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Abstract. In this paper we present parallel implementations of two vision 

tasks; stereo matching and image matching. Linear features are used as 

matching primitives. These implementations are performed on a fixed size 

mesh array and achieve processor-time optimal performance. For stereo 
matching, we propose O(Nn3/P 2) time algorithm on a P x P processor 

mesh array, where N is the number of line segments in one image, n is the 

number of line segments, in a window determined by the object size, and 

P ~< n. The sequential algorithm takes O(Nn 3) time. For image matching, 

a partitioned parallel implementation is developed. O[((nm/P 2) + P)nm] 
time performance is achieved on a P x P processor mesh array, where 

p2 <~ nm. This leads to a processor-time optimal solution for P <~ (nm) 1/3. 

Keywords. Stereo matching; image matching; linear features, parallel 

algorithms; fixed size arrays; object recognition; shape from depth. 

1. Introduction 

Parallel processing has been used in computer vision over the past two decades. 

However, most of these solutions have addressed problems in low-level and mid-level 
vision (Prasanna Kumar 1991). This paper presents processor-time optimal parallel 

implementations for two vision tasks; stereo and image matching. 

Several sequential techniques have been proposed for stereo and image matching. 

One of the well-known methods for stereo and image matching uses linear features as 

matching objects. The key advantage of this method is its intrinsic merit with respect 

to accuracy and sensitivity due to photometric variations (Medioni & Nevatia 1984, 
1985). 

For stereo matching, we propose 0 (Nn3/P 2) time algorithm using a P × P processor 

mesh array, where N is the number of line segments in one image, n is the number of 

line segments in a window determined by the object size, and P ~< n. For image 
matching, based on the sequential algorithm presented in Khokhar et al (1992), a 

partitioned implementation is developed. O[((nm/P z) + P)nm] time performance is 

achieved on a P × P mesh array, where p2 ~< nm. Both impldmentations achieve linear 

speed-up compared with the corresponding sequential algorithms. 

The organization of this paper is as follows. In § 2, a model of the architecture used 

for our implementations is described. Sections 3 and 4 provide parallel implementations 
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for stereo matching and image matching problems respectively. Conclusions and open 

problems are presented in § 5. 

2. Fixed size mesh array 

A fixed size mesh array is a two-dimensional array of P x P processors, where p2 is 

less than or equal to the problem size. The processors (or processing elements, PE) 
are connected through bidirectional local links and the array operates in single 
instruction multiple data (SIMD) mode. Each processor PEIj is connected to PEi+Ij , 

PE , PE . . . .  and PE..+., if they exist. A memory plane of P x P memory modules 
i - l j  ~ ) -  I I J  1 

(MM) is provided such that each memory module is connected to exactly one processor 

in the array. Each PEij is attached to memory module MMij to store the relevant 
data. The architecture is shown in figure 1. 

The following assumptions are made regarding computations in this model: 

• Each arithmetic/logic operation performed in a PE takes O(1) time. 

• Each access by PEq to memory module MMij , 0 <~ i , j  < P, takes O(1) time. 

• A unit data transfer between adjacent processors takes O(1) time. 

3. Stereo matching on fixed size mesh arrays 

Stereo matching is one of the well-known methods for extraction of depth information. 

Two images, left image and right image, captured at the same time but at different 

angles are matched. Various stereo matching algorithms differ with respect to the 

primitives used for matching. Techniques include intensity/area-based matching, 

feature-based matching, and hierarchical matching (Dhond & Aggarwal 1989). Each 

technique has its own advantages and disadvantages. Stereo matching using linear 
features is capable of handling more complex scenes (such as those containing 

repetitive structures). In this section we provide fast parallel implementation of the 

J i J 

Figure 1. A fixed size mesh array. 
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i : .  ~'~ ~!" 

Figure 2. 
Left Image Right Image window. 

