

T =
∞
∑

N ′=0

cM,N ′,K (L)

Note that T counts the total number of compositions of

L + 1 into M + 1 parts, with 0 or more anchors. Thus, it

actually counts the total number of compositions of L + 1

into M + 1 parts, without regard to sizes of parts. So we

have:

T =
∞
∑

N ′=0

cM,N ′,K (L) =
(

L

M

)

(A13)

and thus the probability of exactly N anchors is

cM,N ,K (L)/
( L
M

)

.

Next, for fixed M,K , L, we evaluate E[N], the mean

number of anchors under the uniform distribution of

compositions of L + 1 intoM + 1 parts.

E[N] =
∑

N

cM,N ,K (L)
( L
M

)
· N

Using standard generating function properties, the

numerator
∑

N cM,N ,K (L) · N is the coefficient of tL+1 in

the following expression:

∂

∂u
HM,K (t,u)

∣

∣

∣

∣

u=1

(A14)

First we evaluate the derivative; second, we plug in u =
1; third, we extract the coefficient of tL+1; and fourth, we

use this to compute E[N]:

1. The derivative in Eq. (A14) is

∂

∂u
HM,K (t,u) = ∂

∂u

(

(u − 1)tK+1 + t

1 − t

)M+1

= (M+1)

(

(u−1)tK+1 + t

1 − t

)M
tK+1

1 − t

2. Plug in u = 1:

∂

∂u
HM,K (t,u)

∣

∣

∣

∣

u=1

= (M + 1)

(

t

1 − t

)M tK+1

1 − t

= (M + 1)
tM+K+1

(1 − t)M+1

3. Expand the Taylor series and extract the coefficient

of tL+1:

(M+1)
tM+K+1

(1 − t)M+1
=(M+1)

∞
∑

j=0

(

M+j

M

)

tM+K+1+j

The term tL+1 occurs when j = L − M − K .

If j < 0, this coefficient is 0. If j ≥ 0, this coefficient is

(M + 1)
(L−K

M

)

.

4. Evaluate E[N] to obtain Equation (A9):

E[N]=
(M + 1)

(L−K
M

)

( L
M

)
.

Note that if L − K < M, then E[N]= 0.

Next we compute the variance ofN , using a similar gen-

erating function technique. The generating function will

enable us to compute E[N(N − 1)], so we will compute

the variance in the form

σ 2 = E[N(N − 1)]+E[N]−E[N]2

which is equivalent to the more common formula σ 2 =
E[N2]−E[N]2. We have:

E[N(N − 1)] =
∑

N

cM,N ,K (L)
( L
M

)
· N(N − 1)
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The numerator
∑

N cM,N ,K (L) · N(N − 1) is the coeffi-

cient of tL+1 in the following expression:

∂2

∂u2
HM,K (t,u)

∣

∣

∣

∣

u=1

(A15)

We evaluate this in a fashion similar to E[N]:

1. The derivative in Eq. (A15) is

∂2

∂u2
HM,K (t,u) = ∂2

∂u2

(

(u − 1)tK+1 + t

1 − t

)M+1

= M(M + 1)

(

(u − 1)tK+1 + t

1 − t

)M−1

×
(

tK+1

1 − t

)2

2. Plug in u = 1:

∂2

∂u2
HM,K (t,u)

∣

∣

∣

∣

u=1

=M(M+1)

(

t

1−t

)M−1 (

tK+1

−t

)2

= M(M + 1)
tM+1+2K

(1 − t)M+1

3. Expand the Taylor series and extract the coefficient

of tL+1:

M(M + 1)
tM+1+2K

(1 − t)M+1

= M(M + 1)tM+1+2K
∞
∑

j=0

(

M + j

M

)

tj

= M(M + 1)

∞
∑

j=0

(

M + j

M

)

tM+1+2K+j

The term tL+1 occurs when j = L − (M + 2K). This

coefficient isM(M + 1)
(L−2K

M

)

(which is 0 when

L − 2K < M).

4. Evaluate E[N(N − 1)]:

E[N(N − 1)]=
M(M + 1)

(L−2K
M

)

( L
M

)

5. Evaluate σ 2 = Var[N] to prove Equation (A10):

σ 2 = Var[N]= E[N(N − 1)]+E[N]−E[N]2

=
M(M + 1)

(L−2K
M

)

( L
M

)
+

(M + 1)
(L−K

M

)

( L
M

)

−
(

(M + 1)
(L−K

M

)

( L
M

)

)2

Appendix 4

Asymptotic number of anchors

Theorem A3. Let μ, σ 2 be given by Theorem A2. For
sufficiently large M,

cM,N ,K (L) ≈
(

L

M

)

φ

(

N − μ

σ

)

(A16)

NumConfigurations(M,N ,K , L) ≈
(

L

M

)

×
(

1 − 	

(

N − 1
2 − μ

σ

))

(A17)

where φ(z) = 1√
2π

e−z2/2 and 	(z) are the probability

density function and cumulative distribution function of

the standard normal distribution.
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Figure 11 The fraction of configurations with exactly and at least N anchors. (A) Plot of the fraction of configurations with exactly N anchors,

cM,N,K (L)/
( L
M

)

, as N varies. An anchor is a run of at least K correct bases (shown for K = 15, 20, and 25). We assume the read length is L = 1000 and

the error rate per base is ρ = 15% (and that there are exactlyM = 150 error positions). The solid markers are computed by finding exact coefficients

cM,N,K (L) in the generating functions. The curve is a normal distribution approximating the exact values (illustrating Theorem A3), where parameters

μ and σ 2 are computed by Theorem A2. (B) The solid markers are a plot of NumConfigurations(M,N, K , L)/
( L
M

)

, the fraction of configurations with at

least N anchors, as N varies. The parameters are the same as for (A). The curve is the survival function of the normal distribution in (A).
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Proof. For fixed M,K , Eq. (A12) gives the generating

function HM,K (t,u) as a rational function in t,u, raised

to the power M + 1. When M is sufficiently large, the

Central Limit Theorem gives that the coefficients

cM,N ,K (L) in its Taylor series, Eq. (A11), are well-

approximated by a bivariate normal distribution. Restrict-

ing to the coefficients of tL+1 for fixed L gives that the

coefficients of f (u) =
∑∞

N=0 cM,N ,K (L)uN are approxi-

mated by a univariate normal distribution. This represents

the distribution of N for fixed M,K , L. We computed the

parameters μ, σ 2 of this distribution in Theorem A2. By

Eq. (A13), the total of the coefficients in f (u) is f (1) =
T =

( L
M

)

. Note that NumConfigurations(M,N ,K , L) is the

survival function of cM,N ,K (L):

NumConfigurations(M,N ,K , L) =
∑

N ′≥N

cM,N ′,K (L) .

Thus, we obtain Eqs. (A16) and (A17) as approximations

for the coefficients cM,N ,K (L) and the survival function

NumConfigurations(M,N ,K , L). In Eq. (A17), note that

− 1
2 is a continuity correction.

In Figure 11, we plot cM,N ,K (L) and NumConfigura-

tions(M,N,K,L). The solid markers are the true values

computed from the generating function. The curve is the

estimate computed by the preceding theorem, and does

indeed approximate the true values well.
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