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Abstract. Here, we present a mapping method OBLIMAP,

which projects and interpolates fields like surface tempera-

ture, surface mass balance, and surface height between a ge-

ographical based coordinate system of a General Circulation

Model (GCM) and a rectangular based Ice Model (IM). We

derive an oblique stereographic projection and its inverse,

which holds for any area at the Earth’s surface, and which

can be combined with two different interpolation methods.

The first one is suited to interpolate the projected fields of a

coarse GCM grid on a fine meshed IM grid. The second one

is appropriate for the opposite case. Both grids are allowed to

be arbitrary and irregularly spaced. Therefore the OBLIMAP

technique is suitable for any GCM-IM combination. After

a first scan of the GCM grid coordinates and the specifica-

tion of the IM grid, fast mapping of various fields is possi-

ble. To and fro (GCM-IM-GCM) mapping tests with the Cli-

mate Community System Model (CCSM) at T42 resolution

(∼313 km) and the Regional Atmospheric Climate Model

(RACMO) at ∼11 km and ∼55 km, show average tempera-

ture differences of less than 0.1 K with small standard devi-

ations. OBLIMAP, available at GMD, is an accurate, robust

and well-documented mapping method for coupling an IM

with a GCM or to map state of the art initial and forcing

fields available at geographical coordinates to any local IM

grid with an optimal centered oblique projection. Currently,

the oblique stereographic and the oblique Lambert azimuthal

equal-area projections for both the sphere and the ellipsoid

are implemented in OBLIMAP.

1 Introduction

Ice sheets, are often poorly resolved in General Circulation

Models (GCM’s). Their extent and surface height distribu-

tion are fixed or only represented by a thin ice layer. How-

ever, the complex interaction of the ice sheet with the ocean-

atmosphere system demands an interactive approach to im-
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prove the reliability of GCM runs; evidently on geological

time scales with a highly variable ice extent, but also for sce-

nario runs with a time horizon of only 100 years.

Quantities that are calculated by GCM’s like the surface

temperature and the surface mass balance, the sum of accu-

mulation and surface melt, are the forcing of an ice sheet

determining its expansion and retreat, which the other way

around affect the climate system via the albedo, the surface

topography, and the fresh water input in the ocean. For this

reason GCM’s and IM’s need to be coupled. In practice this

causes problems because GCM’s are designed for global sim-

ulations on a coarse grid based on geographical (longitude,

latitude) coordinates. Contrary, the ice dynamical equations

are favorably solved on a grid with rectangular coordinates

because the transformation of the ice dynamical equations

to geographical coordinates introduces many extra compli-

cating terms, in particular given the tendency of including

more and more stress terms (see e.g. Pattyn, 2003; Reerink

et al., 2009). Moreover calculations with a GCM are very

time consuming and therefore only limited runs can be per-

formed with a relatively coarse resolution. Typical grid sizes

range from T42 (∼313 km) to T159 (∼45 km). The typical

grid size for modeling ice sheets is about 20 km or smaller

and the extent of the IM grid is not globally, but limited to

ice covered areas. The typical time scale for an ice cap run

is ten-thousands of years whereas most GCM runs span only

a few hundred years. This mismatch in spatial and temporal

scale between IM’s and GCM’s and the difference between

their coordinate systems, demands a coupling approach in

which both models are used in their own set up and in which

the resulting fields have to be mapped between them (see also

Rutt et al., 2009).

Hitherto in a first coupling approach ice sheet models

were forced with time slice results of a GCM for near fu-

ture conditions (e.g. Huybrechts et al., 2004; Van de Wal

et al., 2001) or for paleo purposes (e.g. Fabre et al., 1998).

This is not that critical as the mapping and projection is only

done once and the IM continues to run offline. In a kind of

intermediate approach DeConto and Pollard (2003) coupled

a single polar ice sheet asynchronously, i.e. the results are
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exchanged between the two models only once in a while.

In another intermediate attempt, the climate anomalies from

the GCM are used to drive a mass balance model of an ice

sheet, and contrary the fresh water flux from the IM affects

the ocean model (e.g. Huybrechts et al., 2002; Fichefet et al.,

2003). More demanding is the direct use of (regional) cli-

mate model output to estimate the surface mass balance and

the surface temperature to force the IM, and where the sur-

face topography and other surface properties as the surface

temperature and the albedo are transferred back to the GCM

after each time step. An example of such a study is the work

by Ridley et al. (2005) who coupled the HadCM3 model

to an ice-sheet model of Greenland. They used a coarse

coupling as temperatures where corrected with fixed lapse

rates and ablation rates where calculated with a degree-day

model. More recently Mikolajewicz et al. (2007) and Viz-

caino et al. (2008) presented results of a similar approach for

the ECHAM model with also schematic ablation calculations

and a limited focus on the coupling technique itself.

