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Abstract

80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Ad-

ditionally, significant amounts of nutrients are lost every year due to unsustainable soil man-

agement practices. This is partially the result of insufficient use of soil management

knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Ser-

vice (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project

compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Senti-

nel Site database. These data sets contain over 28 thousand sampling locations and repre-

sent the most comprehensive soil sample data sets of the African continent to date. Utilizing

these point data sets in combination with a large number of covariates, we have generated

a series of spatial predictions of soil properties relevant to the agricultural management—or-

ganic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total

nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We

specifically investigate differences between two predictive approaches: random forests and

linear regression. Results of 5-fold cross-validation demonstrate that the random forests al-

gorithm consistently outperforms the linear regression algorithm, with average decreases of

15–75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and

running random forests models takes an order of magnitude more time and the modelling

success is sensitive to artifacts in the input data, but as long as quality-controlled point data

are provided, an increase in soil mapping accuracy can be expected. Results also indicate

that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols)

help improve continental scale soil property mapping, and are among the most important

predictors. This indicates a promising potential for transferring pedological knowledge from

data rich countries to countries with limited soil data.
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Introduction

The FAO [1] indicates that in the second quarter of the 21st century 80% of increased crop pro-

duction in developing countries will have to come from agricultural intensification. Successful

intensification requires careful ecological implementation and will need to be underpinned by

economically viable investment decisions by the various stakeholders in the value chain (in ad-

dition to farmers) [2]. In that context, comprehensive, accurate and up-to-date soil informa-

tion is an essential input into agricultural and ecological decision making models. Soil

information can help predict scenario dependent crop yields as well as water and nutrient dy-

namics. It can also help identify areas at risk of soil degradation and support choosing appro-

priate preventive and rehabilitative soil management interventions.

For decades soil information in Africa has been fragmented and limited to specific zones of

interest [3]. The Alliance for a Green Revolution in Africa (AGRA) has estimated that up to

80% of arable land in sub-Saharan Africa has low soil fertility and suffers from physical soil

problems [4]. At the same time, significant amounts of soil nutrients are lost every year due to

inappropriate or unsustainable soil management practices such as intensification (shortening

of fallow periods) without adequate nutrient supplements [4]. The Montpellier Panel [5] has

estimated that the economic loss in Africa due to poverty, climate change, population pressures

and inadequate farming techniques is about $68 billion USD per year. The status of soil condi-

tions contributes importantly to these causes.

Dewitte et al. [6] recently produced a harmonized soil polygon map of Africa at scales vary-

ing between 1:1M and 1:5M, known as the ‘Soil Atlas of Africa’. The resulting map shows the

predicted distribution of World Reference Base soil taxa within soil mapping units. Although

soil polygon maps can be useful, the focus of contemporary soil mapping is on improving and

extending the technology for collecting soil field observations and on automating the genera-

tion of (quantitative) high resolution soil property maps [7, 8]. To help bridge the soil informa-

tion gap in Africa, an international consortium initially coordinated by the International

Center for Tropical Agriculture (CIAT) and later by the Columbia Global Centers (Columbia

University), established the African Soil Information Service (AfSIS) project [9]. AfSIS builds

on recent advances in digital soil mapping, infrared spectroscopy, remote sensing, (geo)statis-

tics, and integrated soil fertility management in order to improve the way that soils are evaluat-

ed, mapped, and monitored, whilst significantly reducing the costs to do so [10, 11]. In that

context, a major focus of the AfSIS project is on producing continental and country-wide layers

of gridded maps of the spatial distribution of soil properties that may be used to support the se-

lection of appropriate land use options and the optimization of soil management practices.

The spatial resolution of soil mapping is also growing in importance. In order to provide us-

able soil information for detailed planning, soil maps are required at increasingly finer spatial

resolution [12]. Coarse resolution polygon-based soil maps, with an average size of delineations

of tens to hundreds of square kilometers, are of limited use for detailed spatial planning at a re-

gional scale and are not capable of supporting activities such as precision agriculture and/or

smallholder farmer applications. In comparison to other data types, there are now several glob-

al data sets of land cover available at a 30 m spatial resolution [13–15]. Although such detailed

resolutions are not yet realistic within the domain of global soil mapping, due to computational

and data volume constraints, soil mappers are pushing the boundaries by producing predic-

tions at increasingly fine resolutions for larger and larger areas [16–20].

Here, we present results of recent efforts to improve both the resolution and accuracy of the

initial predictions of soil properties created at 1 km spatial resolution [21]. We describe a sys-

tem for downscaling existing predictions to a 250 m resolution through the use of improved

modelling algorithms (random forests). As input data we use the largest current compilation of
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soil profile and soil point observations for Africa, prepared by the AfSIS project, in conjunction

with a large repository of remote sensing based images of explanatory environmental variables

with both continental and global extents. We focus on a mapping framework that allows us to

produce improved spatial predictions from existing data without additional large investments.

Readers interested in obtaining the input data, output maps and processing scripts in this

paper are referred to the AfSIS project website at http://africasoils.net. The output prediction

maps of soil properties for Africa at 250 m resolution are referred to as the ‘AfSoilGrids250m’

product and are available for download via http://www.isric.org/data/AfSoilGrids250m.

Materials and Methods

Automated soil mapping

The emerging ‘digital’ approach to soil mapping is data driven and uses statistical methods and

information technology to predict soil properties from soil point observations and correlated,

spatially exhaustive environmental variables [8, 22]. This approach benefits from new soil mea-

surement technologies such as soil spectroscopy [23, 24] and newly available global data layers,

especially those that are free and publicly distributed such as MODIS products [25], ASTER

and Landsat images and SRTM DEM [26].

Soil mapping processes are also increasingly automated, which is mainly due to advances in

software for statistical computing and growing processing speed and computing capacity. Fully

automated geostatistical mapping, i.e. generation of spatial predictions with little to no human

interaction, is today a growing field of geoinformation science [21, 27, 28]. Some key advan-

tages of using automated soil mapping versus more conventional, traditional expert-based soil

mapping are [29, 30]:

1. All rules required to produce outputs are formalized. The whole procedure is documented

(the statistical model and associated computer script), enabling reproducible research.

2. Predicted surfaces can make use of various information sources and can be optimized rela-

tive to all available quantitative point and covariate data.

