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Abstract

In coastal China, there is an urgent need to increase land area for agricultural production

and urban development, where there is a rapid growing population. One solution is land rec-

lamation from coastal tidelands, but soil salinization is problematic. As such, it is very impor-

tant to characterize and map the within-field variability of soil salinity in space and time.

Conventional methods are often time-consuming, expensive, labor-intensive, and unpracti-

cal. Fortunately, proximal sensing has become an important technology in characterizing

within-field spatial variability. In this study, we employed the EM38 to study spatial variability

of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and

EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil

salinity. Geostatistical methods were used to determine the horizontal spatio-temporal vari-

ability of soil salinity over three consecutive years. The study found that the distribution of

salinity was heterogeneous and the leaching of salts was more significant in the edges of

the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical

spatio-temporal variability of soil salinity was determined and the leaching of salts over time

was easily identified. The methodology of this study can be used as guidance for research-

ers interested in understanding soil salinity development as well as land managers aiming

for effective soil salinity monitoring and management practices. In order to better character-

ize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e.,

EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to con-

duct Quasi-3D inversions for deeper soil profiles.

Introduction

Over the past decades, much of the tidelands in China have been reclaimed for agriculture and

urban buffer zone [1]. However, the highly saline coastal soil often causes adverse effects on
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agricultural productivity, particularly in the first 20 years of agricultural production. After

nearly 20 years of farming, the soil salinity has changed dramatically and the salts have leached

into deeper soil profiles due to the irrigation farming and high level of precipitation across

these coastal areas. In order to make profits from the reclaimed soils, farmers start to plant

more profitable crops (e.g. rice) on the reclaimed lands. However, loss of yield often occurs be-

cause of the subjective diagnose of the salinity level of the reclaimed soils using farmers’ experi-

ences. In order to better management the reclaimed soils (especially salinity) within these

coastal areas, it is important to characterize the spatial variations of soil salinity, especially

within the root zone [2], in an accurate and efficient way.

Conventional soil salinity mapping has been done by visual observations with limited labo-

ratory measurements (United States Salinity Laboratory Staff, 1954; Soil Survey Division Staff,

1993). However, visual observations provide only qualitative information [3] and laboratory

methods are often time-consuming, expensive, and labor-intensive [4]. In order to quantify the

soil variability using geostatistical methods, approximately 100 sample points are required to

estimate a spatial statistical model [5]. For example, in an attempt to map soil salinity in a field

in Southern Alberta Gallichand et al. [6] collected 80 soil samples at two different depths on a

regular grid and used 2D- and 3D-kriging to interpolate the conductivity of the saturated paste

extract (i.e., ECe) of the study area.

The need for rapid, reliable, and easy-to-take measurements of soil salinity at field and land-

scape scales gave birth to the proximal sensing electromagnetic induction (EMI) [4]. EMI can

produce a large number of georeferenced and quantitative measurements that can be easily

correlated with the spatial variability of salinity [3]. The most commonly used conductivity

meter (EM38, Geonics Ltd., Ont, Canada) measures soil apparent electrical conductivity (ECa).

The EM38 also has been used to map soil properties (e.g., ECe and soil moisture) using various

calibration models [7–12] at field [10–11], region [13], and catchment [14] scales.

In addition to mapping the horizontal variability of soil salinity, a number of researchers

have attempted to measure ECa at different depths with an inversion algorithm. A pioneering

work in this field was undertaken by Hendrickx et al. [15]. They used Tikhonov regularization

to invert the EM38 data using measurements collected at different heights above the ground

and in different directions. Though successful, the inversion was essentially a 1-Dimension in-

version and could not reflect the lateral variation of soil salinity. Several years later, researchers

developed 2-Dimension inversion algorithms to invert the ECa data onto 2-D vertical slices

and 2-D horizontal slices [16–18]. Most recently, a combination of vertical slices and horizon-

tal slices was utilized to determine the 3-D variability of soil conductivity [19–21]. With these

inversion approaches, spatial variability of soil electrical conductivity and the correlated soil

properties (e.g. salinity) can be presented in a 2-D or 3-D view.