They all use a polar stereographic projection, which is ad-

equate for areas roughly centered around the poles. How-

ever, less centered regions like Greenland, any local part of

Antarctica like the Peninsula, or the Tibetan plateau demand

a local centered projection which is independent of the lo-

cation, i.e. it should work for any area of interest. Besides,

in a mapping strategy for the two way coupling no signifi-

cant mass or energy might be lost just by the mapping, and

the mapping needs to be fast. OBLIMAP suffices all those

requirements.

Here we propose to use an oblique stereographic projec-

tion because it can be used for any area; equatorial, high lat-

itude and polar. In the oblique case any area can be mapped

with an optimal centered projection because any axis can be

chosen as the projection axis. Whereas only the north-south

pole axis can be used in the polar stereographic case. Pro-

jecting a local area at low latitude with a polar projection

will unnecessarily lead to larger distortions because the pro-

jection plane cannot be centralized.

Another interesting projection in this context is the oblique

Lambert equal-area projection (Snyder, 1987, p. 182) which

is also available in OBLIMAP. In this manuscript we use the

stereographic projection as the default to keep the structure

clear, but both oblique projections are interchangeable which

will be addressed only in the discussion. The stereographic

projection is conformal and azimuthal (i.e. perspective), and

by choosing an optimal parallel projection plane it will be

close to equal-area. Conformal means that the relative local

directions are true at any given point (e.g. Snyder, 1987, p. 4),

which might be important from ice modeling perspective to

keep a match with the ice flow directions. The Lambert az-

imuthal equal-area projection is equal-area and azimuthal but

non conformal. Its equal-area property is interesting with re-

spect to the mapping of conserved quantities.

We derived for both the oblique and the inverse oblique

stereographic projection a single set of equations which are

successful in all eight octants (and borders) of the spheri-

cal surface, and at the poles. Also Snyder (1987, p. 154)

presents equations for the oblique stereographic projection,

but derivations are omitted. His equations are obtained by

taking the polar projection with an additional translation to

the oblique case (see Snyder, 1987, chapter 5 with its ex-

ceptions and their alternatives). Here we directly derive the

oblique case by finding the points of intersection of sev-

eral surface equations and parameter representations. The

mapped data should be projected on well defined and well

oriented grid planes (of any size and at any location) requir-

ing this accurate and clear derivation. In case of OBLIMAP

any projected IM grid has the Cartesian orientation relative

to the normal vector on the spherical surface, which implies

that a continuous collection of projected grid planes over the

globe is obtained including the polar cases.

Because the projected grid points will not coincide with

the target grid points, the projected fields have to be in-

terpolated on the target grid. For both mapping directions

OBLIMAP contains two interpolation methods: for the case

of a relatively coarse and a relatively fine meshed target grid.

The resolution of both model grids is not restricted, nor their

grid distribution, for instance a Gaussian grid is allowed.

Both interpolation methods are robust for data gaps and lim-

ited grid areas.

Comparing the initial GCM fields with their correspond-

ing to and fro (GCM-IM-GCM) mapped fields tests the

OBLIMAP mapping. The differences after mapping are only

due to interpolation (the projection is exact) and are small

compared to the local field errors. Average differences and

their standard deviations for tests with the Climate Commu-

nity System Model (CCSM) and the Regional Atmospheric

Climate Model (RACMO) data are presented. OBLIMAP

is developed as a part of our ice model ICEDYN, but is

added as a stand alone code at the GMD site (see sup-

plementary material http://www.geosci-model-dev.net/3/13/

2010/gmd-3-13-2010-supplement.zip) and is distributed un-

der the terms of the GNU General Public License.

OBLIMAP is also useful for experiments in which initial

fields as ice thickness and bedrock topography (Lythe et al.,

2001; Bamber et al., 2001, 2009) are combined with forc-

ing fields of a nested higher resolution regional model like

RACMO (Van de Berg et al., 2006; Ettema et al., 2009). Such

initial and forcing fields can be combined with an equal and

optimal centered projection towards a local IM subgrid.

