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 2 

Abstract 1 

Sleep is essential for the health of the brain and heart. Although sleep has been identified 2 

as a factor in a few specific clinical outcomes, a systematic analysis of the relationship 3 

between sleep and brain/heart and their genetic underpinnings is lacking. Medical images 4 

can provide useful clinical endophenotypes for organ structures and functions. Here we 5 

present a systematic genetic investigation of sleep-brain/heart connections using multi-6 

modal brain and cardiac images from over 40,000 subjects in the UK Biobank. We 7 

identified novel phenotypic and genetic links between sleep and a wide range of imaging 8 

traits, such as brain structures, white matter integrity, brain activities, as well as cardiac 9 

structures and functions. We prioritized a number of imaging modalities and traits for 10 

specific sleep conditions, such as the resting brain function measures in the somatomotor 11 

network with narcolepsy. Sleep and imaging had overlapping genetic influences in 39 12 

genomic loci, some of which showed evidence of shared causal genetic variants. In 13 

conclusion, large-scale imaging genetic data illuminate the implications of sleep on brain 14 

and cardiac health and their genetic links. An interactive web browser (www.ig4sleep.org) 15 

has been developed to facilitate exploring our results.  16 

 17 
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A growing body of evidence suggests that poor sleep is a risk factor for physical, cognitive, 1 

and mental health problems1. Sleep traits (such as sleep quality and duration) and 2 

disorders (such as insomnia and narcolepsy) are associated with various cardiovascular 3 

diseases and brain disorders. For example, rapid eye movement sleep behavior disorder 4 

was found to be a strong predictor for the development of neurodegenerative diseases 5 

such as dementia and Parkinson’s disease2,3. Sleep dysregulation and short sleep duration 6 

in midlife were consistently linked to higher risk of Alzheimer’s disease and other 7 

dementias4. In addition, both insufficient and excess sleep duration may cause a higher 8 

incidence of cardiovascular outcomes, including coronary heart disease5-7, hypertension8, 9 

atrial fibrillation9,10, and stroke11,12. Individuals with sleep disturbance were also more 10 

likely to have mental and psychiatric disorders13, such as anxiety14, post-traumatic stress 11 

disorder15, schizophrenia16,  bipolar disorder, major depressive disorder (MDD), and 12 

attention-deficit/hyperactivity disorder (ADHD)17,18. 13 

 14 

Magnetic resonance imaging (MRI) provides noninvasive and comprehensive measures 15 

of the structure and function of the human organs, including the brain and heart. Imaging 16 

traits generated from brain and cardiac MRI are well-established clinical endophenotypes 17 

and have been widely used in early prediction and detection of cardiovascular, 18 

neurological, and neuropsychiatric outcomes19-22. Using MRI data, several studies have 19 

examined the sleep-related structural and functional alterations in the brain and heart23-20 
30. Two major limitations of most existing studies have been i) the limited study sample 21 

size, which was usually less than a few hundred; and ii) focusing on one single MRI 22 

modality (or trait) and/or one sleep trait, such as hippocampal atrophy25 and sleep 23 

duration30-32. It is known, however, that large sample sizes are needed for MRI studies to 24 

detect small effect sizes33 and produce reproducible findings, especially for brain 25 

functional MRI (fMRI) data34. In addition, distinct MRI modalities and sleep conditions 26 

may be relevant to different diseases and health-related complex characteristics21. 27 

Therefore, a systematic analysis of multi-modal MRI data and multiple sleep conditions in 28 

a large cohort would provide a more comprehensive understanding of sleep-related 29 

changes in brain and heart structures and functions. 30 

 31 
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Genome-wide association studies (GWAS) have shown that sleep disorders and traits are 1 

heritable and have a polygenic genetic architecture35-45. The sleep-associated genetic 2 

variants are enriched for genes expressed in the brain and for metabolic and psychiatric 3 

pathways44. Genetic correlations between sleep traits and brain-related disorders (such 4 

as depression and schizophrenia) have been discovered, suggesting their shared 5 

neurogenetic basis46. On the other hand, both brain and cardiac MRI traits are also 6 

heritable and hundreds of associated genetic loci have been identified in recent GWAS47-7 
58. However, few studies have ever integrated the multi-organ MRI measures and sleep 8 

conditions to explore the genetic interactions among sleep behavior, brain and cardiac 9 

structure/function, and related clinical endpoints.  10 

 11 

To overcome these challenges, here we examined the phenotypic and genetic sleep-12 

brain/heart connections using multi-modal cardiac and brain MRI data from more than 13 

40,000 subjects in the UK Biobank (UKB) study59. We included three major brain MRI 14 

modalities: 1) brain anatomical and neuropathological structures from structural MRI, 15 

including regional brain volumes54 and cortical thickness traits60; 2) white matter 16 

microstructures from diffusion MRI, including multiple diffusion tensor imaging (DTI) 17 

parameters56; and 3) intrinsic and extrinsic functional organizations of the cerebral cortex 18 

from resting and task fMRI, including functional connectivity and amplitude traits58. For 19 

heart, we used 82 traits extracted from short-axis, long-axis, and aortic cine cardiac MRI61, 20 

including global and regional measures of 4 cardiac chambers (the left ventricle, right 21 

ventricle, left atrium, and right atrium), as well as 2 aortic sections (the ascending aorta 22 

and descending aorta). We mainly examined 7 self-reported sleep-related conditions in 23 

the UKB study: sleep duration, getting up in the morning, chronotype (morning/evening 24 

person), daytime nap, insomnia (sleeplessness), snoring, and narcolepsy (daytime 25 

sleepiness/dozing). Detailed information on these imaging and sleep data can be found 26 

in the Methods section. A series of phenotypic, genetic, and predictive analyses were 27 

conducted to understand the health implications of sleep. The overview of our study is 28 

presented in Figure 1 and our results can be explored via the interactive web browser at 29 

www.ig4sleep.org. 30 

 31 

RESULTS 32 
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 5 

An atlas of sleep associations with multi-modal brain and cardiac MRI traits  1 

We examined the phenotypic associations between 7 sleep conditions and a wide range 2 

of brain and cardiac MRI traits, including 101 regional brain volumes54, 63 cortical 3 

thickness measures60, 110 DTI parameters56, 92 parcellation-based network-level traits in 4 

resting and task fMRI58, respectively, as well as 82 heart imaging traits60,61 (Table S1). We 5 

performed regression analysis with unrelated white British subjects (average n = 29,025, 6 

Methods). Among the 3,780 (7×540) association pairs, 395 associations were significant 7 

at the false discovery rate (FDR) level of 5% (by the Benjamini-Hochberg procedure) and 8 

92 of them further passed the more stringent Bonferroni significance level (P < 1.32×10-5, 9 

0.05/3780) (Figs. 2A, S1, and Table S2). Significant associations were observed for all the 10 

7 sleep conditions and 6 groups of imaging traits. Below we highlight the associations 11 

survived the Bonferroni multiple testing adjustment.   12 

  13 

Resting fMRI showed the strongest sleep associations among all 6 groups of imaging traits, 14 

which were mostly related to sleep duration, narcolepsy, and getting up. Specifically, 15 

sleep duration had widespread negative associations with resting fMRI traits (including 16 

both functional connectivity and amplitude62 measures) in multiple functional networks 17 

(b range = [-0.062, -0.036], P < 1.02×10-5), with the strongest association in the 18 

somatomotor network (b = -0.062, P = 3.11×10-13). Somatomotor function was important 19 
in multiple sleep stages and poor sleep quality and shorter duration have been linked to 20 

increased somatomotor functional connectivity in young samples63-65. In addition, resting 21 

fMRI traits positively correlated with easy getting up (b range = [0.036, 0.048], P < 22 

1.28×10-5) and were mostly positively associated with narcolepsy (b range = [-0.051, 23 

0.064], P < 1.27×10-5). Narcolepsy patients have been found to have alerted functional 24 

organizations, although previous sample sizes were usually small, making conclusions 25 

inconclusive66,67. In our analysis, decreased functional connectivity was mainly found in 26 

the default mode network, as well as between the auditory and orbito-affective as well 27 

as ventral-multimodal networks68. Functional connectivity in most of other networks had 28 

positive associations with narcolepsy (Fig. S2). Compared to resting fMRI, task fMRI had 29 

much weaker signals, with only two associations with getting up remaining after 30 