3. There is more flexibility in terms of the spatial extent, resolution and support of requested

maps.

4. Automated mapping is more cost-effective: once the system is operational, maintenance

and production of updates are an order of magnitude faster and cheaper. Consequently, pre-

diction maps can be updated and improved at shorter and shorter time intervals.

5. Spatial prediction models typically provide quantitative measures of prediction uncertainty

(for each prediction location), which are often not provided in the case of conventional soil

mapping.

A disadvantage of automated soil mapping is that many statistical and machine learning

techniques are sensitive to errors and inconsistencies in input data. A few typos, misaligned

spatial coordinates or misspecified models can create serious artifacts and reduce prediction ac-

curacy, more so than with traditional methods. Also, fitting models using large and complex

data sets can be time consuming and selection of the ‘best’model is often problematic. Explicit

incorporation of conceptual pedological (expert) knowledge, which can be important for pre-

diction in new situations to address the above issues, can be challenging as well.
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Regression-kriging (RK)

At the heart of any geostatistical mapping algorithm is a geostatistical model from which pre-

diction equations are implemented using a programming language [31]. A common frame-

work for generating spatial predictions with soil data is the regression-kriging (RK) framework

[32, 33]. In general terms, RK takes the approach:

prediction ¼
trend predicted

using regression
þ

residual predicted

using kriging
ð1Þ

For example, in the case of linear RK, predictions are generated using [33]:

ẑðs
0
Þ ¼ x

T

0
� β̂ þ λ

T � ðz�X � β̂Þ ð2Þ

where z is a vector of soil observations at n sampling locations, x0 is a vector of p predictors (or

covariates) at the prediction location s0, β̂ is the vector of estimated regression coefficients, X is

a matrix of predictors at the n sampling locations, and λ is a vector of n kriging weights used to

interpolate the residuals. The regression-kriging model assumes that the residuals are generat-

ed from a normally distributed, second-order stationarity random process—i.e. a random pro-

cess that has a constant mean and variance, and a spatial correlation that only depends on the

separation distance between locations and not on the locations themselves [34].

Random forests RK model

To allow for more complex soil-environment relationships the linear regression model (Eq 1)

can be replaced with ‘machine learning’ algorithms. Common machine learning algorithms

are: artificial neural networks, support vector machines, classification and regression trees, and

random forests [31, 35]. In this paper we specifically evaluate the applicability of the random

forests algorithm [36] for soil mapping. This is for two main reasons. First, it has been proven

in numerous studies [31, 37, 38] that the random forests algorithm can outperform linear re-

gression. Second, unlike linear regression, random forests has no requirements considering the

probability distribution of the target variable and can fit complex non-linear relationships in p

+ 1-dimensional space (where p is the number of covariates).

A limitation of using random forests however, is that the model is usually only effective

within the range in covariate values exhibited by the training data. Statinikov et al. [39] have

shown that random forests may also over-fit data sets that are particularly noisy. Also, model

fitting and generation of predictions using random forests is orders of magnitude more time-

consuming than linear regression, especially when working with a large number of covariates.

Random forests RK model, including a discussion of comparisons between Mean Error

(ME) and the Root Mean Squared Error between two spatial prediction algorithms, is ex-

plained in greater detail in the Supporting Information (S1 Regression-kriging in R using the

Meuse data set).

Input data: soil profile observations and soil samples

For the purpose of building predictive models and generating soil property maps for Africa at

250 m spatial resolution, we merged two pan-African soil sample data sets (Table 1):

1. Africa Soil Profiles (AfSP) database—a compilation of more than 18,000 legacy soil profiles

(ca. 75,000 soil horizons) collected in the past 25+ years by numerous international and na-

tional governmental or public organisations and research groups and which, until recently,

were typically only available as printed soil survey reports, i.e. only as a paper copy [40],
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2. AfSIS Sentinel Site (AfSS) database—containing observations at ca. 9,000 locations (ca.

19,000 soil layers) collected by the AfSIS project during the period 2008–2012 [41].

The AfSP database contains a diverse collection of field and laboratory observations, usually

collected per pedogenetic horizon up to 2 m depth. The data from the original soil survey re-

ports (1950–2014) were collated, standardized and where possible, harmonized, quality con-

trolled, and integrated into a consistent database [40].

The AfSIS Sentinel Site database, one of the major deliverables of the first phase of the AfSIS

project (2008–2013), was generated using a consistent soil sampling design. The soil samples

from the sentinel site network were collected using a multilevel sampling scheme: a number of

‘Sentinel Sites’ (10 × 10 kilometers in size) were first selected across the whole continent (60

sites in 2012) using stratified random sampling. Stratification was done based on the major

Koeppen-Geiger climate zones of Africa, excluding true deserts and, for security reasons, spe-

cific African countries. Within each of the 60 Sentinel Sites, AfSIS field teams sampled 16 ‘Sam-

pling Clusters’ consisting of 10 randomly located circular ‘Sampling Plots’ (covering 1000 m).

At each sampling plot, composite soil samples (a centroid composed of four points) were taken

at two depths (0–20 and 20–50 cm), so that, in summary, the AfSIS Sentinel Site database con-

sists of:

• 60 Sentinel Sites,

• 16 Sampling Clusters per Sentinel Site,

• 10 Sampling Plots per Sampling Cluster,

• 2 composite soil samples (0–20 and 20–50 cm) per Sampling Plot.

Table 1. List of soil properties of interest. AfSP = Africa Soil Profiles database, AfSS = AfSIS Sentinel Site database. Range was derived as the symmetric
99% quantile range based on observed data. Number of depths column indicates number of output prediction depths e.g.: 6 depths (0–5 cm, 5–15 cm, 15–30
cm, 30–60 cm, 60–100 cm and 100–200 cm) or 2 depths (0–20 cm, 20–50 cm).

sample size

GSIF code Variable name Units AfSP AfSS Range Depths

ORCDRC Soil organic carbon concentration (fine earth) g kg−1 45956 18054 0.9–42 ‰ 6

