
Abstract We use morphological image process-

ing for classifying spatial patterns at the pixel le-

vel on binary land-cover maps. Land-cover

pattern is classified as ‘perforated,’ ‘edge,’ ‘patch,’

and ‘core’ with higher spatial precision and the-

matic accuracy compared to a previous approach

based on image convolution, while retaining the

capability to label these features at the pixel level

for any scale of observation. The implementation

of morphological image processing is explained

and then demonstrated, with comparisons to

results from image convolution, for a forest map

of the Val Grande National Park in North Italy.
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Introduction

Indicators of forest fragmentation are reported by

several national and international environmental

programs (Montréal Process Liaison Office 2000;

Heinz Center 2002; Malahide 2004; USDA Forest

Service 2004) in assessments of forest health and

biodiversity. Turner et al. (2001) describe ap-

proaches to landscape and forest pattern analysis,

and Li and Wu (2004) and Neel et al. (2004)

summarize some of the conceptual and practical

limitations. In practice, most forest fragmentation

indicators are motivated either by the concepts of

adjacency and connectivity at the pixel level (e.g.,

Musick and Grover 1991) or by Forman’s (1995a)

landscape-level concepts of patch-corridor-matrix

and patch-mosaic. To satisfy requirements for

comparability of data and indicators over large

geographic regions, the input data for assessments

are typically land-cover maps derived from re-

mote sensing.

An important aspect in the description of for-

est spatial pattern is the accurate identification

and mapping of ‘internal’ and ‘external’
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fragmentation (Zipperer 1993). Different causes

of landscape change may have characteristic sig-

natures related to these types of fragmentation

(Forman 1995b), and internal gaps in forest can-

opies introduce biotic and abiotic ‘edge effects’

directly into interior forest. Bogaert et al. (2004)

developed a landscape-level classification algo-

rithm that identifies ten fragmentation categories,

including internal and external fragmentation,

according to observed changes in patch area,

number of patches, and patch perimeter in the

landscape. However, patch-based approaches are

difficult to implement in large-area assessments

due to the large number of patches and the large

extent of the map. Reducing the number of pat-

ches (e.g., Heilman et al. 2002) requires data

modifications that can result in the loss of infor-

mation about small patches, and subdividing the

map (e.g., Riitters et al. 2004) often truncates

individual patches, which results in inaccurate

estimates of patch size and shape.

Large-area, pixel-level mapping of internal and

external fragmentation has been described by

Riitters et al. (2000, 2002) and Civco et al. (2002).

These methods are based on image convolution

and do not require the identification of individual

patches. Instead, a fixed-area ‘window,’ or kernel,

is centered over each pixel on a forest map, and

an index is calculated according to the amount

and adjacency of forest in the window. This result

is then assigned to the forest pixel located at the

window center, thus building a new map of the

fragmentation index values. However, this ap-

proach often misclassifies fragmentation (see Ri-

itters et al. 2000) because: (1) it is based partly on

percolation theory, which applies strictly to ran-

dom forest maps, and real landscapes are not

random; (2) the fragmentation index is a cate-

gorical delineation of the continuous

‘amount—adjacency’ parameter space, and; (3)

contextual information from outside the window

cannot be considered, resulting in unreliable in-

dex estimates which becomes increasingly appar-

ent for windows smaller than 9 · 9 pixels.

In this paper, we use morphological image

processing (Soille 2003) as an alternate approach

for reliable pixel-level classification and mapping

of land-cover patterns. Morphological image

processing has been used in landscape ecology to

map edge types according to the pair-wise iden-

tities of adjacent pixels forming an edge (Metzger

and Muller 1996) where the abundance of dif-

ferent edge types was used to estimate class-level

and landscape-level indices of adjacency and edge

complexity. Metzger and Décamps (1997) used

morphological operations to illustrate a proposed

landscape-level habitat connectivity index called

‘interior habitat percolation degree.’ However,

indicators at landscape level provide only a single

value and are difficult to interpret independently

of composition (Neel et al. 2004). In addition,

landscapes with substantially different arrange-

ments of forest can have the same landscape-level

index value. In contrast, pixel-level classification

permits mapping and monitoring of spatial pat-

terns at the pixel level which provides a greater

sensitivity to pattern changes over time. To

illustrate the approach, we present an algorithm

that identifies the four types of forest patterns

considered by Riitters et al. (2002), and we com-

pare the results of the two methods obtained in

the Val Grande National Park (North Italy).

Methods

Matheron (1967) and colleagues introduced

morphological image processing for the study of

the geometry of porous media. Recent textbooks

describe mathematical morphology as a theory

and technique based on set theory for analyzing

the shape and form of objects (Soille 2003). An

algorithm to classify forest patterns is defined by a

sequence of logical operations such as union,

intersection, complementation, and translation

using geometric objects called ‘structuring ele-

ments’ (SE) of pre-defined shape and size. We

will provide only a verbal description of the

algorithm (see Soille (2003) for a formal mathe-

matical language) and consider two SEs: an 8-

neighborhood (SE1) and a 4-neighborhood

(SE2). We define forest connectivity in cardinal

directions only (SE2) and use the following two

morphological operations. The ‘erosion’ operator

shrinks regions of forest and the ‘dilation’ oper-

ator expands them; the direction and extent of

these operations is defined by the shape and

dimension of the SE.
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We consider four classes of forest pattern

(Fig. 1). ‘Core forest’ is relatively far from the

forest–nonforest boundary and ‘patch forest’

comprises coherent forest regions that are too

small to contain core forest. ‘Perforated forest’

defines the boundaries between core forest and

relatively small perforations, and ‘edge forest’

includes interior boundaries with relatively large

perforations as well as the exterior boundaries of

core forest regions. We will demonstrate how the

SE can be adapted to tune the analysis scale to

specific definitions of ‘far’ and ‘large,’ which

permits differentiation of internal and external

fragmentation.