Bonferroni correction (b range = [-0.039, 0.042], P < 1.07×10-5).  31 
 32 
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 6 

To uncover detailed spatial association patterns and pinpoint sleep-related brain regions, 1 

we further performed area-level resting fMRI analysis with 64,620 (360 × 359/2) 2 

functional connectivity measures among 360 brain functional areas in 12 networks68,69. 3 

These high-resolution fMRI traits provided fine-grained information on the functional 4 

organization of the cerebral cortex. At the Bonferroni significance level (P < 7.74×10-7, 5 

0.05/64,620), sleep duration had negative associations with most functional areas in the 6 

somatomotor and auditory networks, as well as some areas of the visual (visual1 and 7 

visual2), cingulo-opercular, and language networks (Fig. 2B). In contrast, most of the 8 

positive associations with sleep duration were related to the areas of the default mode 9 

network. Furthermore, we partitioned the default mode network into seven clusters58, 10 

showing that sleep duration was predominantly related to the hippocampal and visual 11 

subclusters (Fig. S3A). As compared to long sleep duration, self-reported shorter sleep 12 

duration was associated with lower functional connectivity in the default mode 13 

network70-72. The default mode network is an active network that integrates information73 14 

and plays an important role in the awake brain74. In addition to previous evidence that 15 

shorter sleep duration was related directly to higher levels of Amyloid-β75, our findings 16 

provided further evidence that reducing sleep duration had a significant impact on brain 17 

functioning. For narcolepsy, positive associations were mainly in the somatomotor 18 

network and the connections between the somatomotor and visual networks (Fig. 2C). In 19 

contrast, negative associations with narcolepsy were found in the default mode network, 20 

most of which were related to the visual subcluster (Fig. S3B). For getting up and daytime 21 

nap, most of their associations were related to the visual and somatomotor networks 22 

(Figs. S4A-S4B). Overall, these results showed that functional connectivity of the 23 

somatomotor and visual networks had substantial connections with sleep conditions. In 24 

the default model network, narcolepsy and sleep duration were associated with brain 25 

functional activity differently than in other networks. 26 

 27 

Our area-level analysis also identified related functional areas for snoring, insomnia, and 28 

chronotype. Particularly, snoring was linked to resting functional connections in the 29 

frontoparietal network, especially the left and right 13l areas in the posterior orbital gyrus 30 

(Fig. S4C). The functional connectivity between the left/right 13L areas and frontoparietal, 31 

visual, cingulo-opercular, and dorsal attention networks was increased in snoring, while 32 
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 7 

the functional connectivity with the default mode network decreased. Reduced 1 

functional connectivity was also observed within the default mode network (Fig. S3C). 2 

Associations with chronotype were mainly detected among cognitive networks, especially 3 

between the cingulo-opercular and default mode networks (Figs. S3D and S4D). In 4 

addition, insomnia was found to be negatively associated with resting functional 5 

connections within the somatomotor network (Fig. S4E). In summary, sleep-related brain 6 

functional variations were uncovered in specific brain areas, prioritizing related fMRI 7 

biomarkers for future sleep research. 8 

 9 

Next, we observed significant associations between DTI parameters and multiple sleep 10 

conditions, especially chronotype (Figs. 2A and S5). Being an evening person was 11 

associated with higher mean diffusivity (MD) and axial diffusivity (AD) in multiple brain 12 

white matter tracts, such as the anterior corona radiata, body of corpus callosum, 13 

retrolenticular part of internal capsule, anterior limb of internal capsule, and superior 14 

corona radiata (b range = [0.042, 0.048], P < 1.23×10-5). Increased MD and AD may 15 
indicate abnormalities and healthy aging in glial tissue, in which the glial cells were 16 

involved in the regulation of circadian rhythms76. It has been reported that evening 17 

chronotype exhibited increased level of white matter changes77. In addition, we observed 18 

significant associations between snoring and the radial diffusiviy (RD) in the corticospinal 19 

tract (b = 0.040, P = 1.32×10-6), and between daytime nap and the AD of the body of 20 

corpus callosum tract (b = 0.042, P = 1.14×10-5). Compared to resting fMRI and DTI 21 
parameters, structural MRI traits (regional brain volumes and cortical thickness) had less 22 

phenotypic associations with sleep. Associations survived at the Bonferroni significance 23 

level were all related to daytime nap, which was associated with reduced right cerebellum 24 

white matter volume (b = -0.048, P = 1.30×10-5) and smaller cortical thickness of the left 25 

pars triangularis and right insula (b range = [-0.041, -0.039], P < 4.29×10-5).  26 

 27 

Sleep also correlated significantly with cardiac MRI traits of the left ventricle, right 28 

ventricle, and right atrium (Figs. 2A and S6). Specifically, snoring was positively linked to 29 

both left and right heart structures, including the left/right ventricular end-diastolic 30 

volume (LVEDV and RVEDV), right atrium maximum and stroke volumes, and right 31 

ventricular end-systolic volume (RVESV) (b range = [-0.047, 0.064], P < 1.20×10-5). Snoring 32 
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 8 

may affect the cardiac function and increase the risk of cardiovascular disease especially 1 

in women24,78. In addition, getting up had widespread associations with the LVEDV, left 2 

ventricular end-systolic volume (LVESV), left ventricular myocardial mass (LVM), RVEDV, 3 

RVESV, and right ventricular stroke volume (RVSV) (b range = [0.045, 0.072], P < 1.70×10-4 
6). Furthermore, negative associations with RVEDV were found for daytime nap and 5 

chronotype (b range = [-0.0613, -0.0610], P < 1.30×10-7). Human health is closely related 6 
to sleep chronotypes45, which are behavioral manifestations of circadian rhythms79. In 7 

perspective studies, early chronotype is often regarded as a sign of healthy sleep 8 

behavior80,81. Individuals with an early chronotype are typically at a reduced risk of 9 

developing cardiovascular diseases82 and heart failure81. Circadian and cardiovascular 10 

diseases, however, remain elusive in terms of their underlying mechanisms. The present 11 

study established a clear physiologic relationship between early chronotype and cardiac 12 

health. Overall, we mapped phenotypic links between the brain and cardiac MRI traits 13 

and sleep characteristics. These imaging endophenotypes may aid in future clinical 14 

research and applications to better understand sleep's role in brain and heart-related 15 

clinical outcomes. 16 

 17 

In the phenotypic analysis above, UKB subjects who had both imaging and sleep data were 18 

considered, whereas more than 80% UKB subjects had only sleep data and thus were 19 

excluded. In order to include these non-imaging UKB subjects in our study, we developed 20 

polygenic risk scores (PRS) by using GWAS summary statistics of imaging traits from 21 

previous studies54,56,58,60. These genetically predicted imaging traits allowed us to repeat 22 

the above sleep-imaging association analysis in non-imaging UKB unrelated white British 23 

subjects (average n = 217,254, removing relatives of imaging subjects, Methods). In this 24 

PRS analysis, 276 significant associations were identified at the FDR 5% level, covering all 25 

the 7 sleep conditions and 6 groups of imaging PRS. Among these 276 associations, 35 26 

further passed the stringent Bonferroni significance level (P < 1.32×10-5) (Table S3 and 27 

Figs. S7-S8). The results of phenotypic and PRS analyses were largely consistent, indicating 28 

that the sleep-imaging associations discovered by a small proportion of UKB imaging 29 

subjects had good generalizability in the whole UKB cohort. For example, similar to the 30 

phenotypic analysis, resting fMRI traits also had the largest proportion of significant 31 

associations (97/276 at FDR 5% level and 25/35 at the Bonferroni level) in PRS analysis. 32 
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 9 

Furthermore, considering that imaging PRS were predicted with genetic information, 1 

genetic factors may play an important role in influencing sleep-imaging associations. In 2 

the following sections, we will examine these underlying genetic influences in more detail. 3 

 4 

Characterizing sleep-imaging genetic overlaps in 39 genomic loci.  5 

To understand the genetic co-architecture underlying sleep-imaging associations, we 6 

characterized the genetic pleiotropy between sleep conditions and multi-modal brain and 7 

cardiac MRI traits at their jointly significant GWAS loci. Briefly, we searched for sleep-8 

significant genetic variants reported in the NHGRI-EBI GWAS catalog83 (version 2022-07-9 

