
Sadhan(~, Vol. 18, Part 2, June 1993, pp. 209-221. © Printed in India.

Mapping stereo and image matching algorithms onto parallel
architectures

ASHFAQ KHOKHAR t and VIKTOR K PRASANNA t

tDepartment of EE-Systems, EEB 244, University of Southern California,

Los Angeles, CA 90089-2562, USA

Abstract. In this paper we present parallel implementations of two vision

tasks; stereo matching and image matching. Linear features are used as

matching primitives. These implementations are performed on a fixed size

mesh array and achieve processor-time optimal performance. For stereo
matching, we propose O(Nn3/P 2) time algorithm on a P x P processor

mesh array, where N is the number of line segments in one image, n is the

number of line segments, in a window determined by the object size, and

P ~< n. The sequential algorithm takes O(Nn 3) time. For image matching,

a partitioned parallel implementation is developed. O[((nm/P 2) + P)nm]
time performance is achieved on a P x P processor mesh array, where

p2 <~ nm. This leads to a processor-time optimal solution for P <~ (nm) 1/3.

Keywords. Stereo matching; image matching; linear features, parallel

algorithms; fixed size arrays; object recognition; shape from depth.

1. Introduction

Parallel processing has been used in computer vision over the past two decades.

However, most of these solutions have addressed problems in low-level and mid-level
vision (Prasanna Kumar 1991). This paper presents processor-time optimal parallel

implementations for two vision tasks; stereo and image matching.

Several sequential techniques have been proposed for stereo and image matching.

One of the well-known methods for stereo and image matching uses linear features as

matching objects. The key advantage of this method is its intrinsic merit with respect

to accuracy and sensitivity due to photometric variations (Medioni & Nevatia 1984,
1985).

For stereo matching, we propose 0 (Nn3/P 2) time algorithm using a P × P processor

mesh array, where N is the number of line segments in one image, n is the number of

line segments in a window determined by the object size, and P ~< n. For image
matching, based on the sequential algorithm presented in Khokhar et al (1992), a

partitioned implementation is developed. O[((nm/P z) + P)nm] time performance is

achieved on a P × P mesh array, where p2 ~< nm. Both impldmentations achieve linear

speed-up compared with the corresponding sequential algorithms.

The organization of this paper is as follows. In § 2, a model of the architecture used

for our implementations is described. Sections 3 and 4 provide parallel implementations

209

210 Ashfaq Khokhar and Viktor K Prasanna

for stereo matching and image matching problems respectively. Conclusions and open

problems are presented in § 5.

2. Fixed size mesh array

A fixed size mesh array is a two-dimensional array of P x P processors, where p2 is

less than or equal to the problem size. The processors (or processing elements, PE)
are connected through bidirectional local links and the array operates in single
instruction multiple data (SIMD) mode. Each processor PEIj is connected to PEi+Ij ,

PE , PE and PE..+., if they exist. A memory plane of P x P memory modules
i - l j ~) - I I J 1

(MM) is provided such that each memory module is connected to exactly one processor

in the array. Each PEij is attached to memory module MMij to store the relevant
data. The architecture is shown in figure 1.

The following assumptions are made regarding computations in this model:

• Each arithmetic/logic operation performed in a PE takes O(1) time.

• Each access by PEq to memory module MMij , 0 <~ i , j < P, takes O(1) time.

• A unit data transfer between adjacent processors takes O(1) time.

3. Stereo matching on fixed size mesh arrays

Stereo matching is one of the well-known methods for extraction of depth information.

Two images, left image and right image, captured at the same time but at different

angles are matched. Various stereo matching algorithms differ with respect to the

primitives used for matching. Techniques include intensity/area-based matching,

feature-based matching, and hierarchical matching (Dhond & Aggarwal 1989). Each

technique has its own advantages and disadvantages. Stereo matching using linear
features is capable of handling more complex scenes (such as those containing

repetitive structures). In this section we provide fast parallel implementation of the

J i J

Figure 1. A fixed size mesh array.