PHIHOX Soil pH in H2O – 50403 18055 4.4–8.7 6

SNDPPT Soil texture fraction sand kg kg−1 54170 1408 7–94% 6

SLTPPT Soil texture fraction silt kg kg−1 54164 0 1–47% 6

CLYPPT Soil texture fraction clay kg kg−1 54167 0 3–73% 6

BLD Bulk density (fine earth) t m−3 8732 0 0.9–1.9 6

CEC Cation Exchange Capacity (fine earth) cmol+/kg 47875 0 1.2–57 6

NTO Total nitrogen g kg−1 50997 18054 0.1–3.1 ‰ 2

ALUM3S Exchangeable Aluminium mg kg−1 (ppm) 4305 18055 150–1800 2

EACKCL Exchangeable acidity cmol+/kg 24242 0 0–6.4 6

ECAX Exchangeable Calcium cmol+/kg 47103 18055 0.1–46 2

EXKX Exchangeable Potassium cmol+/kg 46463 18055 0.01–2.4 2

EMGX Exchangeable Magnesium cmol+/kg 45206 18055 0.04–15 2

ENAX Exchangeable Sodium cmol+/kg 41572 1414 0–8.3 2

EXBX Sum of exchangeable bases cmol+/kg 46215 18055 0.31–66 6

doi:10.1371/journal.pone.0125814.t001
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This sums to about 19,200 samples / layers collected at about 9,600 unique locations (Fig 1).

The sampling and analysis protocols used to produce the AfSIS Sentinel Site database are de-

scribed in detail in Vågen et al. [41, 42].

All soil samples of the AfSS database were analysed using soil diffuse reflectance spectrosco-

py, while only 10% were additionally analysed using laboratory methods (cf. ‘wet-chemistry’).

Next all soil spectral signatures were translated to soil properties by fitting soil spectroscopy

Fig 1. Temporal and soil-depth coverage of the Africa Soil Profiles and AfSIS Sentinel Site databases. See also Table 1.

doi:10.1371/journal.pone.0125814.g001
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calibration models to the set of reference soil samples for which both spectral signatures and

wet chemistry observations were available. For more details about the calibration models and

their accuracy, refer to the soil.spec package for R [43].

The distribution of the ca. 28,000 sampling locations of the two data sets is shown in Fig 2.

Note that neither of the data sets have ideal properties for geostatistical analyses. For example,

the Africa Soil Profiles Database is a compilation of soil samples from a multitude of different

soil survey projects and analysed in various laboratories following a diversity of soil survey

methods. Only limited harmonization has been applied so far and measurement and location

error is in many cases unknown, but could be substantial (the estimated average location error

radius is between 100–1800 m). The African Sentinel Sites data on the other hand, were ana-

lysed using consistent, standardized laboratory methods, hence they are nominally more suit-

able for soil predictive modelling because no harmonization is required. However, the

sampling points in AfSS database are clustered around 60 (10 × 10 kilometers) sentinel sites

Fig 2. Distribution of soil samples in Africa used to build spatial predictive models. (left) legacy soil profile observations (Africa Soil Profiles database)
showing ca. 18.5 thousand locations [40], and (right) AfSIS Sentinel Sites showing ca. 9.5 thousand locations, but which are clustered at 60 sentinel sites
[41]. Zoom-in on the example area (100 by 400 km) shown further in Figs 6 and 9. Coordinates in the Lambert Azimuthal Equal Area projection (WGS84
ellipsoid) with latitude at projection center = 5°, longitude at projection center = 20°.

doi:10.1371/journal.pone.0125814.g002
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and characterize only 0–50 cm soil depths (as compared to the legacy soil profiles that cover

also depths> 50 cm).

Environmental covariates

In addition to the point data we also used a large collection of raster images as covariate layers

to fit predictive models. These come from four main sources:

1. MODIS products at 250 m resolution—We used the Mid-infrared (MIR) Reflectance (Band

7) Long-Term and Monthly Averages and Enhanced Vegetation Index (EVI) Long-Term

and Monthly Averages (MOD13Q1 product) [25]. These layers were prepared for the pur-

pose of the AfSIS project by the Earth Institute at Columbia University and are available for

download at http://africasoils.net/data/datasets.

2. SRTM DEM v4.1 based covariates—We used elevation, slope and SAGA GIS Topographic

Wetness Index (TWI), all derived at 250 m resolution [26].

3. GlobeLand30—We used the fraction of coverage for ten land use classes from the global

land cover map for 2010 [15], which were resampled from 30 m to 250 m resolution in

SAGA GIS. These layers were also used to determine the soil mask i.e. areas of interest for

soil mapping.

4. SoilGrids1km—We used 1 km–resolution predictions of soil properties and classes pro-

duced previously using global models [21]. These were first downscaled to 250 m resolution

by bicubic resampling, as implemented in the SAGA GIS software [44].

Covariates were selected to represent the major soil forming processes and surface charac-

teristics. The MODIS MIR and EVI products represent spectral signatures of different surface

materials and vegetation types. Elevation, slope and Topographic Wetness Index are common

soil covariates representing landscape morphology and erosion / deposition processes. Soil-

Grids1km predictions were based on analysis of a large number of environmental covariates,

such as climatic images, lithology and land cover maps, Harmonized World Soil Database

mapping units and similar [21].

Soil mask layer

Wemake predictions only for areas with vegetation cover (about 21 million square-kilome-

ters), i.e. all deserts and shifting sand areas were excluded. We derived the soil mask map for

Africa by using the GlobeLand30 data set [15] whereby pixels that had> 10% of bare land

(class 90 in GlobeLand30) and/or> 30% of water cover (class 60 in GlobeLand30) were re-

moved from the mask. For permanent deserts we do not provide any predictions but advise

users to fill in those areas with expert-based estimates of soil properties, e.g. sand

content> 95% and organic carbon content< 1 permilles.

Prediction models

We implemented two soil mapping frameworks for producing spatial predictions of soil prop-

erties. In the first framework, we predicted soil properties at 250 m resolution, that had previ-

ously been mapped at 1 km using global soil prediction models [21], e.g. soil organic carbon,

pH, sand, silt, clay, bulk density, Cation Exchange Capacity and depth to bedrock. This is basi-

cally a downscaling framework in which the global predictions (1 km) are ‘refined’ or down-

scaled using finer resolution covariates (250 m), e.g.:

z250m ¼ f ðz1km;X250m
; dÞ þ ε ð3Þ
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where z250m is the target variable, z1km is the globally predicted (SoilGrids1km system) same

variable (i.e. same soil property and same depth) at coarser resolution, X250m are the values of

local covariates at the finer resolution, f is the regression function, ε is a spatially auto-correlat-

ed residual, which we interpolate using kriging, and d is depth. We define for example the

model for organic carbon as (in R syntax):

R> ORCDRC * m_ORCDRC + af_DEMSRE5a.tif + af_SLPSRE5a + af_TWISRE5a

+ . . .