09). Then we identified those variants (and variants in linkage disequilibrium [LD] with 10 

them, r2 ≥ 0.6) that were also significant in GWAS of brain and cardiac MRI traits 11 

(Methods). We found that a total of 39 genomic loci showed shared genetic influences on 12 

both sleep and imaging traits, covering regional brain volumes54, DTI parameters56, whole 13 

brain independent component analysis (ICA)-based resting fMRI traits53,55,84, parcellation-14 

based resting and task fMRI traits58, and cardiac MRI traits60 (Table S4). We tagged 15 

previous GWAS for a wide range of sleep conditions, including insomnia39, chronotype85,86, 16 

daytime nap39, depressive symptom (sleep problems)87, getting up39, hypersomnia88, 17 

sleep duration37,89, and snoring90 (Fig. 3 and Table S5). Additionally, we estimated the 18 

probability that sleep-imaging trait pairs shared causal genetic variants using the Bayesian 19 

colocalization test91. We considered pairs with a probability of shared causal variant 20 

(PPH4) greater than 0.8 to be colocalized91,92. Below we summarized the results for each 21 

imaging modality group.  22 

 23 

There were 14 genomic loci where sleep-significant variants were associated with DTI 24 

parameters (LD 𝑟!  ≥ 0.6). For example, shared genetic components between DTI 25 

parameters and chronotype93 were found in 7 loci, including 1q25.2 (sleep index variant 26 

rs975025, tagged many DTI parameters, such as AD of the splenium of corpus callosum), 27 

19p13.11 (rs9636202, mode of anisotropy (MO) of the external capsule), 3p12.3 28 

(rs7429614, MO of the corticospinal tract), 6p22.2 (rs766406, MD of the inferior fronto-29 

occipital fasciculus), 17q21.31 (rs72828815, MD of the anterior corona radiata), 11p15.5 30 

(rs9795439, MO of the cingulum), 8p23.1 (rs2979256, FA of the inferior fronto-occipital 31 

fasciculus) (Figs. 4A-4B and S9-S12). The 1q25.2, 19p13.11, and 11p15.5 regions had 32 
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 10 

strong evidence of shared causal genetic variants between chronotype and DTI 1 

parameters (PPH4 > 0.976). Multiple sleep index variants were expression quantitative 2 

trait loci (eQTLs) in brain tissues, such as rs975025 (for FAM163A and FAM20B), 3 

rs72828815 (for DBF4B and MEIOC), and rs9795439 (KRTAP5-4)94. For sleep duration37, 4 

we found shared genetic influences in three loci, including 10p12.31 (rs12246842, MD of 5 

the fornix), 6p22.1 (rs34556183, MD of the superior corona radiata), and 17q21.31 6 

(rs1991556, MD of the anterior corona radiata) (Figs. S13-15). Colocalization was 7 

detected in 10p12.31 (PPH4 = 0.836), and the sleep index variants rs34556183 and 8 

rs1991556 were brain eQTLs of multiple genes such as ZSCAN31 and ARL17A.  9 

 10 

In addition, DTI-insomnia42 genetic overlaps were found in 6 loci, including 3p21.31 11 

(rs10865954, FA of the fornix-stria terminalis), 16q12.1 (rs1544637, AD across the whole 12 

brain), 15q26.1 (rs176647, FA of the posterior limb of internal capsule), 17q21.31 13 

(rs2239923, MD of the anterior corona radiata), 9q22.31 (rs10156602, FA of the body of 14 

corpus callosum), and 10p12.31 (rs12246842, MD of the fornix) (Figs. S16-S19). The sleep-15 

significant variant rs10865954 was a brain eQTL for multiple genes such as NCKIPSD, 16 

WDR6, and GMPPB. We also tagged daytime nap, snoring, and getting up in 17q21.31 17 

(rs57222984, mean AD of the sperior fronto-occipital fasciculus). Hypersomnia had 18 

genetic overlaps with MO of the cingulum (hippocampus) in 2p16.1 (rs359268) (Figs. S20). 19 

Among these sleep-DTI regions, we also found shared genetic influences with well-being 20 

spectrum, neuroticism, depression, risk-taking tolerance, autism spectrum disorder, 21 

cognitive traits (e.g, intelligence, math ability, reaction time, and education), life 22 

satisfaction, smoking, hypertension, and coronary artery disease, which might be a cause 23 

or consequence of white matter changes in the brain. Overall, these results suggested 24 

that sleep conditions were genetically associated with white matter integrity across 25 

multiple genomic regions, where they also overlapped with neuropsychiatric disorders, 26 

cognitive traits, and cardiovascular risk factors.  27 

 28 

For resting fMRI, we found the shared genetic influences with sleep in 9 genomic regions. 29 

Insomnia genetic loci were in LD (𝑟! ≥ 0.6) with resting fMRI traits in 4 regions, including 30 

2q14.1 (rs62158170, such as the somatomotor network), 2p16.1 (rs12713372, the 31 

frontoparietal and posterior-multimodal networks), 4q24 (rs11097861, the default mode, 32 
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 11 

central executive, and salience networks), as well as 19q13.32 (rs429358, the default 1 

mode network) (Figs. 4C and S21-S23). ICA-based84 and parcellation-based58 resting fMRI 2 

traits showed similar overlaps. Strong colocalizations between insomnia and resting fMRI 3 

were identified in 2q14.1, 4q24, and 19q13.32 (PPH4 > 0.951). The sleep index variant 4 

rs62158170 (2q14.1) was a brain eQTL of PAX8. As one of the two variants in the APOE ε4 5 

locus, rs429358 (19q13.32) contributed to Alzheimer's disease risk. In rs429358, insomnia 6 

also had shared genetic influences with task fMRI traits of the visual network (Fig. S24). 7 

Snoring was genetically linked to resting fMRI traits in 12q14.3 (rs10878269, PPH4 = 8 

0.976), 3p11.1 (rs145367119), and 17q21.31 (rs57222984), all of which tagged the triple 9 

networks of psychopathology (the default mode, central executive, and salience 10 

networks)95 (Fig. S25-S27).  11 

 12 

In 2q14.1, 2p16.1, and 17q21.31, we observed shared genetic influences with sleep 13 

duration, daytime nap, depressive symptom (sleep problems), and getting up (Figs. S28-14 

S29). Chronotype-resting fMRI overlaps were found in 11q24.1 (rs3867239, the central 15 

executive, salience, default mode, and attention networks, PPH4 = 0.975) and 2p16.3 16 

(rs17396357, the central executive, salience, default mode, and attention networks) (Figs. 17 

S30-S31). The rs17396357 was a brain eQTL of GTF2A1L, FOXN2, MSH6, STON1-GTF2A1L, 18 

STON1, and LHCGR. In these regions, we also found genetic links (LD 𝑟!  ≥ 0.6) with 19 

cognitive traits (e.g, cognitive decline, math ability and education), myocardial infarction, 20 

type 2 diabetes, mental health (e.g., depression, schizophrenia, autism spectrum disorder, 21 

and neuroticism), neurological disorders (e.g., Alzheimer's disease and Parkinson's 22 

disease), and blood pressure.   23 

 24 

Sleep traits and regional brain volumes had shared genetic influences (LD 𝑟! ≥ 0.6) in 20 25 

genomic regions. Many brain regions were affected by 9 insomnia-related genomic loci 26 

(10q24.32, 12q24.31, 4q24, 2q33.3, 5q14.3, 11q14.1, 12q14.3, 10p12.31, and 18q21.2), 27 

such as the left/right basal forebrain (rs12411886), cerebellar vermal lobules I-V 28 

(rs28576953), left/right accumbens area (rs6855246 and rs13135092), cerebellar vermal 29 

lobules VIII-X (rs55772859), left/right putamen (rs16903122, rs667730, and rs375051009), 30 

total brain volume (rs61921611), and left/right lateral ventricle (rs12251016) (Figs. S32-31 

S36). Colocalizations between insomnia and regional brain volumes were identified in 32 
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10q24.32 and 11q14.1 (PPH4 > 0.853). Insomnia has previously been associated with 1 

shrinking subcortical volumes and smaller cortical surface areas96,97. These findings may 2 

suggest the genetic basis of brain structure-insomnia connections. Chronotype also 3 

overlapped genetically with the left/right putamen in 5q14.3 (rs12657776), as well as 4 

other brain regions in 5 more loci, including 16q12.2 (rs4784256, such as brain stem), 5 