Determining a stereo- 

stereo matching algorithm (also called the Minimum Disparity Algorithm) described 

in Medioni & Nevatia (1985). For the sake of completeness, the main ideas of this 

algorithm are presented in § 3" 1. 

3.1 Minimum disparity algorithm 

The technique attempts to match overlapping segments detected along the same 

epipolar line, having similar contrast and orientation. Following the terminology in 

Medioni & Nevatia (1985), for each segment ai in the left image, a match is found 

in a window w(a~) defined in the right image. Similarly, for each segment b~ in the 

right image, a match is found in w(b~) defined in the left image. The shape of the 

window is a parallelogram. This is shown in figure 2 for left to right match, one 

side corresponds to a~, and the other side is a horizontal vector of length 2din,x, 

where din, x is the maximum disparity. The number of segments in each window is 

assumed to be at most n and both the images are assumed to have N segments each. 

For each ai, a set Sp(ai) of possible matches in window w(ai) is defined based on 

the contrast, overlap, and orientation. Similarly for each b~, a set Sp(bj) is defined. 

To assign unambiguous matches, a set of matches is considered together for each 

segment in the image. For each possible element j in Sp(ai), an evaluation function 

v(i,j) is computed. This function is dependent on how well the disparities of the 

other matching pairs in w(bj) agree with the average disparity d o of the matching 

pair. A set of preferred matches Qt(a~), is constructed for each i during iteration t, 

if the following holds: 

VkeSp(ai), such that bk~bj ,  vt(i,j)<v'(i,k), (1) 
and 

YheSp(bj), such that ah ~--~ai, v'(i,j) < v'(h,j). (2) 

The relation bk~--~b j is true if b k overlaps b~. v(i,j) is defined as follows: 

v t+ l(i,j) = ~ min 2ijhkldhk - -  dol/card(bj) 
ahin w(bj) bkverifie$ Ct (ah) 

+ ~ min 2~i~,[dhk -- diycard(ai). 
bkinw(aO ahverifiesC2(bk) 

(3) 

In the above equation, t + 1 indicates the iteration number and 2ijhk-----min 

(overlap(i,j), overlap(h,k)) and card(ai) is the number of segments in w(ai). The 
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1. repeat 

2. change *-- 0; 
3. f o r i = l t o N d o  
4. for each j such that j E w(al) do 
5. i-p=/~i, j, QT(~,)) 
6. end 

7. end; 

8. for j = 1 to N do 
9. for each i such that i E w(bj) do 
10. j-prej~j, i, QT( bj) ) 
11. end 

12. end; 

13. for i = 1 to N do 
14. for each j such that j E w(al) do 
15. Q-,,~atc( i, j ) 
16. end 

17. end 

18. for i = 1 to N do Q(ai) ~ Q'(al); 
19. for j = 1 to N do Q(bj) ~ Q'(bj); Figure 3. 
20. until (change = 0) matching. 

Sequential algorithm for stereo 

relations Ct and C 2 are defined as follows. We say bk verifies Cl(ah) if: 

1. Q'(ah) v~ O, bk is in Q'(ah) else bk is in Sp(ah); 

2. Either b k # b i, or  a~ and a / d o  not  overlap. 

In  order  to expose the potent ia l  parallelism, the computa t ions  performed in the 

a lgor i thm are shown in figure 3. The  procedure  i-pref(i,j, QT(a~)) shown in figure 4 is 

used to find a t empora ry  preferred set QT(ai) for as wi thout  the confirmat ion from the 

o ther  image [i.e. satisfying (1) bu t  no t  (2)]. The two nested loops (lines 4 - 8  and lines 

9-13),  cor respond to the computa t ions  in (3). O n  the other  hand,  the procedure  

j-pref(j, i, QT(bj)) shown in figure 5 is used to find a t empora ry  preferred set QT(bj) 

procedure i-preJ[i,j, QT(al) ) 
1. for each h such that h E w(bj) do 
2. for each k such that bt verifies Cl(ah) do 
3. minh *-- rain(mirth, Aijhtldht - dlj[); 
4. end; 