Step 1: Detect core forest

Beginning with the forest map (Fig. 2, top row,

left panel), core forest (Fig. 2, top row, center

panel) is obtained by applying an erosion with

SE1. The center pixel of SE1 is core forest if all

Fig. 1 Illustration of four types of spatial pattern on an
artificial map (see text for definitions)

Fig. 2 Morphological erosion applied to the forest–non-
forest mask (top row, left panel) to identify core forest
(top row, center panel). Next, dilations are executed until
there is no difference between two consecutive dilations

(top row, right panel through bottom row, left panel) to
derive patch forest as the difference from the original
forest map (bottom row, right panel)
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eight neighbors are forest, resulting in all forest

regions being shrunk by 1 pixel. The difference

between this core forest map and the original

forest map defines the pixels that are candidates

for the remaining classes of patch, perforated, and

edge.

Step 2: Detect patch forest

Patch pixels are forest regions that do not contain

core forest. They are identified after their com-

plement, the original forest map without patch

pixels, has been found. The latter is reconstructed

starting from the set of core forest pixels (Fig. 2,

top row, center panel) and adding all forest pixels

that are connected to this set which is achieved by

repeated dilations with SE2 (Fig. 2, bottom row,

left panel). Here, patch pixels can never be added

because they are detached from the core-con-

nected pixels. The first dilation adds forest pixels

that are directly connected to core forest, and

repeated dilations add forest pixels that are indi-

rectly connected. The dilations stop when all

indirectly connected forest pixels have been ad-

ded. The difference between this map and the

original forest map is the set of patch pixels

(Fig. 2, bottom row, right panel).

Step 3: Detect edge forest

The detection of edge pixels starts from the

nonforest map (Fig. 3, top row, left panel). By

analogy to Step 2, the nonforest patches are

identified and removed. Edge pixels can then be

Fig. 3 Morphological erosion and successive dilations
applied to the nonforest mask (top row, left panel through
center row, right panel). Final dilation into neighboring

forest regions showing patch and edge pixels (bottom row,
left panel) and edge after eliminating patch (bottom row,
right panel)
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Fig. 4 Final result
showing the four forest
spatial pattern classes

Fig. 5 Top: The forest
mask of the Val Grande
National Park with a
rectangular sub-region for
a magnified view of the
classification (Fig. 6).
Bottom: Comparison of
the forest class proportion
derived for the
convolution (C.) and the
morphological approach
(M.). The window
dimension (convolution)
or SE-size
(morphological) is shown
under each column
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identified by dilating the current nonforest areas

in all directions (using SE1) and looking for forest

pixels instead of nonforest pixels. This step also

retrieves the forest patch pixels, which are re-

moved by subtraction (Fig. 3, bottom row, left

panel).

Step 4: Detect perforated forest

With knowledge of core, patch, and edge pixels,

the perforated pixels are obtained by subtraction

as the only remaining unlabeled forest pixels

(Fig. 4).

Results and discussion

The 500 km2 Val Grande National Park is a Na-

tura 2000 site in northern Italy. A 30-m resolution

forest–nonforest raster map (Fig. 5, top, Estreguil

and Cerruti 2004) was used to compare the mor-

phological approach with the image convolution

approach. Four different scales of analysis were

investigated using four different structuring ele-

ment sizes and corresponding window sizes. Be-

cause the two approaches use the same definition

of core forest, they yield identical core regions for

the same SE (or window) size, but there are

important differences between the two ap-

proaches for the remaining three classes (Fig. 5,

bottom). The higher accuracy of the morpholog-

ical method at the pixel level is demonstrated by a

direct comparison of the classified map (Fig. 6)

for which the visual evidence shows clearly that

image convolution is less accurate.

With increasing SE (or window) size, both

methods increase the width of the perforated and

edge regions at the expense of the core regions,

illustrating how changing the SE size tunes the

spatial scale of analysis in the same way as

changing the window size in image convolution.

With changes in SE size, the morphological ap-

proach remains accurate at the pixel level; small

patch regions remain patch regions and stay dis-

connected to neighboring core forest regions, and

continuous forest boundaries are labeled as a

single class. Because of the higher accuracy of

pixel-level mapping, summary statistics and trend

analyses at landscape level will also be more

accurate. These improvements will allow an

unsupervised and precise spatial pattern analysis

at both, the pixel and landscape level.

Summary

Our intention in this brief note is to stimulate

further interest in mathematical morphology for

landscape pattern analysis. Previous applica-

tions focused on landscape-level estimation of

Fig. 6 Forest mask of the sub-region of Fig. 5 (left) and classification results for convolution (top) and morphological
approach (bottom)
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percolation and adjacency indices (Metzger and

Muller 1996; Metzger and Décamps 1997), but

our approach may find more applications for

pixel-level classification and mapping of patterns,

such as the identification of internal and external

fragmentation that we demonstrated. We pur-

posefully chose a simple example to enable

comparisons with an earlier approach for pixel-

level mapping in landscape assessments, and we

used verbal descriptions familiar to landscape

analysts using geographic information systems or

image processing software. As a formal frame-

work utilizing set theory and logic operations,

mathematical morphology can address more

complicated problems that may not be tractable

otherwise. Our current research is extending the

concepts described in this brief note, and we are

conducting additional studies needed to lay the

foundation for implementing the techniques in

national and international assessments of forest

health and biodiversity.
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