9q22.2 (rs3138490, left amygdala), 11p15.5 (rs9795439, white matter), and 3q13.11 6 

(rs34967119, right cuneus), and 2p11.2 (rs11681299, brain stem) (Figs. S37-S39). We 7 

observed colocalization between sleep and chronotype in 9p22.2, 11p15.5, and 2p11.2 8 

(PPH4 > 0.856). Furthermore, we found genetic overlaps for daytime nap in 5 additional 9 

genomic loci: 1p31.1, 7p22.2, 17q21.31, 11q12.2, and 5q22.2. Daytime nap was 10 

genetically linked to the cerebellar vermal lobules VIII-X (rs10782582), left/right lateral 11 

ventricle (rs4557589), total brain volume (rs57222984), left/right cerebellum exterior 12 

(rs174541), and left/right cerebellum white matter (rs2099810) (Figs. S40-S42). Both 13 

11q12.2 and 5q22.2 had strong evidence of shared causal genetic variants between 14 

daytime nap and regional brain volumes (PPH4 > 0.923). In addition, 17q21.31, 11q12.2, 15 

and 4q24 (rs13109404, left accumbens area) regions contributed to the genetic links 16 

between sleep duration and regional brain volumes. Similarly, 12q14.3, 14q32.2, and 17 

17q21.31 were associated with both snoring and multiple regions, including the right 18 

inferior parietal (rs10878269), left thalamus proper (rs2664299), right fusiform 19 

(rs4792897), and total brain volume (rs57222984) (Figs. 4D and S43). We found 20 

colocalization between snoring and regional brain volumes in 12q14.3 and 14q32.2 (PPH4 > 21 

0.956). There were also genetic overlaps with getting up in 3 of the above loci: 17q21.31, 22 

4q24, and 11q12.2.  23 

 24 

Genetic pleiotropy (𝑟!  ≥ 0.6) was observed between sleep and cardiac MRI traits in 5 25 

regions. Chronotype-heart overlaps were observed in 8p23.1 (rs11992186, regional peak 26 

circumferential strain), 22q13.1 (rs139911, ascending aorta maximum area), 11p11.2 27 

(rs11605348, global myocardial-wall thickness), and 17q21.32 (rs11992186, RVEDV) (Figs. 28 

S44-S45). Shared genetic influences were found in 11p11.2 with insomnia (rs10838708, 29 

global myocardial-wall thickness) and in 17q21.31 with sleep duration, snoring, getting 30 

up, as well as daytime nap (rs1991556 and rs57222984, regional myocardial-wall 31 

thickness) (Figs. S46-S47). We also found genetic overlaps with mental health (e.g., 32 
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neuroticism) and heart diseases (e.g., atrial fibrillation and coronary artery disease) in 1 

these loci. In summary, sleep had substantial genetic links with brain and heart structural 2 

and functional variations. Different sleep conditions, such as insomnia and daytime nap, 3 

may have genetic overlaps with the brain and heart in different genomic regions. 4 

Integrating imaging and sleep GWAS results may provide insight into sleep-related brain 5 

and heart health mechanisms. 6 

 7 

Genome-wide and local genetic correlation patterns  8 

We quantified the genome-wide genetic similarity between sleep conditions and imaging 9 

traits by genetic correlations (GC) estimated from cross-trait LD score regression98. We 10 

collected 19 sets of publicly available sleep GWAS summary statistics (Table S6) and 11 

screened them with GWAS summary statistics of multi-modal imaging traits (Methods). 12 

At 5% FDR level, significant genetic correlations were observed between sleep and all 13 

imaging modalities (Fig. 5A and Table S7). We reported below the top-ranking significant 14 

brain and cardiac MRI traits associated with sleep after applying the FDR correction (P < 15 

6.18×10-4). 16 

 17 

There were many resting fMRI traits associated genetically with sleep conditions in 18 

agreement with our phenotypic association analysis. Particularly, sleep duration and 19 

narcolepsy were genetically associated with the functional connectivity of multiple brain 20 

networks, such as the somatomotor, visual, language, cingulo-opercular, and 21 

frontoparietal (GC range = [-0.472, 0.508], P < 6.18×10-4). Other sleep traits were also 22 

genetically correlated with more specific brain networks. For example, snoring was 23 

genetically associated with functional connectivity between the default mode and orbito-24 

affective networks, as was daytime napping with functional connectivity between the 25 

cingulo-opercular and frontoparietal networks (GC range = [-0.286, 0.250], P < 6.00×10-4). 26 

Besides functional connectivity traits, resting amplitude traits62,99,100 were linked to sleep 27 

duration and narcolepsy, as well as snoring, with more area-level information revealed 28 

(Fig. S48). For example, amplitude results consistently demonstrated that narcolepsy was 29 

genetically associated with brain functional activity in the somatomotor and secondary 30 

visual areas (GC range = [0.183, 0.418], P < 6.00×10-4). In addition, sleep duration had 31 

negative genetic correlations with brain functional activity in the auditory, cingulo-32 
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opercular, dorsal-attention, somatomotor, and visual areas (GC range = [-0.240, -0.149], 1 

P < 6.00×10-4). Snoring was positively correlated with brain functional areas in the default 2 

mode, frontoparietal, and orbito-affective networks (GC range = [0.137, 0.234], P < 3 

6.00×10-4). Genetic links between sleep and brain functions were also observed in task 4 

fMRI (GC range = [-0.315, 0.488], P < 6.00×10-4, Fig. S49). Overall, sleep and brain function 5 

were genetically correlated throughout brain functional networks, with specific patterns 6 

confined to certain areas. 7 

 8 

For DTI parameters, significant negative genetic correlations were consistently observed 9 

between snoring and the multiple DTI-derived metrics (AD, MD, and RD) of the 10 

corticospinal tract (GC range = [-0.202, -0.123], P < 1.03×10-4, Fig. S50). The corticospinal 11 

tract is a major neuronal pathway carrying movement-related information from the 12 

cerebral cortex to the spinal cord. Impaired corticospinal tract was observed in poor 13 

cognitive performance and patients with obstructive sleep spnea101. A few genetic 14 

correlations were also observed between regional brain volumes and sleep conditions, 15 

especially insomnia (Fig. S51). Specifically, insomnia was genetically correlated with 16 

increased brain volume in the left and right caudate (GC range = [0.138, 0.170], P < 17 

7.02×10-5) as well as decreased total brain volume (GC = -0.132, P < 2.15×10-5). The 18 

caudate is a well-known functional region for sleep and modulates multiple sleep 19 

stages102. Additionally, we found genetic correlations between left ventricle and 20 

chronotype, as well as between left atrium and snoring (GC range = [-0.192, 0.166], P < 21 

6.00×10-4, Fig. S52). The left atrium has been reported to be associated with obstructive 22 

sleep apnea in coronary artery disease103.  23 

 24 

In the above genome-wide genetic correlation analyses, sleep-imaging traits are assumed 25 

to be genetically similar throughout the genome. To examine local patterns of shared 26 

genetic basis between sleep and imaging and to localize coheritability in specific genomic 27 

regions, we partitioned the genome into thousands of regions and performed local 28 

genetic correlations analysis using LAVA104 and SUPERGNOVA105 pipelines. In both LAVA 29 

and SUPERGNOVA, local genetic correlations were found at the FDR 5% level (P < 1.87×10-30 
4 for LAVA, P < 5.89×10-5 for SUPERGNOVA) for all sleep conditions, and fMRI traits 31 

contributed the largest proportion of significant findings (Figs. 5B, S53, and Tables S8-S9). 32 
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In comparison with LDSC, both methods revealed more genetic correlations with task 1 

fMRI. For example, among the 777 significant local genetic correlations identified by LAVA, 2 

46.98% (365/777) were related to task fMRI traits. More than 10% (39/365) of the task 3 

fMRI-sleep local genetic correlations were located in the 19q13.32 region, which was the 4 

locus identified in our association lookup analysis for task fMRI. In addition to 19q13.32, 5 

other top-ranking putative pleiotropic regions for task fMRI were 16q12.2, 14q11.2, 6 

7p15.1, and 15q26.2. Moreover, sleep-imaging genetic connections can vary across 7 

genomic regions or even be opposites. For example, chronotype had a positive local 8 

genetic correlation with left MBelt area task amplitude in 1p13.2 (GC = 0.574, P = 1.10×10-9 
4), but negative correlation in 16q12.2 (GC = -0.466, P = 1.87×10-4). These results 10 

demonstrate the complex genetic co-architecture of sleep and imaging traits. 11 

 12 

Causal genetic relationships detected by Mendelian randomization. 13 

To investigate the causal genetic links between sleep and imaging traits, we performed 14 