Despite the successful application of EMI in soil salinity mapping [19, 22–24], few studies

have reported the use of EMI to determine temporal variability of soil salinity from a multi-di-

mensional view. The objective of this study is to map the spatio-temporal variability of soil sa-

linity in a reclaimed costal paddy field using three years of EM38 data. Geostatistical analysis

and a Quasi-3D inversion algorithm were combined to map the horizontal and vertical spatio-

temporal variability of soil salinity in the study field.

Materials and Methods

Ethics Statement

We randomly chose 3 coastal paddy fields in the northern region of Shangyu City, Zhejiang

Province, southeast of Hangzhou Bay, China and got permission from Agricultural Bureaus of

Shangyu. One field (4.25 ha) was used to collect EM data in three consecutive years, and the
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others were employed to collect validation data. These fields were the experimental fields in

Zhejiang University. No endangered or protected species were involved in the study.

Study Area

The study was conducted in a coastal saline area located in the northern region of Shangyu City,

Zhejiang Province, southeast of Hangzhou bay, China. The climate is subtropical with an average

annual temperature of 16.5°C. The average daily maximum and minimummonthly tempera-

tures are 4°C (January) and 28°C (July), respectively. Average annual precipitation is 1300 mm,

with the heaviest rainfall occurring during two rainy seasons betweenMarch and June and also

during September. Over the past 40 years, approximately 17 000 ha of coastal land has been re-

claimed around Shangyu City in successive programs (Fig 1A and 1B). The investigated fields

were reclaimed in 1996. They were separated by small embankments (bunds) which ensured

flooded conditions within each of the study fields. A photo of the study field is shown in Fig 1C.

Data Collection and Processing

In the present study, an EM38proto (Geonics, Ltd., Ont., Canada) was used to record ECa data

with a Geonics EM38 Data Logging System (DAS70-CX) and a field computer (Allegro CX). A

Fig 1. Locations of the study field and ECa measurements. (a) Location of the study field with reference to the Hangzhou Gulf, (b) reclaimed lands over
the past 40 years; (c) A photo of the study field (Taken on October 2010) and (d) Location of ECameasurements in 2009 across the study area.

doi:10.1371/journal.pone.0127996.g001
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separate Global Positioning System (GPS) with differential correction within 2 m was used for

geo-reference.

In order to understand the correlation between soil salinity and ECa data, a preliminary

EM38 survey was conducted in the adjacent fields to the east and southeast of the study field

(Fig 1D). Afterwards, 19 soil cores were collected in these fields (Fig 1D) to a depth of 80 cm

with a 20-cm interval (i.e. 0–20, 20–40, 40–60, 60–80 cm). The soils cores were selected to

cover the different values of ECameasurements, including high (i.e. ECa�300 mS/m), medium

(i.e. 200 mS/m<ECa<300 mS/m) and low (i.e. ECa�200 mS/m) values. ECa measurements

were recorded in the vertical (EM38v) and horizontal (EM38h) modes, respectively. Soil sam-

ples at various soil depths (i.e. 0–20 cm, 20–40 cm, 40–60 cm, 60–80 cm) were collected for lab

analysis of soil salinity by a conventional conductivity meter using a 1:5 soil: water suspension

(EC1:5). Detailed information can be found in S1 File.

Subsequently, ECameasurements were taken along an approximate 20 m grid along the fur-

rows in the study field (northwest of Fig 1D) in three consecutive years. There were 251, 256,

and 339 ECa measurements collected in October 2009, November 2010, and November 2011,

respectively. In order to calculate the coefficient of variation over time, EM38 measurements in

2010 and 2011 were harmonized onto a common grid consisting of the 251 ECa measurement

sites in 2009 (See Fig 1D) using the nearest neighbor algorithm available in ArcGIS 9.3 (ESRI,

2013).