Mapping stereo & image matching algorithms 211

i : . ~'~ ~!"

Figure 2.
Left Image Right Image window.

Determining a stereo-

stereo matching algorithm (also called the Minimum Disparity Algorithm) described

in Medioni & Nevatia (1985). For the sake of completeness, the main ideas of this

algorithm are presented in § 3" 1.

3.1 Minimum disparity algorithm

The technique attempts to match overlapping segments detected along the same

epipolar line, having similar contrast and orientation. Following the terminology in

Medioni & Nevatia (1985), for each segment ai in the left image, a match is found

in a window w(a~) defined in the right image. Similarly, for each segment b~ in the

right image, a match is found in w(b~) defined in the left image. The shape of the

window is a parallelogram. This is shown in figure 2 for left to right match, one

side corresponds to a~, and the other side is a horizontal vector of length 2din,x,

where din, x is the maximum disparity. The number of segments in each window is

assumed to be at most n and both the images are assumed to have N segments each.

For each ai, a set Sp(ai) of possible matches in window w(ai) is defined based on

the contrast, overlap, and orientation. Similarly for each b~, a set Sp(bj) is defined.

To assign unambiguous matches, a set of matches is considered together for each

segment in the image. For each possible element j in Sp(ai), an evaluation function

v(i,j) is computed. This function is dependent on how well the disparities of the

other matching pairs in w(bj) agree with the average disparity d o of the matching

pair. A set of preferred matches Qt(a~), is constructed for each i during iteration t,

if the following holds:

VkeSp(ai), such that bk~bj , vt(i,j)<v'(i,k), (1)
and

YheSp(bj), such that ah ~--~ai, v'(i,j) < v'(h,j). (2)

The relation bk~--~b j is true if b k overlaps b~. v(i,j) is defined as follows:

v t+ l(i,j) = ~ min 2ijhkldhk - - dol/card(bj)
ahin w(bj) bkverifie$ Ct (ah)

+ ~ min 2~i~,[dhk -- diycard(ai).
bkinw(aO ahverifiesC2(bk)

(3)

In the above equation, t + 1 indicates the iteration number and 2ijhk-----min

(overlap(i,j), overlap(h,k)) and card(ai) is the number of segments in w(ai). The

212 Ashfaq Khokhar and Viktor K Prasanna

1. repeat

2. change *-- 0;
3. f o r i = l t o N d o
4. for each j such that j E w(al) do
5. i-p=/~i, j, QT(~,))
6. end

7. end;

8. for j = 1 to N do
9. for each i such that i E w(bj) do
10. j-prej~j, i, QT(bj))
11. end

12. end;

13. for i = 1 to N do
14. for each j such that j E w(al) do
15. Q-,,~atc(i, j)
16. end

17. end

18. for i = 1 to N do Q(ai) ~ Q'(al);
19. for j = 1 to N do Q(bj) ~ Q'(bj); Figure 3.
20. until (change = 0) matching.

Sequential algorithm for stereo

relations Ct and C 2 are defined as follows. We say bk verifies Cl(ah) if:

1. Q'(ah) v~ O, bk is in Q'(ah) else bk is in Sp(ah);

2. Either b k # b i, or a~ and a / d o not overlap.

In order to expose the potent ia l parallelism, the computa t ions performed in the

a lgor i thm are shown in figure 3. The procedure i-pref(i,j, QT(a~)) shown in figure 4 is

used to find a t empora ry preferred set QT(ai) for as wi thout the confirmat ion from the

o ther image [i.e. satisfying (1) bu t no t (2)]. The two nested loops (lines 4 - 8 and lines

9-13), cor respond to the computa t ions in (3). O n the other hand, the procedure

j-pref(j, i, QT(bj)) shown in figure 5 is used to find a t empora ry preferred set QT(bj)

procedure i-preJ[i,j, QT(al))
1. for each h such that h E w(bj) do
2. for each k such that bt verifies Cl(ah) do
3. minh *-- rain(mirth, Aijhtldht - dlj[);
4. end;