+ af_GLC_10_250m.tif + . . . + af_GLC_100_250m.tif + . . .

+ af_M13EVIA01 + af_M13EVIA02 + . . . + af_M13RB7A01 + af_M13RB7A02

+ . . .

+ af_PC1EVI5a + . . . + af_PC4EVI5a + altitude

where m_ORCDRC is the value of organic carbon predicted at 1 km resolution (SoilGrids1km

layer) at the depth of sampling ORCDRC; af_DEMSRE5a, af_SLPSRE5a, af_TWISRE5a

are elevation, slope and SAGA GIS Topographic Wetness Index derived at 250 m;

af_GLC_x0_250m.tif is the fraction of the land cover class from the GlobeLand30 prod-

uct [15]; af_M13EVIAxx and af_M13RB7Axx are the long-term (2001–2013) standardized

values of MODIS EVI and mid-infra red (band 7) products for months January to December;

af_PC1-4EVI5a are the 1–4 principal components derived using annual MODIS EVI im-

ages (2001–2013), and altitude is soil depth, i.e. a depth at which the target variable has

been measured.

The trend model for organic carbon can be fitted using random forests or linear regression,

while the residuals can be interpolated using ordinary kriging. In the case of linear RK, predic-

tions using the model Eq (3) are generated by:

ẑ250mðs
0
Þ ¼ b̂

0
þ b̂

1
� ẑ1kmðs

0
Þ þ

X

p

j¼2

b̂ j � X
250m
j ðs

0
Þ þ λ

T � ε ð4Þ

where λ is the vector of kriging weights and ε is a vector of regression residuals at observation

locations.

In the second framework, we consider soil properties that have not yet been mapped previ-

ously using global models, such as Al concentration, exchangeable bases Ca, K and Mg. Here,

we build models using global soil class maps (i.e. predicted probabilities for each class) from

the SoilGrids1km system as global covariate layers:

z250m ¼ f ðμ1km;X
250m

; dÞ þ ε ð5Þ

where μ1km is the stack of soil class probabilities predicted globally (SoilGrids1km system). As

an example, the model used to predict exchangeable Mg is given in R syntax by:

R> EMGM3S * m_TAXOUSDA_Albolls + m_TAXOUSDA_Aqualfs . . .

+ af_DEMSRE5a.tif + af_SLPSRE5a + af_TWISRE5a + . . .

+ af_GLC_10_250m.tif + . . . + af_GLC_100_250m.tif + . . .

+ af_M13EVIA01 + af_M13EVIA02 + . . . + af_M13RB7A01 + af_M13RB7A02

+ . . .

+ af_PC1EVI5a + . . . + af_PC4EVI5a + altitude

where m_TAXOUSDA_x are predicted probabilities of the United States Department of Agri-

culture (USDA) Soil Taxonomy suborders (67 suborders in total) at 1 km resolution

Mapping Soil Properties of Africa at 250 m Resolution
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(SoilGrids1km data set). We used the USDA soil classes instead of World Reference Base clas-

ses because these were mapped with somewhat greater accuracy in the SoilGrids1km product

and because this classification system contains about twice as many classes [21].

Because the main focus of this paper is the comparison between linear regression and ran-

dom forests, for each property in Table 1 we fit a non-linear regression model using the ran-

dom forests algorithm as implemented in the randomForest package [45], and a linear

regression model using the same formula. For both models we then derived the residuals and

fitted residual variograms in 3D using the gstat package.

Variogram estimation

After the regression fitting, we modelled all variograms using an exponential model with three

standard parameters (nugget c0, partial sill c1, range parameter r):

gðhÞ ¼

0 if h ¼ 0

c
0
þ c

1
� 1� e

�
h

r

� �

� �

if h > 0
h ¼ ½hx; hy; hd� ð6Þ

8

>

<

>

:

where the scalar ‘distance’ h is calculated by scaling horizontal and vertical separation distances

using three anisotropy parameters:

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx

ax

� �2

þ
hy

ay

 !2

þ
hd

ad

� �2

v

u

u

t ð7Þ

Typically, in the case of soil data, the anisotropy ratio between horizontal and vertical dis-

tances is high—spatial variation observed in a few cm depth change may correspond with sev-

eral km or more in horizontal space, so that the initial settings of the anisotropy ratio (i.e. the

ratio of the horizontal and vertical variogram ranges) are between 3000–8000, for example.

Variogram fitting criteria can then be used to optimize the anisotropy parameters. In our case

we assumed no horizontal anisotropy and hence assumed ax = ay = 1, leaving only ad to be esti-

mated. Once the anisotropy ratio is obtained, 3D variogram modelling does not meaningfully

differ from 2D variogram modelling (e.g. see Fig 3C).

The 3D RK framework explained above can be compared to the approach of Malone et al.

[46], who first fit equal-area spline function to estimate the soil properties at a standard depth,

and next fit regression and variogram models at each depth. A drawback of the approach by

Malone et al. [46], however, is that the separate models for each depth ignore all vertical corre-

lations. In addition, the equal-area spline is not used to model soil-depth relationships but only

to estimate the values at standard depths for sampling locations i.e. it is implemented for each

soil profile (site) separately. In the 3D RK framework explained above, a single model is used to

generate predictions at any location and for any depth, and which takes into account both hori-

zontal and vertical relationships simultaneously. This approach is both easier to implement,

and allows for incorporating all (vertical) soil-depth relationships including the spatial

correlations.

Evaluation criteria

We evaluated the performance of each predictive model by calculating the Mean Error (ME)

and Root Mean Squared Error (RMSE) using 5–fold cross-validation. We also calculated the t-

and F-test statistics, as explained in the supporting information, to test if the random forests

model outperforms the linear regression model with statistical significance. For each predictive
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model, we also report the amount of variation at validation points explained by the model, de-

rived as:

S
%
¼ 1�

SSE

SST

� �

½0� 100%� ð8Þ

where SSE is the sum of squared errors at the cross-validation points (i.e. RMSE2 � n), and SST

is the total sum of squares of the original observations. The amount of variation explained by

the model is dimensionless and allows for comparing mapping accuracy between different vari-

ables (see supporting information). The t-test and F-test assume that the target variable has a

close-to-normal distribution, which means that we run all testing and visualization in the

transformed spaces for all soil properties except pH, sand, silt and clay content and bulk

density.