5. suml(i,j) *-- sum(i,j) + rains; 
6. end; 

7. ave1(i,j) *-- suml(i,j)/card(bj); 
8. for each k such that k E w(a~) do 
9. for each h such that ah verifies C2(bk) do 
10. mink ~ min(minh, Aijhk[dhk -- d~j[); 
11. end; 

12. sum2(i,j) *-- sum(i,j) + mink; 
13. end; 

14. ave2(i,j) ~ sum2(i,j)/card(al); 
15. sum(i,j) ~-- avel(i,j) + ave2(/,j); 
16. case: 

17. sum(i,j) < Min(i): 
is. QT(~,) . -  { j }; 
19. Min(i) ~ sum(i,j); 
20. sum(i,j) = Min(i): 
21. QT(al) ~ QT(ai)[J{ j }; 
22. end 

Figure 4. Finding partially preferred matches 
for the first image. 
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procedure j-pre~j, i, OT(b~) ) 
1. for  each k such that k E w(ai) do 

2. for  each h such that ah verifies C~(bt) do 

3. nfln~ *- rnin(nfinh, ,~o~}d~ - dlil); 
4. end; 

5. suml( j , i )  ~ sum(j,/)  + mink; 
6. end; 

7. avel ( j , i )  ,-- suml(j,i)/card(al); 
8. for  each h such that h E w(bj) do 

9. for each k such that  bk verifies Ct(aj,) do 

10. mink *..- min(mins, A ~ l d ~  - d o l ) ;  
11. end; 

12. sum2(j, i)  ,-- sum(j,/)  + minh; 
13. end; 

14. ave2(j, i) *-- sum2(j, i)/card(bj); 
15. sum(.;',/) .-- avel( j , i )  + ave2(j,i); 
16. ease: 

17. sum(j , /)  < Min(j): 
18. QT(bj) ..-. { i ); 
19. Min(j) *-- sum(j,/);  
20. sum(j , i )  -- Min(j): 

21. QT(bi) 4--- QT(bj)I,J{ i }; 
22. end 

Figure 5. Finding partially preferred matches 
for the second image. 

for b~ without the confirmation from the other image [i.e. satisfying (2) but not (1)]. 
The third procedure, Q-update(i,j), is then used to combine the results from the 

procedures, i-pref andj-pref, to determine the new sets, Q(ai) and Q(b~), for ai and b~, 
respectively (figure 6). 

Notice that the execution of the i-pref procedure (or j-pref procedure) takes 0 (n 2) 
time, and that of the Q-update procedure takes constant time. It is easy to verify that 
each repeat iteration takes O(Nn 3) time. The complete algorithm terminates after a 
constant number of iterations (Medioni & Nevatia 1985). 

3.2 Parallel stereo matching 

In this section we present a parallel implementation of the stereo matching algorithm 
on a fixed size mesh array. A parallel version of the minimum disparity algorithm is 
given in figure 7. Procedures Parallel-i-pref(i) and Parallel-j-pref(j) determine the 

partial preferred matches, QT(ai) and QT(bj), for ai and bj respectively. The third 
procedure Parallel-Q-update is used to determine the new sets, Q(a~) and Q(bj), for 
a~ and bi, respectively. 