5. suml(i,j) *-- sum(i,j) + rains;
6. end;

7. ave1(i,j) *-- suml(i,j)/card(bj);
8. for each k such that k E w(a~) do
9. for each h such that ah verifies C2(bk) do
10. mink ~ min(minh, Aijhk[dhk -- d~j[);
11. end;

12. sum2(i,j) *-- sum(i,j) + mink;
13. end;

14. ave2(i,j) ~ sum2(i,j)/card(al);
15. sum(i,j) ~-- avel(i,j) + ave2(/,j);
16. case:

17. sum(i,j) < Min(i):
is. QT(~,) . - { j };
19. Min(i) ~ sum(i,j);
20. sum(i,j) = Min(i):
21. QT(al) ~ QT(ai)[J{ j };
22. end

Figure 4. Finding partially preferred matches
for the first image.

Mapp ing stereo & image matching algori thms 213

procedure j-pre~j, i, OT(b~))
1. for each k such that k E w(ai) do

2. for each h such that ah verifies C~(bt) do

3. nfln~ *- rnin(nfinh, ,~o~}d~ - dlil);
4. end;

5. suml(j , i) ~ sum(j,/) + mink;
6. end;

7. avel (j , i) ,-- suml(j,i)/card(al);
8. for each h such that h E w(bj) do

9. for each k such that bk verifies Ct(aj,) do

10. mink *..- min(mins, A ~ l d ~ - d o l) ;
11. end;

12. sum2(j, i) ,-- sum(j,/) + minh;
13. end;

14. ave2(j, i) *-- sum2(j, i)/card(bj);
15. sum(.;',/) .-- avel(j , i) + ave2(j,i);
16. ease:

17. sum(j , /) < Min(j):
18. QT(bj) ..-. { i);
19. Min(j) *-- sum(j,/);
20. sum(j , i) -- Min(j):

21. QT(bi) 4--- QT(bj)I,J{ i };
22. end

Figure 5. Finding partially preferred matches
for the second image.

for b~ without the confirmation from the other image [i.e. satisfying (2) but not (1)].
The third procedure, Q-update(i,j), is then used to combine the results from the

procedures, i-pref andj-pref, to determine the new sets, Q(ai) and Q(b~), for ai and b~,
respectively (figure 6).

Notice that the execution of the i-pref procedure (or j-pref procedure) takes 0 (n 2)
time, and that of the Q-update procedure takes constant time. It is easy to verify that
each repeat iteration takes O(Nn 3) time. The complete algorithm terminates after a
constant number of iterations (Medioni & Nevatia 1985).

3.2 Parallel stereo matching

In this section we present a parallel implementation of the stereo matching algorithm
on a fixed size mesh array. A parallel version of the minimum disparity algorithm is
given in figure 7. Procedures Parallel-i-pref(i) and Parallel-j-pref(j) determine the

partial preferred matches, QT(ai) and QT(bj), for ai and bj respectively. The third
procedure Parallel-Q-update is used to determine the new sets, Q(a~) and Q(bj), for
a~ and bi, respectively.

3.2a Data partitioning: In stereo matching, input to the algorithm is a set of N

segments from the right image and a set of N segments from the left image. As described

in § 3.1, each segment is represented by its length, contrast and orientation. With each

procedure Q-upd~te(i, j)
1. if ((j E QT(a,)) A N D (i E QT(b~))) t hen
2. beg in
3. change *-- 1

4. Q'(*,) '- ~(*,) OiJ};
5. Q'(bi) *- Q'(bj)[,J{i};
6. end Figure O. Updat ing sets of preferred matches.

214 Ashfaq Khokhar and Viktor .K Prasanna

1. r e p e n t

2. chmage * - O;
3. for i ffi 1 to IV do

4. Pomllel.i.pre~(i);
5. for j •ffi 1 to IV do

6. Pomllel.j-prej~j);
7. for i •= 1 to IV do

8. Parallel.Q.update(i);
9. until (chmtge ffi 0) Figure 7. Parallel algorithm for stereo matching.

pair (ai, b j), such that a+, bj overlap and have similar contrast and similar orientation,

an average disparity d o is associated. In order to find a possible match for each segment

a+ in the left image, a window w(a+) is defined in the fight image. Similarly, for each

segment bj in the fight image a window w(b~) is defined in the left image. Each window

is assumed to contain at most n segments. In this section, we present a partitioning of

these windows such that the communication overhead among the processors does not

become a bottleneck and at the same time the data redundancy is minimized.