In addition to 5–fold cross-validation, we also test predictability of soil properties using leg-

acy soil profile data only (AfSP) vs Sentinel Site (AfSS) data and vice versa—predictability of

models fitted using Sentinel Site data vs legacy soil profile data. This comparison is done pri-

marily to identify those soil properties for which the predictability is critically weak when part

of the combined data set is completely removed.

Fig 3. Density of soil observations in Africa showing distinct spatial clustering and an example of residual variography. (A) relative density of soil
observations in Africa determined using a kernel smoother displayed in log-scale (input locations shown in Fig 2), (B) 3D sampling locations scheme, (C)
example of an exponential variogram fitted for soil organic carbon residuals. In this case the maximum distance of interest for kriging has been set at 60 km.

doi:10.1371/journal.pone.0125814.g003
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Final predictions

The final RK predictions were produced using a sum of the regression and kriging parts, as in-

dicated in Eq (4). Again, since we work at 250 m resolution, the whole process from data over-

lay to model fitting and prediction can take several hours; spatial predictions can take weeks of

computing. To speed up the processing we used a combination of tiling and parallel processing,

as implemented via the snowfall package for R [47]. The approximate processing time per soil

property, using the computer specifications mentioned in the discussion section, was:

• spatial overlay and generation of regression matrix: 20–30 min,

• fitting of random forests model and residual variogram: 30–60 min,

• spatial prediction using random forests (using tiling): 100–150 min,

• spatial interpolation of residuals using 3D ordinary kriging: 10–20 min,

• mosaicking and data export to GDAL supported format: 10–15 min.

To speed up 3D kriging of residuals for highly clustered point data, we used an approxima-

tion of ordinary kriging implemented via the spline.krige function in the GSIF package

[48]. The spline.krige function first adjusts the density of prediction locations by calcu-

lating the kernel density of the observation locations, such that areas that are only sparsely

sampled (Fig 3A) have a proportionally coarser prediction grid. This yields a ‘variable’ grid

with fine resolution only there where there are observations nearby. Kriged residuals at the 250

m grid are then derived from those at the variable grid using spline interpolation, as imple-

mented in the SAGA GIS software.

The spline.krige function speeds up the kriging calculations by an order of magni-

tude, with minimal loss in precision, whilst reducing generation of kriging artifacts. Achieving

the right balance between processing time and accuracy gain is especially important consider-

ing that we are dealing with large data sets and that most of the detail in spatial patterns comes

from the random forest models and not from residual kriging. Our initial testing indicated

that, if the parameters of the spline.krige function are set correctly, the loss in precision

rarely exceeds 1%.

Results

Mapping accuracy

Table 2 shows cross-validation summary statistics comparing linear regression with random

forests regression (as implemented in the randomForest package [45]). For all properties,

the random forests model yields more accurate predictions than the linear regression model.

The F-test results in Table 2 show that the variance reduction compared to the linear model is

statistically significant in all cases. The relative improvement in mapping accuracy is between

15–75%. Bulk density, aluminum concentration and exchangeable acidity benefit most from

replacing linear regression with random forests, while the accuracy gain is smallest for organic

carbon and total nitrogen. The percentage of explained variation varies between 40–85% for

random forests, and between 10–45% for linear regression.

Note the negative R2 value of the linear regression model for exchangeable sodium (ENAX),

which means that the model performs worse than using the mean of all observations as predic-

tor; for the random forests model, exchangeable sodium is the soil property that is the least

well predicted. Also note that the SoilGrids1km maps are not available for the soil nutrients,

hence missing rows in Table 2.
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For six properties the random forests model has a significantly smallerME than the linear

model. For the other properties, there is either no significant difference in mean error or the

linear regression model has a smallerME than the random forests model. The improvement in

mapping accuracy when comparing random forests with linear regression is especially evident

for pH, bulk density, total Al, and most of the exchangeable bases (especially Mg and Ca). For

all these variables both F- and t-tests show statistically significant improvements, which means

that both the residual error and the mean error are significantly reduced.

The column ΔRMSE% in Table 2 shows the relative improvement in accuracy of the linear

regression model compared to the SoilGrids1km soil property maps. These statistics show that

refining the SoilGrids1km maps with finer-resolution (250 m) DEM and satellite imagery im-

proves mapping accuracy. In addition, the mean errors of the linear model predictions are

smaller than those of the SoilGrids1km maps, which show considerable bias for most proper-

ties. The validation results also show that the gain in prediction accuracy resulting from using a

non-linear model instead of linear model (which is roughly the difference between the

ΔRMSE% statistics) is larger than the gain resulting from refining relatively coarse resolution

predictions (1 km) with fine-resolution (250 m) covariate information.

Columns SP-SS and SS-SP in Table 2 show that, in principle, legacy soil profile data have

shown to be more useful than the sentinel site data for mapping soil organic carbon, pH, total

nitrogen, exchangeable K and Mg—the results of cross-validation using only Sentinel Site data

for these variables are consistent with the 5-fold cross-validation. Spatial predictions using Sen-

tinel site data as the only training data seem to result in better predictions only for exchange-

able Ca and total exchangeable bases. These results make sense as the number of legacy soil

Table 2. Summary statistics for mapping accuracy assessed using 5–fold cross-validation.ME is the mean error, RMSE the root mean squared error,
sg1km are the SoilGrids1kmmap, rf represents random forest model predictions and lm the linear model predictions (trend model predictions only). The t-
test evaluates the difference between the mean errors of the rf and lmmodels with alternative hypothesis that the difference is greater than 0. The F-test
evaluates the ratio between the residual variances of the rf and lmmodels with alternative hypothesis that the difference is greater than 1. Σ% indicates
amount of variation explained by the prediction models and ΔRMSE% indicates improvement in RMSE in percentages compared to the lmmodel. The ‘???’ in-
dicates significance at the 99% probability level. For all soil properties except PHIHOX, SNDPPT, SLTPPT, CLYPPT and BLD, the Σ%, the t-test, and the F-test
have been calculated in log-transformed space. SP-SS are the predictions at Sentinel Sites produced using models fitted from AfSP data, SS-SP are the pre-
dictions at legacy soil profiles produced using AfSS data. See Table 1 for more details.