3.2a Data partitioning: In stereo matching, input to the algorithm is a set of N 

segments from the right image and a set of N segments from the left image. As described 

in § 3.1, each segment is represented by its length, contrast and orientation. With each 

procedure Q-upd~te( i, j ) 
1. if ((j  E QT(a,)) A N D  (i E QT(b~))) t hen  
2. beg in  
3. change *-- 1 

4. Q'(*,) '-  ~(*,) OiJ}; 
5. Q'(bi) *- Q'(bj)[,J{i}; 
6. end Figure O. Updat ing  sets of preferred matches. 
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1. r e p e n t  

2. chmage * -  O; 
3. for i ffi 1 to  IV do  

4. Pomllel.i.pre~( i ); 
5. for j •ffi 1 to  IV do 

6. Pomllel.j-prej~j); 
7. for i •= 1 to IV do 

8. Parallel.Q.update(i); 
9. until (chmtge ffi 0) Figure 7. Parallel algorithm for stereo matching. 

pair (ai, b j), such that a+, bj overlap and have similar contrast and similar orientation, 

an average disparity d o is associated. In order to find a possible match for each segment 

a+ in the left image, a window w(a+) is defined in the fight image. Similarly, for each 

segment bj in the fight image a window w(b~) is defined in the left image. Each window 

is assumed to contain at most n segments. In this section, we present a partitioning of 

these windows such that the communication overhead among the processors does not 

become a bottleneck and at the same time the data redundancy is minimized. 

As described earlier, for each segment a~ there is a window defined in the other 

image. Thus, there is a total of N windows. Each window has at most n segments. In 

order to reduce the data redundancy while mapping these windows onto a mesh array 

of p2 processors, the following constraint should be satisfied. 

• There should be at mos t  NIP 2 windows mapped onto any PE. 

At any time, if the above condition is satisfied, no further windows should be assigned 

to that PE. 

As shown in lines 5 and 10 of the algorithm given in figure 3, it is clear that the 

windows defined in the left image are accessed by the segments in the right image 

and vice versa. Therefore, while processing a segment ai in the right image, the 

algorithm in figure 8 ensures that for a given segment a~, each PE is assigned no more 

procedure Map-windows-left-image(right-image, left-image) 
1. Initialine: 
2. 

3. 
4. 

5. 

6. 
7. 

8. 

9. 

10. 

11. 
i2.  

13. 

14. 

15. 

16. 

17. 
18. 

19. end; 

Figure & 

for k ~= 0 to P -  1 do 
for ! = 0  to P -  1 do 
,~..t+., ' l lkl[~. c o . . ~ 2 [ k l [ ~  +.- o; 

Mark all PEa *. ovoilable 

for each legment o+ in the left image do 

in parallel for each bj in the right image such that j E w(al) do 

for each aA in the left image such that h E w(bj) do 

i f  w(aa) is not a~igned then 
a~ign w(ak) to an am./oble PE, ~y  PE,~, 
~mch that +o..+ter2[k]lj] < n/P, 0 < k < P - 1; 
,=o,..t~llkllJ] "+'+, eo...t,."2l+][j]++ 
if  ~o. ,a+tl+]  ffi [IV/P21 

mark PE, ae noLam//able 
elN counter2[k][j] ++, assuming w(aa) is auigued to PEkj 

end; 

for +f f i0  to P -  1 do 

for / = 0  to P -  1 d o  

eou.,~,.'mlk]gJ +- 0; 

Mapping windows of left image onto fixed size mesh array. 
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procedure Parallel-i-prel(i, OT(ai)) 
1. in parallel for each h,j such that h E w(bi) and j E w(al) do 
2. for each k such that 5h verifies Cl(as) do 
3. min(i,j, h) ~ min(min(i,j, h), ,~j~ld~ - dljl); 
4. end; 

5. suml(i,j) ~- sum(/,j) + min(i,j,h); 
6. parallel end; 

7. avel(i,j) *-- suml(i,j)lcard(b~); 
8. in parallel for each k,j such that k E w(al) and i E w(bj) do 
9. for each h such that at, verifies C2(bh) do 
10. min(i,j, k) ~- min(min(i,j, k), Aij~[dhk -d/jD; 
11. end; 
12. sum2(i,j) ~ sum(/,j) + min(i,j, h); 
13. parallel end; 
14. ave2(i,j) ~- sum2(i,j)/card(al); 
15. sum(i,j) ~-- avel(i,j) + ave2(i,j); 
16. ease: 
17. sum(i,j) < Min(i): 
18. OT(a/)~ { j }; 
19. Min(i) *-- sum(/,j); 
20. sum(i,j) = Min(i): 