As described earlier, for each segment a~ there is a window defined in the other

image. Thus, there is a total of N windows. Each window has at most n segments. In

order to reduce the data redundancy while mapping these windows onto a mesh array

of p2 processors, the following constraint should be satisfied.

• There should be at mos t NIP 2 windows mapped onto any PE.

At any time, if the above condition is satisfied, no further windows should be assigned

to that PE.

As shown in lines 5 and 10 of the algorithm given in figure 3, it is clear that the

windows defined in the left image are accessed by the segments in the right image

and vice versa. Therefore, while processing a segment ai in the right image, the

algorithm in figure 8 ensures that for a given segment a~, each PE is assigned no more

procedure Map-windows-left-image(right-image, left-image)
1. Initialine:
2.

3.
4.

5.

6.
7.

8.

9.

10.

11.
i2.

13.

14.

15.

16.

17.
18.

19. end;

Figure &

for k ~= 0 to P - 1 do
for ! = 0 to P - 1 do
,~..t+., ' l lkl[~. c o . . ~ 2 [k l [~ +.- o;

Mark all PEa *. ovoilable

for each legment o+ in the left image do

in parallel for each bj in the right image such that j E w(al) do

for each aA in the left image such that h E w(bj) do

i f w(aa) is not a~igned then
a~ign w(ak) to an am./oble PE, ~y PE,~,
~mch that +o..+ter2[k]lj] < n/P, 0 < k < P - 1;
,=o,..t~llkllJ] "+'+, eo...t,."2l+][j]++
if ~o. ,a+tl+] ffi [IV/P21

mark PE, ae noLam//able
elN counter2[k][j] ++, assuming w(aa) is auigued to PEkj

end;

for +f f i0 to P - 1 do

for / = 0 to P - 1 d o

eou.,~,.'mlk]gJ +- 0;

Mapping windows of left image onto fixed size mesh array.

Mappiny stereo & image matching algorithms 215

procedure Parallel-i-prel(i, OT(ai))
1. in parallel for each h,j such that h E w(bi) and j E w(al) do
2. for each k such that 5h verifies Cl(as) do
3. min(i,j, h) ~ min(min(i,j, h), ,~j~ld~ - dljl);
4. end;

5. suml(i,j) ~- sum(/,j) + min(i,j,h);
6. parallel end;

7. avel(i,j) *-- suml(i,j)lcard(b~);
8. in parallel for each k,j such that k E w(al) and i E w(bj) do
9. for each h such that at, verifies C2(bh) do
10. min(i,j, k) ~- min(min(i,j, k), Aij~[dhk -d/jD;
11. end;
12. sum2(i,j) ~ sum(/,j) + min(i,j, h);
13. parallel end;
14. ave2(i,j) ~- sum2(i,j)/card(al);
15. sum(i,j) ~-- avel(i,j) + ave2(i,j);
16. ease:
17. sum(i,j) < Min(i):
18. OT(a/)~ { j };
19. Min(i) *-- sum(/,j);
20. sum(i,j) = Min(i):

21. OT(a,) ~ OT(ai)l.J{ j 1;
22. end

Figure 9. Parallel-i-pref(i) on a mesh array.

than niP windows. Also, no window is assigned to more than one PE. APE is marked

available if it is taking part in the assignment. During the assignment if a PE has

been assigned NIP 2 windows in total, it is marked as not-available and no more

windows are assigned to that PE. At the beginning of the algorithm all the processors

are marked available. The mapping algorithm is outlined in figure 8.