sg1km lm rf sg1km lm rf rf SP-SS SS-SP

GSIF code ME ME ME t-test RMSE RMSE RMSE F-test Σ% ΔRMSE% RMSE RMSE

ORCDRC 1.429 0.113 0.308 1.000 13.0 12.2 10.6 0.000??? 61.3 +15.1 11.4 14.4

PHIHOX -0.063 0.002 0.006 0.985 0.933 0.886 0.673 0.000??? 66.9 +31.6 0.69 1.01

SNDPPT -1.117 -0.035 -0.066 0.209 23.0 21.2 15.9 0.000??? 61.1 +33.3 27.2 29.7

SLTPPT -2.396 0.040 0.190 1.000 11.9 10.9 8.31 0.000??? 56.1 +31.2 NA NA

CLYPPT -3.087 0.005 0.183 1.000 18.1 17.1 13.7 0.000??? 52.4 +24.8 NA NA

BLD 0.007 0.000 0.002 0.749 0.227 0.213 0.141 0.000??? 70.4 +51.1 NA NA

CEC 1.114 -0.050 0.152 0.000??? 11.4 11.0 7.92 0.000??? 66.3 +38.9 NA NA

NTO NA 0.001 0.015 0.000??? NA 0.818 0.691 0.000??? 61.0 +18.4 0.688 0.977

ALUM3S NA 0.016 0.535 0.000??? NA 279 160 0.000??? 86.3 +74.4 912 NA

EACKCL NA -0.004 0.033 0.000??? NA 2.14 1.30 0.000??? 77.3 +64.6 NA NA

ECAX NA -0.027 0.295 1.000 NA 16.2 12.7 0.000??? 67.2 +27.6 27.9 18.4

EXKX NA -0.002 0.017 0.817 NA 0.740 0.599 0.000??? 58.6 +23.5 0.435 0.925

EMGX NA 0.016 0.083 0.000??? NA 3.58 2.52 0.000??? 66.0 +42.1 2.40 4.41

ENAX NA 0.001 0.085 0.000??? NA 4.25 3.61 0.000??? 46.7 +17.7 5.63 5.82

EXBX NA 0.022 0.314 1.000 NA 15.5 11.0 0.000??? 68.8 +40.9 20.9 17.8

doi:10.1371/journal.pone.0125814.t002
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profile observations is about 5–6 times greater than for the Sentinel Sites. In addition, the lega-

cy observations are also more broadly distributed across Africa.

Fig 4 shows cross-validation plots for a selection of soil properties obtained with the random

forest RK model using local and global covariates. In all cases there seems to be a reasonable

match between observed and predicted, although in some cases there is still quite some scatter

around the 1:1 line.

Best predictors

Fig 5 shows ‘importance plots’ produced by the randomForest package, which portray the im-

portance of different predictor variables. Not surprisingly, the most important covariates for

mapping soil properties that have already been mapped at 1 km globally are the SoilGrids1km

layers. This confirms that the method derived from Eq (3) is a useful way to downscale soil

property predictions from 1 km (global predictions) to 250 m resolution (African continent).

While much of the variation in target soil properties is explained by the global maps of these

same soil properties, at 250 m resolution, local covariates still help refine spatial detail and im-

prove prediction accuracy. This appears mainly to be attributable to more detailed information

about landform and vegetation cover contained in the local covariates.

For soil properties that were not previously mapped at 1 km resolution, randomForest usu-

ally identifies (through the variable importance measure) occurrence probabilities of soil types

(especially Alfisols and Mollisols) as the best or second-best predictors of exchangeable bases

(see for example Fig 5, right). This fits well with pedological knowledge: Alfisols have relatively

high (at least 35%) base saturation, meaning calcium, magnesium, potassium and/or sodium

are relatively abundant on the exchange complex. Note that the predicted Aqoulls (Fig 5) come

maybe as less probable class in Africa (probabilities< 15%), but it appears that Aquolls-ness of

the environmental conditions helps predict some macro-nutrients quite distinctly.

Final predictions

Figs 6, 7, 8 and 9 show output predictions for soil organic carbon, total N, sum of exchangeable

bases and CEC and exchangeable Mg. Fig 9 illustrates broadly consistent spatial patterns be-

tween maps at 1 km (SoilGrids1km) and 250 m (AfSoilGrids250m). The 250 m resolution pre-

dictions based on random forests models and a combination of local and global covariates

exhibit, however, significantly higher mapping accuracy, i.e. an average increase of approxi-

mately 30% (see Table 2), and a 16 times greater spatial detail (from 1 km to 250 m resolution).

Discussion

We presented initial results of mapping a selection of soil properties for the African continent

by comparing and contrasting random forests regression combined with kriging to linear re-

gression kriging. Our primary motivation for this research was to contribute to the continuous

improvement of continent-wide [18, 49] and global soil mapping initiatives [21]. By using

globally predicted soil properties and classes (SoilGrids1km) in combination with local covari-

ates available for Africa and random forests regression, we tried to identify ways to improve

the mapping accuracy and resolution of initial SoilGrids1km maps without requiring addition-

al large investments. For a comparison, typical costs of soil mapping in the USA are about

$1.50 USD per acre i.e. about $3 USD per ha [50], which means that, to map 21 million square-

kilometers of usable land in Africa would cost approximately $6.3 billion USD following the

USDA mapping standards. Estimated total costs of the USDAmapping standard include costs

of field work, laboratory data analysis and generation and distribution of maps and reports.