The ECa measurements were taken after the rice was harvested and the field was drained.

According to Robinson et al. [25], EM38 measurements drift significantly when temperatures

are over 40°C and the drift is more obvious for small ECa readings (i.e., less than 100 mS/m).

Because the temperature conditions were similar when the three surveys were taken (approxi-

mately 25°C) and the study area was highly conductive, we did not calibrate the ECameasure-

ments to a standard temperature of 25°C as suggested by Sheets and Hendrickx [26]. However,

EM38 was calibrated according to the manual before the surveys to reduce the error [27–28].

Characterizing Horizontal Spatio-Temporal Variability of Soil Salinity
using Geostatistical Approaches

Geostatistical approaches are often used to define the variance structure, spatial distribution,

and trend changes of soil properties. Ordinary kriging (OK) is one of the most popular interpo-

lation methods [29]. The OK method uses a semivariogram to quantify the spatial variation of

a regionalized variable [30]:

gðhÞ ¼
1

2NðhÞ

X

NðhÞ

i¼1

½Zðx
i
Þ�Zðx

i
þ h�

2
Þ ð1Þ

where γ(h) is a semivariogram that measures the mean variability between two points x and x +

h as a function of their distance h; Z(xi) and Z(xi+h) are the values of the variable Z at location

xi and xi+h; N(h) is the number of pairs of sample points separated by the lag distance h.

ECameasurements were interpolated by OK using Eq (2) [30] with ArcGIS 9.3 (ESRI, 2013)

to calculate the horizontal spatial variability of soil salinity:
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where Z
�
(x0) is the predicted ECa at location x0; Z(xi) is the measured ECa at location xi; λi is

the weight assigned to the observation Z(xi); and n is the number of measurements.
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With regard to the horizontal temporal variability, we calculated the coefficient of variation

(CVti) over time at each measurement site to assess the stability of soil salinity (Eq 3). The tech-

nique has been used by Blackmore [31] to characterize the temporal stability of crop yields and

by Shi et al. [32] to assess the stability of soil properties in grasslands.
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Where CVti is the coefficient of variation over three years at the ith ECa measurement site

in the tth year and n is the number of ECameasurements.

Mapping Vertical Spatio-Temporal Variation in Soil Salinity Using Quasi-
3D Inversion

In order to determine the distribution of true electrical conductivity (σ—mS/m) at different

depths from the ECameasurements, an inversion software (EM4Soil) was used to convert ECa

to σ. We employed the Quasi-3D module (Q3Dm) of the software following the procedure of

Monteiro Santos et al. [33] to invert the ECa data of the three consecutive years. Q3Dm is a

1-Dimensional Spatial Constrained technique (1-D SCI) and a forward modeling approach. It

assumes that below each measured site the 1-Dimension variation of the soil conductivity is

constrained by the variation under neighboring sites. The modeling process is based upon the

cumulative function [27]. The inversion algorithm is based on the Occam regularization meth-

od [34–35].

As the software requires standard grid files for inversion, gridding was applied onto the raw

data set using the Gridding Tool of the Q3Dm package. The gridding was based on the inverse

distance weighted method (EM4SOIL Manual, 2011). In this study, a weight value of 2.0 was

selected and the grid consisted of 10 x-lines (west-east) and 8 y-lines (south-north) with grid

spacing of 18 m.

After gridding, inversion of ECa data was performed using Algorithm 3 (designed for inver-

sion of electromagnetic induction signal from single sensor) with a damping factor of 0.3, 10 it-

erations, a data error of 1.00, and a misfit target of 0.20. An initial 2-layer laterally

homogeneous model was predefined with initial electrical conductivity of 10 mS/m for both

layers, a depth of 0.6 m for first the upper layer, and a depth of 1.2 m for the bottom layer. ECa

data of the three consecutive years were inverted separately.