2 Method

2.1 Mapping method

Mapping of the GCM fields which are defined on a

coarse grid with geographical coordinates towards a fine IM

grid with rectangular coordinates is a sequence of projec-

tion and interpolation by distance-weighted averaging. The
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coordinates of the GCM grid points are projected by an

oblique stereographic projection on to a plane which coin-

cides with the IM grid. The projected GCM grid point co-

ordinates will in general not coincide with the IM grid point

coordinates but fall in between irregularly. For each of the

fine meshed IM grid points we select the nearest projected

GCM grid point in each of the four quadrants around such

an IM grid point. With those four nearest projected GCM

grid points the resulting mapped value for this IM grid point

is obtained by a Shepard distance-weighted averaging inter-

polation method. We call this the “quadrant method”. In

case a projected point coincides with a target grid point it

will dominate the weighting by adjusting its distance to 1 cm,

avoiding division by zero. It depends on the GCM, but for in-

stance for the CCSM T42 grid there are no GCM grid points

within the potentially ice covered areas between −90◦≤φ≤–

87◦ and 87◦≤φ≤90◦ north (with φ the latitude), in that case

the projected GCM points used for interpolation are located

further away in the quadrants.

Opposite, mapping the IM fields which are defined on a

fine meshed grid towards the coarse GCM grid, is also a se-

quence of projection and interpolation by distance-weighted

averaging but within a certain radius. The coordinates of the

IM grid points are projected by an inverse oblique stereo-

graphic projection on to the curved plane which coincides

with the Earth’s surface and the GCM grid. The projected

IM grid point coordinates coincide not necessarily with the

GCM grid points. In case of a relatively coarse GCM grid

size all projected IM points within a radius of the order of

half the GCM grid size are included by a Shepard distance-

weighted averaging interpolation method to obtain a repre-

sentative value for this GCM grid point. We call this the

“radius method”. In this method projected points at zero dis-

tance are neglected. Because of the limited extent of the IM

grid, only those GCM points within the considered area will

participate in the inverse projection.

2.2 The oblique stereographic projection

OBLIMAP is capable of mapping any area on the Earth sur-

face for which the middle point of interest M = (λM , φM ) is

specified. This area is projected from the center of projection

C, being the anti-pole of M , on a plane lying parallel to the

tangent plane in M but some distance inward. This distance

has to be specified by an angle α which determines the exact

stereographic projection.

First we define the used coordinate systems, thereupon we

continue with a qualitative description of the oblique stere-

ographic projection and its inverse before we present the re-

sults.

2.2.1 Involved coordinate systems

We use the following coordinate systems in the derivation of

the projection formula’s:

x3-D

y3-D

z3-D

φP

λP

O

P

Q

S

x3-D

P

y3-D

P

z3-D

P

φ

λ

Fig. 1. The figure shows the axes and their orientation for the 3-D

cartesian rectangular coordinate system (x3-D, y3-D, z3-D) and the

3-D spherical coordinate system (λ, φ, r). The spherical coordi-

nate λ lies in the x3-Dy3-D-plane, while the spherical coordinate

φ equals the angle OQP which lies in a plane perpendicular to this

x3-Dy3-D-plane. Above this x3-Dy3-D-plane φ is positive while be-

low it φ is negative. As in a cartesian spherical system, λ is chosen

counter-clockwise positive and r is positive outward. P (λ+λP ,

φ=φP , r=R) is a point on the sphere S with radius R. Here P lies

in the first octant in which all coordinates are positive.

– The 3-D rectangular cartesian coordinate system: (x3-D,

y3-D, z3-D), with x3-D, y3-D, z3-D∈R and with the ori-

gin O= (x3-D=0, y3-D=0, z3-D=0). See Fig. 1.

– The 3-D spherical coordinate system: (λ, φ, r), with

0◦≤λ≤360◦ and with the origin O=(λ, φ, r=0), which

coincides with the origin O of the 3-D rectangular carte-

sian coordinate system. See Fig. 1.

– The 2-D rectangular cartesian coordinate system: (xIM,

yIM), with xIM, yIM∈R where we define the origin

M ′=(xIM=0, yIM=0). The plane spanned by xIM and yIM

is called S′. In the 3-D spherical coordinate system the

coordinates of the origin M ′ are M ′=(λM , φM , R cosα).

The IM grid points are points in this 2-D rectangular

cartesian coordinate system. See the red colored plane

in Fig. 2.