Even if we would use a more conservative estimate of the mapping costs ($8 USD per square-
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Fig 4. Scatter plots of 5-fold cross-validation errors for soil organic carbon (ORCDRC), pH in water (PHIHOX), bulk density (BLD), soil texture
fractions (SNDPPT, SLTPPT and CLYPPT), Cation Exchange Capacity (CEC), total nitrogen (NTO), exchangeable bases (EXBX), total Aluminium
(ALUM3S), exchangeable acidity (EACKCL), exchangeable Potassium (EXKX), exchangeable Calcium (ECAX) and exchangeable Magnesium (EMGX).
See also Table 2.

doi:10.1371/journal.pone.0125814.g004
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Fig 5. Importance plots for soil organic carbon and exchangeable Magnesium. derived using the varImpPlot function available in the randomForest
package [45]. m_TAXOUSDA_x are the predicted SoilGrids1km Soil Taxonomy suborders class probabilities, af_DEMSRE5a, af_SLPSRE5a, af_TWISRE5a
are the elevation, slope and SAGAGIS Topographic Wetness Index derived at 250 m resolution, af_M13EVIAxx and af_M13RB7Axx are the long-term
(2001–2013) standardized values of MODIS EVI and mid-infra red (band 7) products for months January to December, and af_PC1–4EVI5a are the first
four principal components derived from annual MODIS EVI images (2001–2013).

doi:10.1371/journal.pone.0125814.g005
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kilometer [51]), which better matches the resolution of 250 m, the total costs would still exceed

hundreds of millions of USD. In comparison, the total budget of the AfSIS project was about

22 million USD, from which only 30–50% was used for producing soil property maps. Such a

significant reduction of mapping costs per area was only possible because we focused on

utilizing:

1. existing legacy soil profile data, rather than new soil surveys;

2. new inexpensive measurement technologies, such as soil spectroscopy, to reduce the costs of

measuring the soil properties in laboratory;

Fig 6. Predicted exchangeable Mg, Ca and K (in cmol+/kg) and Al concentration (ppm) using random forests RKmodel: zoom-in on the example
area from Fig 2. Vector lines data source: OpenStreetMap.

doi:10.1371/journal.pone.0125814.g006
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3. publicly available remote sensing based covariate layers such as MODIS and SRTM DEM

derivatives; and

4. free and open-source software for data analysis and visualization.

We evaluated the mapping performance of the two approaches using 5–fold cross-valida-

tion (see Table 2 and Fig 4). The evaluation showed an increase in mapping accuracy between

15–75% as a result of using random forests and finer-resolution covariates in addition to coarse

resolution global soil maps. Thus, we believe that the additional time spent on model fitting

and preparing all covariates for use in random forests modelling is worth the extra effort. This

is in line with Van Ranst et al. [3], who specifically suggested that: “The (soil survey) process

should be cost-effective and economic, and the product more precise and accurate, less cumber-

some for manipulations, and more amenable for use by a variety of disciplines.”

Fig 7. Soil organic carbon content in permilles predicted using 3D random forests RK at six standard depths.White pixels indicate excluded areas
(water bodies and deserts).

doi:10.1371/journal.pone.0125814.g007
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Fig 8. Spatial patterns of predicted total nitrogen (in permilles), exchangeable Mg (cmol+/kg) and CEC (cmol+/kg) for topsoil for Kenya. Legends
were set using equally spaced quantiles. White pixels indicate excluded areas (water bodies and deserts). Each soil property is modelled independently and
can thus show quite different spatial patterns.

doi:10.1371/journal.pone.0125814.g008

Fig 9. Predicted soil organic carbon content in permilles (depth: 0–5 cm) with a zoom-in on the area around the town of Arusha (Tanzania). (left)
original SoilGrids1km layer at 1 km resolution vs (right) downscaled spatial predictions at 250 m resolution. Vector lines data source: OpenStreetMap.

doi:10.1371/journal.pone.0125814.g009
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The use of random forests improved the mapping accuracy for all soil properties when com-

pared with linear regression, but Table 2 and Fig 4 show that there are still large prediction er-

rors and considerable scatter around the 1:1 line. We should note here that the results of the

cross-validation only give an indication of the true accuracy of the prediction maps because

not all sampling locations were collected using probability sampling [52]. For this reason, we

decided to focus on cross-validation of the regression part only. If we would have included kri-

ging in the cross-validation, this would have likely resulted in more optimisticME and RMSE

simply because the points are highly spatially clustered (Fig 3).

A large portion of variation in soil properties will likely remain unpredictable. As mentioned

previously, this is because the legacy soil profile data are a compilation of various data sets with

significant measurement and positional errors. Legacy soil profile data are also largely outdated

(Fig 1). On the other hand, response to nutrient applications is largely driven by soil water

availability, which is largely dependent on properties that are stable in time (soil texture and

coarse fragments), making legacy soil data still cost-effective. The majority of sentinel site soil

property data were derived from soil spectroscopy data and these also introduce uncertainties.

It is also clear from Fig 4 that, especially in the case of organic carbon and clay content, high

values are underpredicted while low values are overpredicted. This is due to the well-known

smoothing effect of regression and kriging.

Although the random forests algorithm turns out to be a superior spatial prediction frame-

work, a drawback of using random forests is that these can take considerably more time to fit

and make predictions than linear regression. In our case it took on average 30–60 min to fit a

random forests model per property (see Table 1) and about 10 days of continuous computing

to produce all prediction maps (on a 12–core HP Z420 workstation with 64 GiB RAM running

on a Windows 7 64-bit system). Just for illustration, one image of Africa at this resolution is

29,501 columns by 31,505 rows or about 300–600 MiB after (gzip) compression (the soil mask

map of Africa contains a total of 331 million pixels / prediction locations). To produce all pre-

dictions of all properties at six standard depths requires almost 1 TiB of storage space. Hence

further improvements will need to focus on optimizing the computing (e.g. moving to cloud

computing) and speeding up reading/writing of the soil images (e.g. reading and writing from

the R environment to final output GIS formats).

Validating spatial predictions for the entire continent of Africa is certainly not trivial and

probably requires a collaborative effort of all countries involved. It is clear from Fig 2 that

many countries, especially in the northern part of Africa, but also large land areas such as the

Democratic Republic of Congo, Namibia, Chad and South Sudan, are under-represented with

only few profiles available for vast areas (see also Fig 3). In many countries in Africa there are,

unfortunately, security issues that restricted our ability to collect both new Sentinel Site data

and existing legacy data. In that sense, these initial spatial predictions should be considered

only a beginning of an ongoing process of automated soil mapping of the African continent

(Fig 10).