Results and Discussion

Calibration of EM38 Data using Soil EC1:5

In this study, soil EC1:5 was used as an indicator of soil salinity. Fig 2 shows the Pearson corre-

lation coefficients between measured EC1:5 and ECa from both EM38v and EM38h. Significant

correlations are found between EC1:5 and ECa for both EM38v and EM38h at different depths

(r>0.90, P< 0.001). According to Li et al. [19], the variation of soil salinity in the adjacent

field of our study area was successfully characterized with ECa measurements from EM38h.

Therefore, it was assumed that the variations of soil salinity (i.e. EC1:5) in our study area can be

solely explained by the variations of ECa values. Additionally, it is worth noting that the corre-

lations between EC1:5 and ECa from EM38h are higher than those between EC1:5 and ECa from

EM38v. Because the effective measuring depth of EM38h is approximately the rootzone, which

is of great importance for studying the leaching process of salt, ECa measurements from

EM38h were collected in the following years (i.e. 2009, 2010 and 2011) and used for characteri-

zation of spatio-temporal variations of soil salinity in the study area.
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Statistical Analysis of Multi-Temporal EM38 Data

Table 1 shows basic summary statistics of measured ECa in 2009, 2010, and 2011. The average

values decrease substantially from 2009 (166.19 mS/m) to 2010 (134.02 mS/m) and 2011

(113.29 mS/m). Similarly, the quartile estimates of ECa show a decreasing trend from 2009 to

2011. The Shapiro-Wilk statistics are 0.925, 0.930 and 0.925 with P-values less than 0.01, which

indicate significant deviation from normality. In such cases, Box-Cox transformation method

was used to transform the data by a monotonically increasing (or decreasing). In the next sec-

tion, the datasets were normalized by this method.

Fig 3 shows the curves of the cumulative distribution function (CDF) for the study area

which illustrates visible temporal variations of soil salinity among the three years. For a given

ECa value, CDF is largest in 2011 and smallest in 2009. In order to quantify the difference, we

used the Tukey-Kramer multiple comparison procedure. The values listed in Table 2 are the ac-

tual absolute differences in the means minus the least significant difference (i.e., abs-LSD). Pos-

itive abs-LSD values in Table 2 indicate significant difference (P< 0.01). It was found that the

most significant change of ECa occurred between 2009 and 2011, followed by the period from

2009 to 2010, and then between 2010 and 2011.

Characterizing Horizontal Spatio-Temporal Variability of Soil Salinity
Using Geostatistical Approaches

Fig 4 shows the plot of experimental semivariances and the fitted semivariogram models for

the ECa from 2009 to 2011. The parameters of these models are shown in Table 3. The semivar-

iances of the models indicate that the spatial behavior has good continuity in space and can be

Fig 2. Pearson correlation coefficients between soil EC1:5 (mS/m) of the calibration points at various depths and ECa (mS/m) measurements with
regard to EM38v (a) and EM38h (b).

doi:10.1371/journal.pone.0127996.g002

Table 1. Descriptive statistics of ECa (mS/m) in 2009, 2010 and 2011.

Year n Mean Stde Min 25% Median 75% Max Shapiro-Wilk Test

2009 251 166.19 3.50 51.3 145.4 179.3 195.6 226.7 0.925

2010 256 134.02 2.00 20.1 96.15 151.85 182.9 217.7 0.930

2011 339 113.29 3.01 10.5 73.2 140.2 157.9 181.8 0.925

doi:10.1371/journal.pone.0127996.t001
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modeled quite well with exponential models. However, different tendencies were found for

models of the three years. The nugget value (C0) decreases from 2009 to 2011, indicating that

the variations of soil salinity over a short distance have become smaller and smaller. The ratios

of C0 to sill (C+C0) decline sharply from 17.07% (2009) to 0.26% (2011). According to Shi et al.