21. OT(a,) ~ OT(ai)l.J{ j 1; 
22. end 

Figure 9. Parallel-i-pref(i) on a mesh array. 

than niP windows. Also, no window is assigned to more than one PE. APE is marked 

available if it is taking part in the assignment. During the assignment if a PE has 

been assigned NIP 2 windows in total, it is marked as not-available and no more 

windows are assigned to that PE. At the beginning of the algorithm all the processors 

are marked available. The mapping algorithm is outlined in figure 8. 

The mapping algorithm described in figure 8 guarantees that, while 15rocessing 

any segment for matching, there will be no more than O(n) data communications 

per potential match. This fact will become clear when the parallel algorithm is 

explained in §Y2b below. The running time of the mapping algorithm is 
O(Nn). 

3.2b Partitioned implementation on a fixed size mesh array: Based on the 

algorithm shown in figure 7, parallel implementation on a P x P mesh array is 

developed. The procedure Parallel-i-pref(i) is presented in figure 9. Similar procedure 

for Parallel-j-pref(j) can be developed. In the following, floor function (1__ _d) is 

assujned for all indices of the form a/b. 
In each/-loop, PE(h/p)u/p), 0 ~< h, j < n (or PE(k/p)(jIp) for the second part of the j-loop) 

is used for the computation of min(i, A k) (or min(i, A h)). The information required 

to accomplish the computation in PE(h/eKl/e ) (or PE(h/p)O/e)) includes: 

1. if t = 0, then Sp(ah) (or Sp(bk)), else Qt(ah)(or Q'(bk)), 

2. dhk, 0 <~ k < n (or dhk, 0 <~ h < n), and 

3. 2oh ~, 0 ~< k < n (or 2/jhk, 0 ~< h < n). 

The main steps of procedure Parallel-i-pref(i) are briefly discussed in the following, 
with the corresponding execution time indicated within parentheses. 

1. Yjew(ai), load da  and 2ou, O(n) data to PE(h/t,)O/e ), O(n 3 ) data in all. (O(na/P2) ). 
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procedure P,,rGdld-Q-ulxlcte(i,j) 
1. if ((j E OT(a;)) &ND (i E OT(bj))) then 
2. begin 
3. oh,rage . -  1; 

4. q(¢~) *" q ( a i ) U { J ) ;  
5. q(bj) *- Qa(bj)U{i}; 
6. end 

Figure 10. Parallel-Q-update for updating sets 
of preferred matches. 

2. PEll broadcasts d o to all the processors in the array. (O((n/P)P)) 
3. Perform the rain operation over all k to determine min(i,j,h) in PEth/e)~j/e). 

(O((n/P) e)) 
4. Along each column of processors, i.e. Vj, all the min(i,j, h) values are summed up 

and saved in the last processor PEpo/e r (O((n/P)P)) 
5. In each PEpo/e), compute the average. 
6. Vj~w(ai), load d a and 2uh k, O(n) data to PEtk/p)O/p, O(n a ) data in t~tal. (O (na/P 2 )). 
7. Perform the min operation over all h to determine min(i,j,k) in PE(k/e)U/p ~. 

(O((n/P) P)) 
8. Along each column of processors, i.e. Vj, all the min(i,j, k) values are summed up 

and saved in the last processor PEp(j/p). (O((n/P)P)) 
9. In each PEpu/r ), Vjew(ai), compute the average of the sum obtained in step 8 and 

add to the average obtained in step 5. (0(1)) 
10. Along the last row of processors, find the minimum of all the values obtained in 

step 9, and store the corresponding b i back in the memory, which is QT(a~). 
(O((n/P) P)) 

Figure 11 provides a pictorial representation of the execution of the procedure 

Parallel-i-pref(i). Similar steps can be designed for the procedure Parallel-j-pref(j). 
It can be easily verified that for each a i the procedure Parallel-i-pref(i) runs in 

O(na/P 2) time with each time unit corresponding to a simple arithmetic/logic 

operation. The resulting QT(a~)'s and QT(bj)'s can then be combined in constant 

time by using the procedure Parallel-Q-update given in figure 10. Therefore, each 
iteration takes O(Nna/P z) time. 