The F-test results in Table 2 showed that the accuracy improvements were highly statistical-

ly significant for all properties. This is partially because with a very large number of soil sam-

ples (see Table 1) even a small difference in variance (and RMSE) between two methods can be

statistically significant. In that context, ΔRMSE%, i.e. the relative improvement in the RMSE, is

probably more informative for judging the added value of non-linear regression and local co-

variates, while F- and t-tests are only useful to rule out that prediction improvements are due

to chance effects. This study showed that use of random forests for modelling all soil properties,

but especially for coarse fragments and nitrogen content, is simply a better choice than linear

regression.
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Because exchangeable Mg, Ca, Na, K and total bases are highly correlated, their prediction

maps and importance plots are also similar. Aluminium, on the other hand, is slightly negative-

ly correlated with the cations, implying that the map of Aluminium concentration has a re-

versed spatial pattern (Fig 6). This is expected as strongly weathered soils tend to have higher

Aluminium and lower base status. However, many areas with high concentration of exchange-

able bases in Africa are deficient in nitrogen and available phosphorus and possibly have acidi-

ty or toxicity problems. This implies that delineating the most fertile soils in Africa also

requires information derived from additional soil property maps e.g. organic carbon and nitro-

gen content maps. Furthermore, we should emphasize that maps based on soil legacy data (Fig

2) may not accurately depict the current status of soil properties, which may have undergone

large changes over time due to changes in land use and management. While our maps provide

a useful overview of soil fertility status in Africa, only recently (and properly) collected, new

soil samples are suitable for establishing relevant baselines for soil health surveillance [53].

An interesting discovery of our investigation is that globally predicted Soil Taxonomy sub-

orders significantly help improve predictions of exchangeable elements (Figs 5 and 11). Know-

ing that there are only about 2500 soil profiles that provide information on Soil Taxonomy

classes in Africa (Fig 12) it appears that there is indeed an added value in using soil classes as

covariates. Note that calibration of the regression models used to derive the global

Fig 10. Spatial prediction scheme used to produce AfSoilGrids250m data. Spatial predictions in the case of an automated soil mapping system can be
continuously updated by adding new soil field observations and new covariates.

doi:10.1371/journal.pone.0125814.g010
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Fig 11. High values of exchangeable bases in Africa coincide with the predicted distribution of Alfisols and Mollisols. distribution of Aquolls from
SoilGrids1km [21] (right) and the predicted exchangeable Mg (left). See also Fig 5.

doi:10.1371/journal.pone.0125814.g011

Fig 12. Global distribution of profiles with observed USDA Soil Taxonomy class. observations used as calibration data for producing SoilGrids1km
predictions [21]. The majority of observations (> 80%) come from the USA National Cooperative Soil Survey Soil Characterization database.

doi:10.1371/journal.pone.0125814.g012
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SoilGrids1km soil map was able to make use of a much larger global soil data set (ca. 28,000

profiles with USDA Soil Taxonomy classification, with> 80% of these from the North Ameri-

can continent; Fig 12). These findings draw attention to the potential of using calibration data

and soils knowledge obtained from densely sampled countries to improve mapping of soil in

countries with limited soil data. Our results also suggest that soil mapping projects can benefit

substantially from including a relatively large number (e.g. 10–100) of inexpensive soil class ob-

servations for every soil profile that is analysed in the laboratory.

Although the global soil covariates (SoilGrids1km maps) proved very useful, it should be

mentioned that these were derived from numerous global covariate layers that could equally

have been included in mapping directly. Theoretically, the prediction accuracy can be im-

proved using the original global covariates, because it is a more flexible approach that does not

require that all covariate information must be passed through a SoilGrids1km map. However,

from a practical point of view there is much value in using an existing global soil map directly

as a covariate in regional-scale mapping. It simplifies the model building process while still cap-

turing the most important information. The pros and cons of various approaches should be

tested in future research, also for mapping soil properties at the national scale.

We need to emphasize that these are preliminary results and output maps will be re-com-

puted and gradually improved until stable results are produced, as was the case with the Soil-

Grids1km maps [21]. We have approached a level of spatial resolution that could prove useful

for regional to sub-regional planning, but is probably not yet sufficiently detailed for site level

planning or operational management. Nevertheless, the output raster maps exhibit clearly im-

proved spatial detail and are more accurate than the previous 1 km resolution maps (see e.g.

Fig 9). Future applications will need to evaluate the actual benefit / gain that is realized by

using this soil information for agricultural planning and decision making. Another future re-

search direction would be to develop methodologies to allow for multi-scale merging of spatial

predictions of soil properties from national or local initiatives.

There are also other limitations to automated soil mapping, i.e. machine learning algorithms

for producing soil information, that need to be mentioned here. Firstly, the number of accu-

rately georeferenced locations of reliable soil observations (particularly with analytical data) is

often not sufficient to completely capture and describe all patterns of soil variation in an area.

There may be too few sampled points and the exact location of point data may not be correctly

recorded. In short, data-driven soil mapping is field-data demanding and collecting field data

requires significant efforts. Secondly, there is no guarantee that the available soil point data,

apart from the AfSIS Sentinel Site data, are truly representative of the dominant patterns and

soil forming conditions in Africa. Many traditional soil survey points are selected and sampled

purposely to locate soil mapping unit boundaries and hence transition areas are overrepresent-

ed [54]. Soil surveyors often also sample with an obvious bias towards potentially productive

areas. In the case of the AfSP and AfSS datasets, it seems that especially tropical soils and desert

soils have been heavily under-represented. We encourage national and regional agencies to

take a critical look at the prediction maps and help us improve these by providing local data,

local validation reports or quality checks.

In summary from all analyses shown, two main findings can be emphasized:

1. Random forests proved to be a more successful prediction method than multiple linear re-

gression with an average improvement in mapping accuracy (ΔRMSE%) of about 20%. Fit-

ting and running random forests models takes an order of magnitude more time and the

modelling success is sensitive to artifacts in the input data, but as long as quality-controlled

point data are provided, an increase in soil mapping accuracy can be expected.
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2. SoilGrids1km global predictions can help produce more accurate predictions of soil proper-

ties in Africa when these are refined with finer-resolution information derived from a DEM

or satellite imagery. Global and local covariates can be elegantly combined to produce glob-

ally consistent and complete soil maps.

Supporting Information

S1 Regression-kriging in R using the Meuse data set. Regression-kriging and comparison

of spatial prediction efficiency explained using using the Meuse data set [30]. For more R

code examples please also refer to the GSIF tutorial at http://gsif.isric.org.

(PDF)
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