Mendelian randomization (MR) analyses with their GWAS summary statistics (Methods). 15 

At the Bonferroni significance level (P < 3.67×10-5), we found strong evidence of genetic 16 

causal effects from brain structures to sleep conditions (Table S10). For example, 17 

increased left ventral DC volume had genetic causal effects on being a morning person (b 18 
= -0.102, SE = 0.021, P = 1.71×10-6). All of the MR methods tested indicated the same 19 

causal genetic effects direction, and two of them were able to survive the Bonferroni 20 

multiple testing procedure. In addition, larger subcortical volumes were causally related 21 

to increased risk of daytime nap (b = 0.046, SE = 0.01, P = 3.81×10-6 for the left accumbens 22 

area, and b = 0.038, SE = 0.009, P = 1.14×10-5 for the right hippocampus). By balancing 23 

adenosine and dopamine activity, the accumbens played an important role in regulating 24 

sleep-wake patterns106,107. Furthermore, there was a significant genetic causal 25 

relationship between larger total brain volume and longer sleep duration (b = 0.055, SE = 26 

0.01, P = 1.08×10-5). For DTI parameters, we found a causal link between higher MO of 27 

the external capsule tract and being an evening person (b = -0.085, SE = 0.02, P = 6.04×10-28 
6). All these results were summarized in Figure S54. There was no evidence of a causal 29 

relationship in another direction (in which sleep traits was the exposure and brain 30 

structural traits was the outcomes) after Bonferroni correction. 31 

 32 
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More genetic causal effects from brain structures to sleep were found at the FDR 5% level 1 

(P range = [1.71×10-6, 2.09×10-3]). In total ,73 imaging-sleep causal pairs were identified, 2 

most of which were related to DTI parameters (42/73) and regional brain volumes (29/73). 3 

DTI parameters from multiple white matter tracts showed genetic causal effects on sleep 4 

conditions, such as sleep duration, daytime nap, and chronotype. More volumetric traits 5 

were found to have causal effects on sleep. For example, several MR methods have 6 

consistently demonstrated that total brain volume has a causal genetic influence on 7 

insomnia (b < -0.044, P < 1.93×10-4). In summary, our MR analysis suggested a causal 8 

genetic pathway from brain structures to sleep conditions.    9 

  10 

Sleep and mental health predictions by integrating multiple data types 11 

According to our imaging genetics analyses, genetic data and multimodal brain and 12 

cardiac images could possibly be combined to predict sleep conditions. In clinical and 13 

epidemiological studies, sleep has also been reported to be affected by environmental 14 

factors, behaviors, biomarkers, and disease status, which makes it desirable to develop 15 

sleep prediction models that incorporate imaging genetics and other forms of data. In this 16 

section, we performed sleep predictions based on a variety of data types. Our goal is to 17 

understand the contributions made by these types of data and their relative performance 18 

in predicting different sleep disorders and traits. Our analysis focused on multi-modality 19 

brain and cardiac MRI traits, sleep polygenic risk score (PRS), biomarkers, disease status, 20 

and 6 categories of environmental variables, including lifestyle and environment, 21 

psychosocial factors, physical measures, local environments, and early life factors (Table 22 

S11). We used a training, validation, and testing design, where all model parameters were 23 

tuned on validation data, and prediction performance was assessed on independent 24 

testing data. Detailed information on model training and adjusted covariates can be found 25 

in the Methods section.   26 

 27 

Figure 6A summarized the results of 7 different sleep conditions using different types of 28 

brain imaging data. All sleep conditions were significantly predicted by resting fMRI 29 

(prediction correlation b range = [0.040, 0.121], P range = [9.82×10-4, 4.05×10-23]). The 30 
ICA-based and parcellation-based resting fMRI traits, as well as the amplitude and 31 

functional connectivity traits, showed similar trends, although their relative performance 32 
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may vary depending on the sleep characteristics being predicted. Each of the regional 1 

brain volumes, DTI parameters, and task fMRI traits can significantly predict at least five 2 

sleep conditions (Table S12). As for sleep duration, chronotype, and insomnia, adding 3 

these additional imaging types will not improve prediction performance over and above 4 

resting fMRI, suggesting that resting fMRI is largely responsible for the prediction power 5 

of other imaging modalities. As an example, both regional brain volumes and task-related 6 

fMRI traits were marginally significant in predicting sleep duration (b range = [0.030, 7 
0.042], P range = [2.47×10-2, 7.28×10-4]). Using regional brain volumes, task fMRI traits, 8 

and resting fMRI traits together did not result in a better performance than using resting 9 

fMRI alone (b = 0.116 vs. 0.120). These results suggest that among the imaging modalities 10 
tested in this study, resting fMRI showed the strongest correlation with the three sleep 11 

traits, and it may be the most effective imaging modality to predict insomnia. 12 

 13 

In the case of getting up, snoring, daytime nap, and narcolepsy, it will be beneficial to 14 

integrate multiple imaging modalities rather than using one type of data. For example, 15 

task fMRI had the best prediction performance in predicting snoring across different 16 

imaging modalities (b range = [0.068, 0.085], P = [2.81×10-7, 1.55×10-10]). Snoring can also 17 

be significantly predicted by DTI parameters, regional brain volumes, and resting fMRI 18 

traits (b range = [0.040, 0.063], P range = [1.25×10-3, 2.23×10-7]). When all these imaging 19 
types were combined, the prediction accuracy increased to 0.103 (P = 1.68×10-14), 20 

suggesting that each imaging type contributes additionally to the prediction of snoring. In 21 

another example, when combining DTI parameters, regional brain volume, and resting 22 

fMRI traits, the prediction performance moved up to 0.109 (P = 1.14×10-18) for nap during 23 

day.  24 

 25 

Next, we evaluated more data types in sleep prediction (Fig. 6B). Cardiac MRI traits were 26 

significantly predictive of 6 sleep traits, with the highest prediction accuracy observed for 27 

snoring (b = 0.067, P = 1.57×10-6). Insomnia can be more accurately predicted by using 28 

brain and cardiac MRI traits jointly (b = 0.087, P = 8.39×10-10, Fig. S55). In addition, sleep 29 

PRS were significant predictors for all sleep conditions (b range = [0.108, 0.201], P range 30 
= [2.46×10-15, 1.71×10-49]). Six different PRS methods were used, and all provided similar 31 

results (Fig. S56 and Table S12). The combination of PRS and brain imaging data increases 32 
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prediction accuracy for all sleep traits, with narcolepsy showing the greatest 1 

improvement. PRS and imaging traits had a prediction accuracy of 0.108 (P = 2.46×10-15) 2 

and 0.124 (P = 2.68×10-20), respectively, for narcolepsy. The performance increased to 3 

0.159 (P = 5.15×10-30) after combination. 4 

 5 

Sleep conditions were also strongly predicted by biomarkers and environmental variables. 6 

The highest prediction accuracy of biomarker was observed on snoring (b = 0.081, P = 7 
4.98×10-10). Environmental variables were much better at predicting insomnia and getting 8 

up than PRS and imaging traits. For example, the prediction accuracy of environmental 9 

variables was 0.226 (P = 5.25×10-68) for insomnia, which was largely contributed by the 10 

psychosocial factors (b = 0.202, P = 2.15×10-54, Fig. S57). More importantly, combining 11 

PRS, imaging, and environmental variables resulted in a higher level of accuracy when 12 

predicting all sleep traits. Narcolepsy and snoring were predicted similarly by the three 13 

types of data (b range = [0.108, 0.122], P range = [2.46×10-15, 4.58×10-19] for PRS; b range 14 

= [0.103, 0.124], P range = [1.68×10-14, 2.68×10-20] for brain imaging; b range = [0.113, 15 
0.121], P range = [1.07×10-11, 1.01×10-17] for environmental variables), and the accuracy 16 

increased by more than 50% when they were combined (b range = [0.180, 0.198], P range 17 