[36], a ratio less than 0.25 indicates strong spatial dependence; a value between 0.25 and 0.75

denotes moderate spatial dependence; and a value greater than 0.75 indicates weak spatial de-

pendence. In this regard, we can conclude that the spatial autocorrelation of ECa was becoming

stronger during the study period. This increase may be caused by the alternating irrigation and

drainage practices necessary for rice cultivation. In addition, the relatively large nugget effect in

the ECa data is most probably the consequence of an uneven distribution of soil salinity be-

tween ridge and furrow irrigation, perhaps associated with a small georeferencing error; Also

the abrupt transitions in soil salinity, i.e. a short distance variability not to taken into account

by the density of the sampling, and in this case, the nugget effect decreases, it can be assumed

that the transitions, initially steep, soften between 2009 and 2011.

Maps of ECa in 2009, 2010, and 2011 generated by ordinary kriging are shown in Fig 5A, 5B

and 5C, respectively. These maps show that ECa has decreased over the three years. For exam-

ple, in a central block of the field (Easting: 286,520 m—286,560 m; Northing: 3,340,360 m—

3,340,400 m) ECa was mostly larger than 200 mS/m in 2009, but the values decreased to175–

200 mS/m in 2010 and then dropped to 125–150 mS/m in 2011.The decreasing ECa was most

likely due to the irrigation and drainage practices for rice cultivation which leached the salts

into a deep soil profile or the ground water.

The spatial distribution of soil salinity also changed. In 2009, the largest ECa values (> 200

mS/m) were found in the center of the field and values decreased with distance from the center.

However, in 2010 the largest ECa values (> 200 mS/m) were found in the right half of the field

and there was a distinctive difference in ECa between the left and right halves of the field. With

Fig 3. Plot of cumulative distribution function (CDF) of ECa (mS/m) in 2009, 2010 and 2011.

doi:10.1371/journal.pone.0127996.g003

Table 2. Comparison ofmeans of ECa (mS/m) for 2009, 2010, and 2011 using the Tukey-Kramer test.

Year Mean 2009 2010 2011

2009 166.19 -11.61 22.71 42.06

2010 134.02 -6.64 12.24

2011 113.29 -9.99

doi:10.1371/journal.pone.0127996.t002

Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field

PLOS ONE | DOI:10.1371/journal.pone.0127996 May 28, 2015 7 / 12



regard to year 2011, any differences in ECa between the left and right field halves were not obvi-

ous and the field was mostly dominated by ECa values of 125–150 mS/m. The heterogeneous

and changing salinity distribution of the study area may be caused by the presence of ditches in

the study area. Because the study area is a paddy field and surrounded by ditches (Fig 1C and

1D), it will be fully saturated with water during the crop cultivation, especially continuously ir-

rigation and drainage made the salt wash away along with water in rice growth. Therefore, the

rate of leaching of salts will be a function of the distance to the ditches. This is consistent with

the large coefficient of variation (CVti) values in the margins of the study area shown in Fig 5D.

In order to quantify the temporal stability of salinity, CVti values of each ECa measurement

over three years are shown in Fig 5D. According to Shi et al. [36], the variation should be con-

sidered stable when CVti is less than 10%, moderately stable when CVti is between 10% and

25%, and unstable when CVti is larger than 25%. Interestingly, the area with a high salinity con-

tent (Easting: 286,520 m—286,560 m; Northing: 3,340,400 m—3,340,440 m) displays temporal

stability, while the surrounding area shows temporal instability, especially the edges of the field

with a lower salinity level. This is consistent with the reports by Shi et al. [36]. The sharp

change of salinity within the field edges may be due to the presence of irrigation ditches around

the field where large amounts of irrigation water allow salts to leach into deeper soils.