The mapping algorithm described in figure 8 guarantees that, while 15rocessing

any segment for matching, there will be no more than O(n) data communications

per potential match. This fact will become clear when the parallel algorithm is

explained in §Y2b below. The running time of the mapping algorithm is
O(Nn).

3.2b Partitioned implementation on a fixed size mesh array: Based on the

algorithm shown in figure 7, parallel implementation on a P x P mesh array is

developed. The procedure Parallel-i-pref(i) is presented in figure 9. Similar procedure

for Parallel-j-pref(j) can be developed. In the following, floor function (1__ _d) is

assujned for all indices of the form a/b.
In each/-loop, PE(h/p)u/p), 0 ~< h, j < n (or PE(k/p)(jIp) for the second part of the j-loop)

is used for the computation of min(i, A k) (or min(i, A h)). The information required

to accomplish the computation in PE(h/eKl/e) (or PE(h/p)O/e)) includes:

1. if t = 0, then Sp(ah) (or Sp(bk)), else Qt(ah)(or Q'(bk)),

2. dhk, 0 <~ k < n (or dhk, 0 <~ h < n), and

3. 2oh ~, 0 ~< k < n (or 2/jhk, 0 ~< h < n).

The main steps of procedure Parallel-i-pref(i) are briefly discussed in the following,
with the corresponding execution time indicated within parentheses.

1. Yjew(ai), load da and 2ou, O(n) data to PE(h/t,)O/e), O(n 3) data in all. (O(na/P2)).

216 Ashfaq Khokhar and Viktor K Prasanna

procedure P,,rGdld-Q-ulxlcte(i,j)
1. if ((j E OT(a;)) &ND (i E OT(bj))) then
2. begin
3. oh,rage . - 1;

4. q(¢~) *" q (a i) U { J) ;
5. q(bj) *- Qa(bj)U{i};
6. end

Figure 10. Parallel-Q-update for updating sets
of preferred matches.

2. PEll broadcasts d o to all the processors in the array. (O((n/P)P))
3. Perform the rain operation over all k to determine min(i,j,h) in PEth/e)~j/e).

(O((n/P) e))
4. Along each column of processors, i.e. Vj, all the min(i,j, h) values are summed up

and saved in the last processor PEpo/e r (O((n/P)P))
5. In each PEpo/e), compute the average.
6. Vj~w(ai), load d a and 2uh k, O(n) data to PEtk/p)O/p, O(n a) data in t~tal. (O (na/P 2)).
7. Perform the min operation over all h to determine min(i,j,k) in PE(k/e)U/p ~.

(O((n/P) P))
8. Along each column of processors, i.e. Vj, all the min(i,j, k) values are summed up

and saved in the last processor PEp(j/p). (O((n/P)P))
9. In each PEpu/r), Vjew(ai), compute the average of the sum obtained in step 8 and

add to the average obtained in step 5. (0(1))
10. Along the last row of processors, find the minimum of all the values obtained in

step 9, and store the corresponding b i back in the memory, which is QT(a~).
(O((n/P) P))

Figure 11 provides a pictorial representation of the execution of the procedure

Parallel-i-pref(i). Similar steps can be designed for the procedure Parallel-j-pref(j).
It can be easily verified that for each a i the procedure Parallel-i-pref(i) runs in

O(na/P 2) time with each time unit corresponding to a simple arithmetic/logic

operation. The resulting QT(a~)'s and QT(bj)'s can then be combined in constant

time by using the procedure Parallel-Q-update given in figure 10. Therefore, each
iteration takes O(Nna/P z) time.

4. Image matching on a fixed size mesh array

The image matching problem plays a key role in object recognition. In the past,

several approaches have been proposed for this problem (Clark et al 1978; Shapiro &
Haralick 1981; Price 1982, pp. 105-t12), which, in general, differ with respect to the

primitives used for matching. In this section, we consider image matching using linear
features for parallel implementation. Readers can refer to Medioni & Nevatia (1984)

for additional details of the matching technique. We begin with the basic idea of this

approach and then present a processor-time optimal parallel implementation of the

algorithm on a fixed size mesh array.