4. Image matching on a fixed size mesh array 

The image matching problem plays a key role in object recognition. In the past, 

several approaches have been proposed for this problem (Clark et al 1978; Shapiro & 
Haralick 1981; Price 1982, pp. 105-t12), which, in general, differ with respect to the 

primitives used for matching. In this section, we consider image matching using linear 
features for parallel implementation. Readers can refer to Medioni & Nevatia (1984) 

for additional details of the matching technique. We begin with the basic idea of this 

approach and then present a processor-time optimal parallel implementation of the 

algorithm on a fixed size mesh array. 

4.1 Matching technique 

In general, in the image matching problem, we have n objects, {ol,o2 . . . . .  on}, in the 

scene and m labels, {11,12 . . . . .  l,,}, in the model. I4ere, the objects are segments in the 
scene derived from edge detectors and are described by the coordinates of their end 
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(Computations for the left image) (Comlmta~m for the right image) 

1. Load data 6. Load data 
Vhj load dta Ykj load dth 

2. Broadcast d,j to 
all processors 

7. In all processors 

compute ~ and 
find rain over 
all h in each PE 

[.."..![ 
3. In all processors • • 

compute ~.j~ and • 
find rain over i ! 
all k in each PE 1 , ~  

8. Compute sum2 
of all rains 

. . . . . . . .  

. . . . . . . . .  

4. Compute suml 
of all rains 

. . . . . . . . .  

?o 9. Compute Ave2 
©© 
?0 
i . .  

5. Compute Avel 

ii. I ; ;  * .  
Figure 11. Data flow for procedure Parallel-i-pref(i). 

points, orientation and average contrast. The matching technique computes the 

quantity vi~ , in {0, 1}, which is the possibility of assigning label lp to object oi. 

The method (Medioni & Nevatia 1984) relies on geometric constraints, which means 

that when a lebel I v is assigned to object oi, we expect to find an object o 1 with 

assigned label lq in an area depending~ on i, p, q. The match-window W(i, p, q) denotes 

the area described by the parameters i,lp, q. By representing the object o~ with a vector 

A~Bi, the label l o with CpDp and label lq with C~Dg, we can determine the four 

extreme points, W1, Wz, W3, W4, of the induced match-window W(i,p, q) using the 

following relations: (~ denotes a given scaling factor). 

• A i W  I - -  # ' C p C q ,  W l W  2 = / ~ ' C ~ D q :  

• B i W  3 --- # ' D p C q ,  W 3 W  4 --  ~ 'Cq Dq .  

Figure 12 shows the relationship between the window and the segments. 

The meaning of compatibility is defined as follows: 

( i ,p)  is compatible with ( j ,q )  iff o i in W(j,q,p) and o~ in W(i,p,q). 
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C~ Dp 

godel 

Dq 

At Bi 

~¢@n@ 

Figure 12. Determining a match-window. 

Let fl~[p,q] denote the compatibility of assigning label lp to object i and label 1~ to 
object j. A weak notion of consistency is used to determine whether an assignment 

is feasible. A predetermined confidence factor, 6 ~< m, is used to decide the feasibility 
of <i, p)  as in the following update statement during an iteration*. 

For every i,p, v'ip,- v~p AND 'condition A', where 'condition A' is true if 

(iS _ { 1, 2 . . . . .  m) and IISII = 6, such that for every q¢S, ~j¢ { 1,2 . . . . .  n) such 
that vj~ = 1 and fl~j[p, q] = 1) and is false otherwise. 