= [1.17×10-19, 8.01×10-30]). In general, imaging, genetics, and environment all play key 18 

roles in predicting sleep variations. Integrating multiple types of data could benefit sleep 19 

prediction in clinical applications and research. 20 

 21 

Mental health problems were highly comorbid with sleep disorders108,109. In order to gain 22 

a better understanding of how sleep contributes to mental health problems, we assessed 23 

the predictive power of sleep traits for three mental health traits: depression, neuroticism, 24 

and anxiety. We adjusted the same covariates as the above sleep prediction analysis and 25 

additionally examined other data types (Methods). For all three mental health traits, 26 

sleep traits and early life factors were among the top two strongest predictors (b range = 27 
[0.178, 0.316], P range = [9.24×10-43, 8.21×10-135], Figs. 6C, S58, and Table S13). These 28 

mental health traits were also significantly predicted by brain imaging and mental health 29 

PRS (b range = [0.034, 0.152], P range = [4.84×10-3, 8.43×10-29], Figs. 6C and S58). A 30 
combination of all predictors increased the prediction correlation to 0.413 for neuroticism, 31 

0.353 for depression, and 0.277 for anxiety (P range = [5.65×10-91, 1.83×10-176]). 32 
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Furthermore, when sleep conditions were controlled as covariates, the prediction power 1 

of many traits was reduced, suggesting that sleep may partially explain their predictive 2 

power (Figs. 6D and S58). For example, after conditioning on sleep, electronic devices 3 

usage no longer had significant predictive power for neuroticism or depression; and 4 

alcohol, physical activity, and sun exposure did not have significant predictive power for 5 

anxiety. In addition, prediction performance of early life factors on neuroticism decreased 6 

from 0.178 (P = 9.24×10-43) to 0.147 (P = 3.80×10-32), suggesting 17.7% prediction power 7 

of early life factors on neuroticism could be mediated by sleep. The proportion of 8 

reduction was 16.1% for mental health PRS and 28.7% for disease status. Similar 9 

reduction was also found in prediction power of PRS and early life factors for depression 10 

and anxiety. In summary, sleep was an important predictor of mental health traits and 11 

may be able to mediate the influence of genetic and nongenetic risk factors on mental 12 

health. 13 

 14 

DISCUSSION 15 

Sleep is vital to both physical health and mental wellbeing. Understanding how sleep 16 

interacts with human health is of great interest. This study aimed to identify novel 17 

phenotypic and genetic connections between sleep-related conditions and human brain 18 

and heart health by using multimodal imaging data as endophenotypes. In our study, we 19 

found substantial links between sleep and the structure and function of the brain and the 20 

heart, some of which can be explained by shared genetic influences. We examined the 21 

genetic basis of sleep-imaging connections from a variety of perspectives, including the 22 

genetic loci that were jointly significant, the genetic covariance at the local level, and the 23 

genetic similarity across the genome. Based on MR analysis, sleep conditions have been 24 

found to be more a consequence than a cause of brain structural differences along the 25 

genetic pathway, matching the results in a recent study specially on sleep duration and 26 

brain structure32. Using prediction analysis, we assessed the relative contributions of 27 

genetic and imaging factors to sleep prediction and integrated them with additional 28 

environmental data to provide a more accurate prediction. Future epidemiological and 29 

clinical studies of sleep and comorbid conditions may benefit from these findings and 30 

insights. 31 

 32 
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In our study, we found that sleep and brain functions are strongly linked through multiple 1 

functional networks, including the default mode network. Several studies have shown 2 

that the default mode network activity is essential to conscious awareness74,110,111, which 3 

may provide an opportunity to investigate the relation between sleepiness and decreased 4 

functional connectivity of the default mode network. Daytime sleepiness is generally 5 

considered a clinical symptom of sleep disorders or a consequence of insufficient sleep.  6 

The symptoms of insomnia and sleep deprivation are usually accompanied by 7 

sleepiness112, which both have been linked to reduced connectivity in the brain's default 8 

mode network70,113. Narcolepsy is a rare neurological disorder characterized by daytime 9 

sleepiness and the presence, or absence, of cataplexy-like episodes114,115. The cause of 10 

narcolepsy is determined by both genetic and environmental factors116, and it may lead 11 

to adverse cardiovascular events117.  Our phenotypic and genetic results reveal possible 12 

mechanisms of default mode network brain activity that underlie these sleep disorders. 13 

 14 

The present study has a few limitations. First, our analyses were mainly based on 15 

European subjects in the UKB study. In future studies, data from a broader range of 16 

sources could be incorporated into the imaging genetics study of sleep, and findings 17 

developed by UKB could be generalized to global populations. The current study focused 18 

on the human brain and heart, which are two important organs of the human body. Using 19 

abdominal images, such as those of the kidneys and liver118, it would be interesting to 20 

determine how sleep is connected to more organs. Finally, we focused primarily on linear 21 

relationships in our models. Several recent studies have demonstrated that certain sleep 22 

traits may also have nonlinear phenotypic and genetic links (such as sleep duration30,31). 23 

In the future, advanced statistical and machine learning methods may be used to identify 24 

more comprehensive relationships and improve prediction performance.   25 

 26 

METHODS 27 

Methods are available in the Methods section. 28 

Note: One supplementary information pdf file and one supplementary table zip file are 29 

available. 30 
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 14 

METHODS 15 

Phenotypic sleep-imaging analyses.  16 

The UKB study (https://www.ukbiobank.ac.uk/) recruited approximately half a million 17 

participants aged between 40 and 69 years between 2006 and 201059. The ethics approval 18 

of the UKB study was from the North West Multicentre Research Ethics Committee 19 

(approval number: 11/NW/0382). The UKB imaging study started in 2014 and aimed to 20 

collect multi-modal imaging data from 100,000 subjects119. Detailed procedures to 21 

generate brain and cardiac MRI traits used phenotypic analysis can be found in previous 22 

papers54,56,58,60,61. All these imaging traits were generated from the raw images in 23 

Category 100003 (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100003). 24 

Overall, we used 101 regional brain volumes and 63 cortical thickness measures from T1-25 

weighted structural MRI image54,60, 110 DTI parameters from diffusion MRI image56, 92 26 

functional activity (amplitude) and connectivity traits from resting-state and task-based 27 

fMRI image58, respectively, as well as 82 cardiac MRI traits from the short-axis, long-axis, 28 

and aortic cine images61. These traits captured the structural and functional 29 

characteristics of the human brain, heart, and aorta. Briefly, the advanced normalization 30 

tools120 (ANTs) was used to generate regional brain volumes for 98 cortical and subcortical 31 

areas, as well as 3 global brain volume measures, including the total gray matter volume, 32 
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total white matter volume, and total brain volume. Similarly, 63 global and regional 1 

cortical thickness measured were also generated by ANTs. In addition, we applied the 2 

ENIGMA-DTI pipeline121,122 to diffusion MRI, and generated 110 tract-averaged 3 

parameters, including the fractional anisotropy (FA), mean diffusivity (MD), axial 4 

diffusivity (AD), radial diffusivity (RD), and mode of anisotropy (MO) for 21 predefined 5 

major white matter tracts, as well as across the whole brain (5 × 22). For fMRI, we used a 6 

parcellation-based approach with the Glasser360 atlas69 and partitioned the cerebral 7 

cortex into 360 regions in 12 functional networks68, including the primary visual, 8 

secondary visual, auditory, somatomotor, cingulo-opercular, default mode, dorsal 9 

attention, frontoparietal, language, posterior multimodal, ventral multimodal, and 10 

orbito-affective networks. We calculated the mean amplitude of each network, the mean 11 

functional connectivity for each pair of networks (including within the same network), 12 

and the mean amplitude and mean functional connectivity of the whole cortex. As strong 13 

signals were identified in resting fMRI, we also considered the 64,620 (360 × 359/2) area-14 

level high-resolution resting functional connectivity measures, which can provide more 15 

fine-grained details on functional organizations of cerebral cortex. The 82 cardiac MRI 16 

traits were from 6 categories, including 64 traits of left ventricle, 4 of left atrium, 4 of right 17 

ventricle, 4 of right atrium, 3 of ascending aorta, and 3 of descending aorta. See Table S1 18 

for the complete ID list of these traits. 19 

 20 

We studied the sleep-imaging phenotypic relationships with 7 self-reported sleep traits: 21 

the sleep duration (“About how many hours sleep do you get in every 24 hours? (please 22 

include naps)”, Data field 1160); getting up in morning (“On an average day, how easy do 23 

you find getting up in the morning? 1) not at all easy; 2) not very easy; 3) fairly easy; 4) 24 

very easy”, Data field 1170); morning/evening person (chronotype, “Do you consider 25 

yourself to be 1) definitely a ‘morning’ person; 2) more a ‘morning’ person than an 26 