4.1 Matching technique

In general, in the image matching problem, we have n objects, {ol,o2 on}, in the

scene and m labels, {11,12 l,,}, in the model. I4ere, the objects are segments in the
scene derived from edge detectors and are described by the coordinates of their end

Mapping stereo & image matching algorithms 217

(Computations for the left image) (Comlmta~m for the right image)

1. Load data 6. Load data
Vhj load dta Ykj load dth

2. Broadcast d,j to
all processors

7. In all processors

compute ~ and
find rain over
all h in each PE

[.."..![
3. In all processors • •

compute ~.j~ and •
find rain over i !
all k in each PE 1 , ~

8. Compute sum2
of all rains

.

.

4. Compute suml
of all rains

.

?o 9. Compute Ave2
©©
?0
i . .

5. Compute Avel

ii. I ; ; * .
Figure 11. Data flow for procedure Parallel-i-pref(i).

points, orientation and average contrast. The matching technique computes the

quantity vi~ , in {0, 1}, which is the possibility of assigning label lp to object oi.

The method (Medioni & Nevatia 1984) relies on geometric constraints, which means

that when a lebel I v is assigned to object oi, we expect to find an object o 1 with

assigned label lq in an area depending~ on i, p, q. The match-window W(i, p, q) denotes

the area described by the parameters i,lp, q. By representing the object o~ with a vector

A~Bi, the label l o with CpDp and label lq with C~Dg, we can determine the four

extreme points, W1, Wz, W3, W4, of the induced match-window W(i,p, q) using the

following relations: (~ denotes a given scaling factor).

• A i W I - - # ' C p C q , W l W 2 = / ~ ' C ~ D q :

• B i W 3 --- # ' D p C q , W 3 W 4 -- ~ 'Cq Dq .

Figure 12 shows the relationship between the window and the segments.

The meaning of compatibility is defined as follows:

(i ,p) is compatible with (j ,q) iff o i in W(j,q,p) and o~ in W(i,p,q).

218 Ashfaq Khokhar and Viktor K Prasanna

C~ Dp

godel

Dq

At Bi

~¢@n@

Figure 12. Determining a match-window.

Let fl~[p,q] denote the compatibility of assigning label lp to object i and label 1~ to
object j. A weak notion of consistency is used to determine whether an assignment

is feasible. A predetermined confidence factor, 6 ~< m, is used to decide the feasibility
of <i, p) as in the following update statement during an iteration*.

For every i,p, v'ip,- v~p AND 'condition A', where 'condition A' is true if

(iS _ { 1, 2 m) and IISII = 6, such that for every q¢S, ~j¢ { 1,2 n) such
that vj~ = 1 and fl~j[p, q] = 1) and is false otherwise.

The algorithm stops when for all i,p, v'~o = rip. We can rewrite the above update
statement as

where

~,m [- N

vtp~- % , (v~ fli~[r, q])], (4)
.t

&q~l {1, if ~= l Xq ~ ~ , (5)

= X~= 0, otherwise.

Note that the operation Y~= 1 in (4) is a logical OR operation, while the operation
~'__ 1X~ in (5) is an arithmeUc ADD operation. With the modified update statement

given by (5), we have designed a faster sequential algorithm (Khokhar et al 1992)
which is easier to parallelize compared with the one proposed by Medioni & Nevatia

(1984). This algorithm is an extension of the discrete relaxation algorithm developed
by Lin (Lin 1991; Lin & Prasanna Kumar 1991) and it takes O(nZm 2) time. Each

time unit corresponds to a simple arithmetic/logic operation. The original algorithm
(Medioni & Nevatia 1984) runs in .O(n2m2dw) time, where d is the density of the

segments and w is the window size. In the worst case, d and w can be n and m
respectively. More details can be found in Kh0khar et al (1992).