Mapping Vertical Spatio-Temporal Variation in Soil Salinity Using Quasi-
3D Inversion

The Quasi-3D inversion results are shown in Fig 6. The vertical spatio-temporal variation of

the soil salinity can be explained by the distribution of modeled σ. The soils in the study area

were predicted to be inverted salinity profiles for all the three years. It was consistent with the

calibration results shown in Fig 2. The widely distributed inverted salinity profiles were mostly

Fig 4. Semivariance and fitted models (solid lines) for soil ECa (mS/m) from 2009 to 2011.

doi:10.1371/journal.pone.0127996.g004

Table 3. Models and parameters of semivariogram for ordinary kriging of soil ECa (mS/m) in 2009, 2010 and 2011.

Year Semivariogram model Nugget (C0) Sill (C0+C) C0/(C0+C) Range (A) r2

2009 Exponential model 495 2899 17.07 225.90 0.964

2010 Exponential model 380 4302 8.83 165.00 0.912

2011 Exponential model 10 3807 0.26 127.50 0.928

doi:10.1371/journal.pone.0127996.t003
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likely caused by irrigation farming and high level of precipitation. Viewing from the 2-D cross-

section oriented west-east, the salts of the soil migrate downwards over the three years. For ex-

ample, the area with Eastings from 286,511.2 m to 286,545.6 m and depths from 0.5 m to 1.0 m

was primarily dominated by σvalues between 150–200 mS/m in 2009. However, the conductivi-

ty of the area decreased to 100–175 mS/m in 2010. Furthermore, in the year of 2011 this conduc-

tivity was mostly between 100–125 mS/m. The decreasing distribution of soil salinity is also

evident in 2-D cross-sections of the Quasi-3D models oriented south-north. The phenomenon

is consistent with the vertical distribution of the soil salinity of paddy fields, whereby the salts

will be washed out from the root zone over years of cultivation [19, 33]. The vertical distribution

of salinity is also consistent with the annual precipitation of the study area (i.e., 1,300 mm). Ad-

ditionally, the horizontal 2-D cross-sections at the top of the models for the three years are con-

sistent with the kriging maps shown in Fig 5. This implies that the two approaches for

determining spatio-temporal variation of salinity are reliable and consistent with each other.

Conclusions

Repeated electromagnetic induction (EMI) surveys were carried out across a reclaimed paddy

field in coastal regions of China over a three-year period. Significant correlation between ap-

parent electrical conductivity (ECa) and soil EC1:5 (r> 0.9, P< 0.001) allowed for rapid

Fig 5. Spatial distribution of soil ECa (mS/m) in (a) 2009, (b) 2010, and (c) 2011. The plot of (d) coefficient of variation (CVti) over three years.

doi:10.1371/journal.pone.0127996.g005
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characterization of the spatio-temporal variation in soil salinity using ECa data. Ordinary kri-

ging of ECa data showed the horizontal distribution of soil salinity was heterogeneous and the

decrease of salinity may be a function of the distance to the irrigation ditches. Using a quasi-3D

inversion approach, soils in the study areas were predicted to be inverted salinity profiles. The

vertical leaching of salts with time was also successfully mapped, which was consistent with the

location of irrigation ditches and high precipitation.

It is concluded that spatio-temporal variability of soil salinity in paddy fields can be charac-

terized by the cost-effective and efficient EMI surveys. The methodology of this study can be

used as guidance for researchers interested in understanding soil salinity development as well

as land managers aiming for effective soil salinity monitoring and management practices. In

order to better characterize the variations in soil salinity to a deeper soil profile, the deeper

mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be in-

corporated to conduct Quasi-3D inversions for deeper soil profiles [21, 37].

Supporting Information

S1 File. ECa measurements were harmonized onto a common grid consisting of the 251

ECameasurement sites in 2009 using the nearest neighbor algorithm available in ArcGIS

Fig 6. Quasi-3Dmodels of soil electrical conductivity (mS/m) in (a) 2009, (b) 2010 and (c) 2011 across the study area.

doi:10.1371/journal.pone.0127996.g006
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9.3 (ESRI, 2013). 19 soil calibration points were sampled with recorded ECa measurements for

the vertical (EM38v) and horizontal (EM38h) modes, respectively.

(XLSX)
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