‘evening’ person; 3) more an ‘evening’ person than a ‘morning’ person; 4) definitely an 27 

‘evening’ person?”, Data field 1180); nap during day (“Do you have a nap during the day? 28 

1) never/rarely; 2) sometimes; 3) usually.”, Data field 1190); sleeplessness/insomnia (“Do 29 

you have trouble falling asleep at night or do you wake up in the middle of the night? 1) 30 

never/rarely; 2) sometimes; 3) usually.”, Data field 1200); snoring (“Does your partner or 31 

a close relative or friend complain about your snoring?”, Data field 1210); and daytime 32 
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dozing/sleeping (narcolepsy, “How likely are you to doze off or fall asleep during the 1 

daytime when you don't mean to? (e.g. when working, reading or driving) 1) never/rarely; 2 

2) sometimes; 3) often; 4) all of the time.”, Data field 1220). We used the data coded by 3 

the UKB study and removed the subjects with responses “do not know” or “prefer not to 4 

answer”. In our phenotypic analysis, we used the white British imaging individuals in UKB 5 

phases 1 to 3 data release (released up through 2020, average n = 29,025, mean age range 6 

= (45,82), mean = 64.15, standard error = 7.67, and proportion of female was 51.6%). We 7 

fitted linear models for each pair of sleep and imaging traits, in which we adjusted for the 8 

effects of age (at imaging), age-squared, sex, age-sex interaction, age-squared-sex 9 

interaction, imaging site code, the top 40 genetic principal components (PCs)123, 10 

volumetric scaling, head motion, head motion-squared, brain position, and brain position-11 

squared53,55. For regional brain volumes and regional cortical thickness measures, we 12 

additionally adjusted for the total brain volume and global mean thickness, respectively, 13 

to remove the global effects. The values greater than five times the median absolute 14 

deviation from the median were removed in each imaging trait and continuous covariate 15 

variable. The P values from two-sided t test were reported (R version 3.6.0).  16 

 17 

We also performed the PRS-based association analysis for the same set of imaging traits. 18 

Specifically, we used the GWAS summary statistics of these imaging traits released by 19 

previous imaging GWAS studies54,56,58,60,61 and constructed PRS based on PRS-CS124. We 20 

used all default parameters in the PRS-CS software (https://github.com/getian107/PRScs) 21 

and generated the PRS for all non-imaging individuals in the UKB study (removing relatives 22 

of the UKB imaging individuals). We then used these genetically predicted imaging traits 23 

to repeat the above association analysis with the 7 sleep traits in non-imaging unrelated 24 

white British UKB subjects (average n = 217,254, removing relatives of imaging subjects, 25 

Methods). We adjusted for the effects of age (at baseline), age-squared, sex, age-sex 26 

interaction, age-squared-sex interaction, and the top 40 genetic PCs123.  27 

 28 

Genetic sleep-imaging analyses.  29 

Our genetic analyses were mainly based on GWAS summary statistics of sleep-related 30 

traits and imaging traits from previous studies. First, we systematically looked for the 31 

genomic loci that were reported to be significant for both sleep and imaging traits. We 32 
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looked up the reported sleep-significant genetic variants in the NHGRI-EBI GWAS 1 

catalog83 (https://www.ebi.ac.uk/gwas/, version 2022-07-09). Among these sleep-2 

associated variants (and variants in LD with them, r2 ≥ 0.6), we searched for those that 3 

were also reported to be significant in previous GWAS of brain and cardiac MRI traits, 4 

including 101 regional brain volumes54, 110 DTI parameters56, 1,777 ICA-based resting 5 

fMRI traits84 (76 ICA-based amplitude traits and 1,701 ICA-based functional connectivity 6 

traits), 1,985 network-level parcellation-based resting and task fMRI traits58 (1,066 for 7 

resting and 919 for task), and 82 cardiac MRI traits60 (Table S4). For the sleep-significant 8 

genetic variants, we also searched to see whether they were reported brain eQTLs on 9 

MetaBrain (https://www.metabrain.nl/)94. Finally, we tested for whether the sleep and 10 

imaging traits had shared causal genetic variants using the Bayesian colocalization test91.  11 

 12 

We examined genetic correlation analysis between sleep and imaging traits via LDSC125 13 

(https://github.com/bulik/ldsc/, version 1.0.1). We collected and used 19 set of publicly 14 

available GWAS summary statistics for sleep traits (Table S6). For imaging traits, we 15 

screened the 101 regional brain volumes54, 110 DTI parameters56, 1,985 network-level 16 

parcellation-based resting and task fMRI traits58 (1,066 for resting and 919 for task), and 17 

82 cardiac MRI traits60. To provide more details of the brain functional organization, we 18 

also examined the amplitude traits in each of the 360 brain regions for resting and task 19 

fMRI, respectively. The LD scores were calculated by LDSC and were based on the 1000 20 

Genomes European data. We used the default setups of LDSC, in which the HapMap3126 21 

variants and the variants in the major histocompatibility complex region were removed. 22 

 23 

Local genetic correlation analyses between sleep and imaging traits were performed 24 

separately using LAVA104 (https://github.com/josefin-werme/LAVA) and SUPERGONA105 25 

(https://github.com/qlu-lab/SUPERGNOVA). We tested the same sets of GWAS summary 26 

statistics as used in the above LDSC analysis. We followed the tutorials of the two 27 

methods and used the default setups. In SUPERGONA, we removed all single nucleotide 28 

polymorphisms (SNPs) with missing values in GWAS summary statistics and minor allele 29 

frequency (MAF) less than 0.05. We used the provided 1000 Genomes European 30 

reference panel and the genome partition file. In LAVA, we input the GWAS summary 31 

statistics, the 1000 Genomes European reference genotype data file, and the provided 32 
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locus definition file. Within each locus, LAVA processed these input files and converted 1 

the marginal GWAS summary statistics to locus-specific joint effects. LAVA first performed 2 

univariate tests on all traits and loci to select those with sufficient local genetic signals. 3 

Bivariate tests were then performed on the selected loci and traits to examine their local 4 

genetic correlations.  5 

 6 

We performed MR analyses using multiple methods in the two-sample MR package 7 

(https://mrcieu.github.io/TwoSampleMR/), including MR Egger, simple median, weighted 8 

median, panelized weighted median, and inverse variance weighted127. Bidirectional MR 9 

analyses were performed using GWAS summary statistics between each pair of sleep 10 

conditions and imaging traits, including 101 regional brain volumes54, 110 DTI 11 

parameters56, 92 network-level parcellation-based resting fMRI traits58 (the same traits 12 

as in the phenotypic analysis), and 82 cardiac MRI traits60. GWAS summary statistics of 13 

sleep conditions were obtained from the IEU GWAS database 14 

(https://gwas.mrcieu.ac.uk/). To select independent strong genetic instrumental 15 

variables, exposure GWAS summary statistics were clumped by using Plink128 (v1.9) with 16 

P-value significance threshold being 5×10-8 (p1) and the secondary significance threshold 17 

for clumped genetic variants was also set to be 5×10-8 (p2). Physical distance threshold 18 

for clumping was kb = 1,000, LD threshold for clumping was r2 = 0.01, and we used the 19 

1000 Genomes European reference panel. Genetic variants of the exposure remained 20 

were extracted from the outcome dataset via the extract_outcome_data() function with 21 

default parameters. Harmonization was further performed to ensure the effects of each 22 

genetic variant on exposure and outcome were corresponding to each other, which was 23 

done by the harmonise_data function() with level of strictness in dealing with SNPs action 24 

= 2. Sleep-imaging pairs with number of SNPs less than 10 were discarded. MR was then 25 

conducted with the mr() function with the above methods.  26 

 27 

Integrative prediction models for sleep and mental health traits.  28 

We developed prediction models for sleep by using genetic variants, imaging traits, and a 29 

wide range of other data types, such as biomarkers, disease status, and 6 categories of 30 

environmental variables, including lifestyle and environment, psychosocial factors, 31 

physical measures, local environments, early life factors, and cognitive functions (Table 32 
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S11). First, we considered performance of the following imaging predictors: 101 regional 1 

brain volumes54, 110 DTI parameters56, 1,777 ICA-based resting fMRI traits84, 1,985 2 

network-level parcellation-based resting and task fMRI traits58, 720 area-level 3 

parcellation-based resting and task fMRI amplitude traits (360 each), and 82 cardiac MRI 4 

traits60. We focused on the unrelated white British subjects and randomly divided the 5 

data into three independent parts: training (average n = 20270), validation (average n = 6 