4.2 Parallel image matching

In this section, we present a parallel implementation of the image matching algorithm
given in Khokh~r et al (1992). Since the size of a match-window determined by any

object and two labels is much smaller than the size of the complete image, the number

of initially assignable segments in any of the match-windows for each object is much
smaller than the total number of objects in the image. This allows us to obtain a

* [I S fl denotes the cardinality of S

Mapping stereo & image matching algorithms 219

{ Initialization }

1. Initialize all fl~j[p,q]'8 in parallel;

2. parmqeido(inPF_,i~,,O<_ i < n - l , O < p < _ m - 1)
3. vi~*- I ;

4. fo r q = 0 t o m - 1 d o

5. N,,(q] . - O;

6. T;p .-- 0
7. for j = 0 to n - 1 do
s. if(~Lo, f) ffi 1) then JV,,lq] ,-- JV,,[q] + 1;
9. end;

10. i f (N,,[q] # 0) t h e n 7~, . - Til, + 1;
11. end;

12. i f (Ti, < 6) t h e n do
13. ..qem/il, . - 1;
14. vlp * - O;

15. end ;

13. para l le l e n d ;

{ Iter&tion }
16. r e p e a t

17. pa ra l l e l do (in PE~, 0 _< i _< n - 1, 0 < p < m - 1)
18. if($endi) = 1) t h e n

19. send Id < i,p > to all the PEs;

20. { i f (no broadcast ld acknowledoed)
21. t h e n stop;

22. e lse • b roadcu t Id, ~ y < j ,q >, is acknmdedged by all PE's;}*

23. i f (< i,p > = < j ,q >) t h e n Send O, *-- 0;
24. i f ((v,, = 1) A N D (fl~[p,q] = 1)) t h e n do
25. ~v,,(q! ,- Jv,,(q]- 1;
26. i f (N/v[q] = 0) t h e n Ti~ *-- ~v - 1;

27. if(Ti~ < 6) t h e n do
28. Sendlp , - 1;

29. ely *-- O;
30. e n d
31. e n d
32. end

33. pa ra l l e l e n d
34. f o r eve r

*: the code inside braces is the broadcast operffitidn.

Figure 13. Parallel algorithm for image matching.

partitioned implementation in which each processor is responsible for more than one
<object, label> pair.

A parallel implementation of the algorithm is shown in figure 13. Each elf is

associated with m + 1 counter variables. There a r e NipEq], 1 ~ q ~ m, and T/f These
counter variables have the following definitions:

• NipEq'l denotes the number of l 's in the n entries of f l ~ , q] , 1 <~j ~< n, and

• Tip denotes the number of nonzero Nip Eql's, 1 ~ q <<. m.

For v i , each of the mNip[ql's are used to determine an object for label lq, i.e., ff

we can ~nd any object to be labelled with Iq when o~ is labelled with I r Tip is used
to determine if there are at least 6 such compatible labellings when oi is labelled with

lp. Each infeasible pair <i, p> (having ~o ~< 6) is broadcast to all the processors. Each PE
checks if it has any pair <j,q) such that f P . ~ q] = 1 and decrements N. [q] At any tJ lp "
time, if Ni~[q] becomes zero, T~p is decremented. As a result, if T~p ~< 6, pair (j , q) is

220 Ashfaq Khokhar and Viktor K Prasanna

marked infeasible. The broadcast operation can be implemented in a variety of ways
depending upon the underlying parallel architecture.