The algorithm stops when for all i,p, v'~o = rip. We can rewrite the above update 
statement as 

where 

~,m [- N 

vtp~- % ,  (v~ fli~[r, q])], (4) 
.t 

&q~l {1, if ~= l Xq ~ ~ , (5)  

= X~= 0, otherwise. 

Note that the operation Y~= 1 in (4) is a logical OR operation, while the operation 
~'__ 1X~ in (5) is an arithmeUc ADD operation. With the modified update statement 

given by (5), we have designed a faster sequential algorithm (Khokhar et al 1992) 
which is easier to parallelize compared with the one proposed by Medioni & Nevatia 

(1984). This algorithm is an extension of the discrete relaxation algorithm developed 
by Lin (Lin 1991; Lin & Prasanna Kumar 1991) and it takes O(nZm 2) time. Each 

time unit corresponds to a simple arithmetic/logic operation. The original algorithm 
(Medioni & Nevatia 1984) runs in .O(n2m2dw) time, where d is the density of the 

segments and w is the window size. In the worst case, d and w can be n and m 
respectively. More details can be found in Kh0khar et al (1992). 

4.2 Parallel image matching 

In this section, we present a parallel implementation of the image matching algorithm 
given in Khokh~r et al (1992). Since the size of a match-window determined by any 

object and two labels is much smaller than the size of the complete image, the number 

of initially assignable segments in any of the match-windows for each object is much 
smaller than the total number of objects in the image. This allows us to obtain a 

* [I S fl denotes the cardinality of S 
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{ Initialization } 

1. Initialize all fl~j[p,q]'8 in parallel; 

2. parmqeido(inPF_,i~,,O<_ i < n - l , O < p < _ m - 1 )  
3. vi~*- I ;  

4. fo r  q =  0 t o  m -  1 d o  

5. N,,(q] . -  O; 

6. T;p .-- 0 
7. for  j = 0 to  n - 1 do  
s. if(~Lo, f) ffi 1) then JV,,lq] ,-- JV,,[q] + 1; 
9. end;  

10. i f  (N,,[q] # 0) t h e n  7~, . -  Til, + 1; 
11. end;  

12. i f  (Ti, < 6) t h e n  do  
13. ..qem/il, . -  1; 
14. vlp * -  O; 

15. end ;  

13. para l le l  e n d  ; 

{ Iter&tion } 
16. r e p e a t  

17. pa ra l l e l  do  (in PE~,  0 _< i _< n - 1, 0 < p < m - 1) 
18. if($endi) = 1) t h e n  

19. send Id < i,p > to all the PEs; 

20. { i f  (no broadcast ld acknowledoed) 
21. t h e n  stop; 

22. e lse  • b roadcu t  Id, ~ y  < j ,q  >, is acknmdedged by all PE's;}* 

23. i f ( <  i,p > = < j ,q >)  t h e n  Send O, *-- 0; 
24. i f  ((v,, = 1) A N D  (fl~[p,q] = 1)) t h e n  do  
25. ~v,,(q! ,- Jv,,(q]- 1; 
26. i f  (N/v[q] = 0) t h e n  Ti~ *-- ~v - 1; 

27. if(Ti~ < 6) t h e n  do  
28. Sendlp , -  1; 

29. ely *-- O; 
30. e n d  
31. e n d  
32. end  

33. pa ra l l e l  e n d  
34. f o r eve r  

*: the code inside braces is the broadcast operffitidn. 

Figure 13. Parallel algorithm for image matching. 

partitioned implementation in which each processor is responsible for more than one 
<object, label> pair. 

A parallel implementation of the algorithm is shown in figure 13. Each elf is 

associated with m + 1 counter variables. There a r e  NipEq], 1 ~ q ~ m, and T/f  These 
counter variables have the following definitions: 

• NipEq'l denotes the number of l 's in the n entries of f l ~ , q ] ,  1 <~j ~< n, and 

• Tip denotes the number of nonzero Nip Eql's, 1 ~ q <<. m. 