6790), and testing (average n = 6764). We estimated the effect sizes of these imaging 7 

traits by ridge regression in the glmnet129 package (R version 3.6.0). The same set of the 8 

covariates as in the phenotypic association analysis were controlled. Model parameters 9 

were tuned on validation data, and prediction performance was evaluated on testing data 10 

by calculating the correlation between predicted and observed sleep traits. Next, we 11 

examined the performance of genetic PRS for sleep traits. Data from all UKB white British 12 

subjects were used as training data, except for those in the above validation and testing 13 

data (and their relatives). We adjusted for the effects of age (at baseline), age-squared, 14 

sex, age-sex interaction, age-squared-sex interaction, and the top 40 genetic PCs. We 15 

developed using 6 different methods, including pruning and thresholding (P + T), 16 

lassosum130, LDpred2131, LDpred-funct132, DBSLMM133, and PRSCS124. The above validation 17 

dataset was used to tune the parameters. We also used other data types as predictors 18 

with ridge regressions. To help interpret and identify the top-ranking predictors from each 19 

category, we also performed phenotypic associations between these variables and sleep 20 

traits and shred the results in Table S14 and our website. The performance was evaluated 21 

on the subjects with all these data types in the testing dataset. Similar prediction models 22 

were also developed on three mental health traits, where sleep traits were added as 23 

predictors.   24 

 25 

Code availability  26 

We made use of publicly available software and tools. The codes are available upon 27 

reasonable request.  28 

 29 

Data availability  30 

GWAS summary statistics of brain and cardiac MRI traits can be freely downloaded at BIG-31 

KP https://bigkp.org/ and Heart-KP https://heartkp.org/. GWAS summary statistics of 32 
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sleep conditions used in this study are publicly available and the links can be found in 1 

Table S6. The individual level UK Biobank data used in this study can be obtained from 2 

https://www.ukbiobank.ac.uk/. We have built an interactive web browser to share our 3 

results at www.ig4sleep.org.  4 

 5 

Figure legends  6 

Fig. 1 Overview of our imaging genetics studies for sleep.   7 

Multimodal brain and cardiac imaging were used to investigate the relationship between 8 

sleep and brain and heart health. We covered a full spectrum of imaging modalities, 9 

including T1-weighted structural MRI, diffusion MRI, resting-state and task-based fMRI, 10 

as well as short-axis, long-axis, and aortic cine images of cardiac MRI. Seven sleep 11 

conditions were examined, including sleep duration, getting up in the morning, 12 

chronotype, daytime nap, insomnia, snoring, and narcolepsy. Sleep-imaging connections 13 

can be explained in part by shared genetic factors. A variety of analyses were conducted 14 

throughout the paper in order to uncover the overlapping genetic influences, including 15 

polygenic risk scores, identification of shared genetic risk loci and colocalization, genome-16 

wise and local genetic correlations, Mendelian randomizations, and integrated 17 

predictions.  18 

 19 

Fig. 2 Phenotypic sleep-imaging associations. 20 

(A) The -log10(p-value) of phenotypic correlations between 7 sleep traits and 6 groups of 21 

imaging, including 101 regional brain volumes, 63 cortical thickness measures, 110 DTI 22 

parameters, 92 resting fMRI traits, 92 task fMRI traits, and 82 heart imaging traits. See 23 

Table S1 for more information of these imaging traits. The red and black dashed lines 24 

indicate the Bonferroni significance level (P < 1.33 × 10-5) and the false discovery rate at 25 

5%, respectively. Each sleep condition is labeled with a different color. (B) and (C) 26 

Significant correlations between area-level resting functional connectivity traits and 27 

narcolepsy (in B) and sleep duration (in C). We show the correlations that passed the 28 

Bonferroni significance level (P < 7.74×10-7). Correlation estimates are indicated by the 29 

color. Visual1, the primary visual network; and Visual2, the secondary visual network.  30 
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 1 

Fig. 3 Jointly significant genomic loci for sleep conditions and imaging traits.  2 

(A) In the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/, version 2022-07-09), 3 

we found shared genetic influences between sleep and imaging traits in 39 genomic loci 4 

(names are in black color). That is, sleep and imaging GWAS reported significant variants 5 

in these loci and the index variants were in linkage disequilibrium (LD, r2 ≥ 0.6). Each 6 

imaging modality is labeled with a different color. We tagged a wide range of reported 7 

sleep traits and grouped them into chronotype (e.g., morningness and morning person), 8 

insomnia (e.g., insomnia and insomnia symptoms), sleep duration (e.g., sleep duration 9 

long sleep and short sleep), and others, such as snoring, hypersomnia, getting up, and 10 

daytime nap. (B) We further summarized the results into a table, where the x-axis 11 

represents the 39 genomic regions and y-axis displays the sleep traits. Each imaging 12 

modality is labeled with a different color and the orange color is used when more than 13 

one imaging modalities are observed in the locus.  14 

  15 

Fig. 4 Selected genetic loci that were associated with both sleep conditions and imaging 16 

traits. 17 

(A) In 1q25.2, we observed colocalization between chronotype (index variant rs975025) 18 

and the mean axial diffusivity of the splenium of corpus callosum tract (SCC AD, index 19 

variant rs755699529). The posterior probability of Bayesian colocalization analysis for the 20 

shared causal variant hypothesis (PPH4) is 0.976. (B) In 19p13.11, we observed 21 

colocalization between chronotype and the mean mode of anisotropy of the external 22 

capsule (EC MO, shared index variant rs9636202, PPH4 = 0.992). In this region, 23 

chronotype was also in LD (r2 ≥ 0.6) with reaction time, life satisfaction, smoking, 24 

hypertension, and coronary artery disease. (C) In 4q24, we observed colocalization 25 

between insomnia (index variant rs11097861) and functional connectivity among the 26 

triple networks of psychopathology (the default mode, central executive, and salience 27 

networks, index variant rs4417974, PPH4 = 0.952). (D) In 14q32.2, we observed 28 

colocalization between snoring and volume of the left thalamus proper (shared index 29 

variant rs2664299, PPH4 = 0.997). We also observed the shared associations (LD r2 ≥ 0.6) 30 
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with self-reported math ability, cognitive performance, smoking initiation, and 1 

educational attainment. 2 

 3 

Fig. 5 Genetic correlations between sleep and imaging traits. 4 

(A) We illustrated the pattern of significant genome-wide genetic correlation estimates 5 

(at the 5% false discovery rate level by LDSC, P < 6.18×10-4) between various groups of 6 

imaging traits (left upper panel) and sleep conditions (left lower panel). We listed the 7 

number of significant pairs for each imaging group and sleep condition on the right side. 8 

(B) We illustrated pattern of significant local genetic correlation estimates (at the 5% false 9 

discovery rate level, P < 1.87×10-4) between various groups of imaging traits (left upper 10 

panel) and sleep conditions (left lower panel) by LAVA. We listed the number of significant 11 

pairs for each imaging group and sleep condition on the right side.  12 

 13 

Fig. 6 Integrative prediction analysis for sleep conditions and mental traits. 14 

(A) Predicting 7 sleep conditions using multimodal brain imaging traits, including DTI 15 

parameters, region brain volumes, ICA-based resting fMRI traits (resting ICA), 16 

parcellation-based network and area-level resting and task fMRI traits (resting g360 17 

network, resting g360 area, task g360 network, and task g360 area), and all modalities 18 

(joint of all brain MRI traits). (B) Predicting 7 sleep conditions using multiple data types. 19 

PRS, sleep polygenic risk scores of genetic variants, Brain imaging, multimodal brain 20 

imaging traits. (C) The accuracy of neuroticism prediction analysis using different types of 21 

data. PRS, neuroticism polygenic risk scores of genetic variants, Brain imaging, multimodal 22 

brain imaging traits. (D) The accuracy of different data types in neuroticism prediction 23 

analysis before (marginal) and after controlling sleep traits (conditional on sleep).  24 
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