4.2a Partitioned impler, entation on a fixed size mesh array: Based on the algorithm
shown in figure 13, a partitioned implementation on a fixed size mesh array is obtained.
Each of the p2 processors process (nm/P 2) distinct rip values. The data stored in each
of the p2 memory modules include (nm/P 2)vi p values, corresponding nm f ~ [p, q] values,

m Nip[q] counter values and the Tip variable. Also, a flag is stored in each MM for each

V~p to indicate whether the infeasibility has been acknowledoed by all the processors.
Such an acknowledgement triggers the necessary update of the corresponding counters

in each PE. Also, in each PE, an extra flag is used to indicate if at least one such

infeasible assignment (amon z its nm/P 2 assignments) is yet to be acknowledoed.
An initialization procedure is executed in each PE to initialize the m counter

variables for each of its (nm/P2)v~p values. Based on the condition defined in §4.1,

each I'E sets the corresponding flag for an infeasible assignment and retains the Id
of one such assignment for later broadcast. This can be performed in O(nm/P 2) time.

During each iteration, a 'collect' operation is first executed. The purpose of this

operation is to gather the Ids retained in all the processors at the end of the previous

iteration. A designated PE (s~'-, PEoo) is responsible for collecting these Ids, and
retaining one of them. This Id collection process is executed in each row by moving

each infeasible Id to the processors in the left-most column and then moving it up

to PEoo. The retained Id in PEoo is then ,~roadcast to all the processors. The broadcast
operation can be executed in O(P) time. Once each PE receives such an
Id (of an infeasible assignment), an update procedure is carried out to modify the

corresponding counter variables and to set the corresponding infeasibility flag, if

necessary. The algorithm terminates if there is no Id retained in PEoo. Since it takes

constant time to update the affected counter variable of each assignment, O(nm/P 2)
time is sufficient for all the processors to complete the update operation in parallel.

Thus, each iteration can be performed in O((nm/P 2) + P) time. The total execution

time is O [(nm/P 2) + P)nm], since there can be at most nm iterations. This implementa-
tion leads to a processor-time optimal solution when P <~ (nm) 1/3.

5. Conclusions

We have presented processor-time optimal parallel implementations for image and

stereo matching problems on fixed size mesh arrays. The sequential algorithms used

in the implementations rely on linear features as primitives for matching. An extension
of our image matching implementation provides efficient solution to the kernel
matching algorithm given by Medioni & Nevatia (1984).

Image matching and stereo matching are key problems in image understanding.

Several sequential approaches to these problems have been investigated. The proposed
solutions vary mainly in terms of the primitives used for matching. Extensive work

is needed to consolidate these approaches and provide a framework for parallel stereo
and image matching problems.

This research was supported in part by NSF under grant IRI-9145810 and in part by
DARPA and AFOSR contracts F-49260-89-C-0126 and F-49620-90-C-0078.

Mapping stereo & image matching algorithms 221

References

Clark C, Luk A, McNary C 1978 Feature based scene analysis and model matching. Proc.
of NA TO Advanced Study Inst. for Pattern Recognition and Signal Processing, France

Dhond U, Aggarwal J K 1989 Structure from stereo- A review. IEEE Trans. Syst., Man
Cybern. 19:1489-1510

Khokhar A, Lin W, Prasanna V K 1992 Stereo and image matching on fixed size linear
arrays. 1EEE Trans. Pattern Anal. Mach. lntelL PAMI (submitted)

Lin W 1991 Mapping image algorithms onto window architectures, PhD thesis, Dept. of
EE-Systems, University of Southern California, Los Angeles

Lin W, Prasanna Kumar V K 1991 Parallel algorithms and architectures for discrete relaxation
technique. Proc. of I EEE Conference on Vision and Pattern Recognition (New York: IEEE)

Medioni G, Nevatia R 1984 Matching images using linear features. IEEE Trans. Pattern
Recogn. lmage Process. PAMI-6:675-685

Medioni G, Nevatia R 1985 Segment-based stereo matching. Computer Vision, Graph Image
Process. 31: 2-18

Prasanna Kumar V K 1991 Parallel algorithms and architectures for image understanding
(Boston: Academic Press)

Price K 1982 Symbolic matching of images and scene models. Proc. of IEEE Workshop on
Computer Vision (New York: IEEE)

Shapiro L, Haralick R 1981 Structural description and inexact matching. IEEE Trans. Pattern
Anal. Mach. lntell. PAMI 3:504-519