For v i , each of the mNip[ql's are used to determine an object for label lq, i.e., ff 

we can ~nd any object to be labelled with Iq when o~ is labelled with I r Tip is used 
to determine if there are at least 6 such compatible labellings when oi is labelled with 

lp. Each infeasible pair <i, p> (having ~o ~< 6) is broadcast to all the processors. Each PE 
checks if it has any pair <j,q) such that f P . ~ q ]  = 1 and decrements N. [q] At any tJ lp " 
time, if Ni~[q ] becomes zero, T~p is decremented. As a result, if T~p ~< 6, pair ( j ,  q )  is 
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marked infeasible. The broadcast operation can be implemented in a variety of ways 
depending upon the underlying parallel architecture. 

4.2a Partitioned impler, entation on a fixed size mesh array: Based on the algorithm 
shown in figure 13, a partitioned implementation on a fixed size mesh array is obtained. 
Each of the p2 processors process (nm/P 2) distinct rip values. The data stored in each 
of the p2 memory modules include (nm/P 2)vi p values, corresponding nm f ~  [p, q] values, 

m Nip[q ] counter values and the Tip variable. Also, a flag is stored in each MM for each 

V~p to indicate whether the infeasibility has been acknowledoed by all the processors. 
Such an acknowledgement triggers the necessary update of the corresponding counters 

in each PE. Also, in each PE, an extra flag is used to indicate if at least one such 

infeasible assignment (amon z its nm/P 2 assignments) is yet to be acknowledoed. 
An initialization procedure is executed in each PE to initialize the m counter 

variables for each of its (nm/P2)v~p values. Based on the condition defined in §4.1, 

each I'E sets the corresponding flag for an infeasible assignment and retains the Id 
of one such assignment for later broadcast. This can be performed in O(nm/P 2) time. 

During each iteration, a 'collect' operation is first executed. The purpose of this 

operation is to gather the Ids retained in all the processors at the end of the previous 

iteration. A designated PE (s~'-, PEoo ) is responsible for collecting these Ids, and 
retaining one of them. This Id collection process is executed in each row by moving 

each infeasible Id to the processors in the left-most column and then moving it up 

to PEoo. The retained Id in PEoo is then ,~roadcast to all the processors. The broadcast 
operation can be executed in O(P) time. Once each PE receives such an 
Id (of an infeasible assignment), an update procedure is carried out to modify the 

corresponding counter variables and to set the corresponding infeasibility flag, if 

necessary. The algorithm terminates if there is no Id retained in PEoo. Since it takes 

constant time to update the affected counter variable of each assignment, O(nm/P 2) 
time is sufficient for all the processors to complete the update operation in parallel. 

Thus, each iteration can be performed in O((nm/P 2) + P) time. The total execution 

time is O [(nm/P 2) + P)nm], since there can be at most nm iterations. This implementa- 
tion leads to a processor-time optimal solution when P <~ (nm) 1/3. 

5. Conclusions 

We have presented processor-time optimal parallel implementations for image and 

stereo matching problems on fixed size mesh arrays. The sequential algorithms used 

in the implementations rely on linear features as primitives for matching. An extension 
of our image matching implementation provides efficient solution to the kernel 
matching algorithm given by Medioni & Nevatia (1984). 

Image matching and stereo matching are key problems in image understanding. 

Several sequential approaches to these problems have been investigated. The proposed 
solutions vary mainly in terms of the primitives used for matching. Extensive work 

is needed to consolidate these approaches and provide a framework for parallel stereo 
and image matching problems. 

This research was supported in part by NSF under grant IRI-9145810 and in part by 
DARPA and AFOSR contracts F-49260-89-C-0126 and F-49620-90-C-0078. 
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