– The 2-D geographical longitude-latitude coordinate sys-

tem defined on the Earth’s surface: (lon, lat) with

0◦≤lon≤360◦ and −90◦≤lat≤90◦. The curved spher-

ical plane representing the surface of the Earth is de-

fined as S. In the 3-D spherical coordinate system these

2-D (lon, lat) coordinates can be described with (λ, φ,

r)=(λ, φ, R) with R the radius (in m) of S and the Earth.

www.geosci-model-dev.net/3/13/2010/ Geosci. Model Dev., 3, 13–41, 2010
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Fig. 2. Figure (a) shows a GCM point P on S which is projected

on S′ along the line
−→
CP . The projected point P ′ is situated in plane

S′ which coincides with the red colored IM grid. The coordinates

of P ′ in the IM grid which coincides with S′ are indicated by the

components (in green) relative to the IM axes. The global GCM grid

coincides with the spheric surface S. The IM is a regional model

and therefore has a relatively small extent, see the red colored IM

grid. Note that a relatively small IM grid is sketched, with a well

chosen α the horizontal extent will be larger than the M ′I drawn

here. Figure (b) shows a close up of the projection plane.

In fact these angle coordinates equal the (lon, lat) co-

ordinates, so lon=λ and lat=φ. The GCM grid is based

on these coordinates, see the λ and φ in Fig. 1 in case

r=R.

Figure 1 illustrates the relation between both 3-D systems,

and Fig. 2 illustrates the location of the plane S′ in the 3-D

rectangular coordinate system. For the 2-D geographical and

the 3-D spherical coordinate systems the value of the lon-

gitude λ is undetermined at the North Pole (NP) and at the

South Pole (SP).

2.2.2 Description of the projection

In an oblique stereographic projection the points from a

spherical surface S are projected to a rectangular plane S′,

see Fig. 2 for the projection of a single point P . This spher-

ical surface S is part of a sphere with radius R. In our case

the GCM grid points are points on S and the IM grid points

are points on S′. Roughly the oblique stereographic projec-

tion can be described as follows: Consider a specified point

M= (λM , φM , R) in the middle of an area of interest on S.

The center of projection C is the anti-pole of M , it lies on

S but just at the opposite side of S. An arbitrary point P on

S will be projected along the line
−→
CP into the plane S′, see

Fig. 2. Usually P is a point not too far from M . The pro-

jected point P ′ is the point of intersection of the line
−→
CP and

the plane S′. The plane S′ is parallel to the plane which is

tangent to the sphere S in point M , and therefore perpendic-

ular to
−−→
CM as well. The exact location of S′ (along

−−→
CM)

depends on the place of intersection of S′ with S. If I is

this point of intersection of S′ with S, then α is the angle

MOI which determines the exact stereographic projection,

see Fig. 3. Often the complement angle β of α is used to

specify the stereographic projection: β=90◦−α. M ′ is the

point of intersection of
−−→
CM (or

−−→
OM) and S’, and will be the

origin of the 2-D rectangular coordinates xIM and yIM of the

IM grid which coincides with the plane S’. The extent of the

IM grid xmin
IM , xmax

IM , ymin
IM and ymax

IM of S’ have to be specified,

in OBLIMAP in terms of the grid sizes and the grid spacings.

At the intersection circle of S and S’, distances are pro-

jected one to one. While distances on S at the M side of S′

shrink and distances on S at the O side enlarge, see Fig. 3.

Therefore an optimal α leads on average to a one to one pro-

jection (or close to that in case an asymmetric region requires

a non-squared grid) in the area of interest. A reasonable α

can be estimated by requiring that half the IM grid area falls

inside the intersection circle with radius M ′I :

π(M ′I )2 =
1

2
NxNy1x1y (2.1)

with Nx , Ny , 1x, and 1y the number of grid points and the

grid spacing in x- and y-direction.

Then, from Fig. 3 one can immediately derive that for a

grid with NxNy1x1y ≤ 2πR2 an optimal α equals

α = arcsin

(

1

R

√

1

2π
NxNy1x1y

)

(2.2)

With the red colored IM grid in Fig. 2 at the correct position

and with α as in Eq. (2.2), an optimal projection is obtained.
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For Antarctica often α=19◦ is chosen, and for Greenland,

because it is smaller, a lower α will be better.

If Antarctica is the area of interest we choose M equal to

the SP. In that case the projection is called a polar stereo-

graphic projection for which our formula’s hold as well. The

stereographic projection is called oblique if the axis
−−→
CM can

be any axis, so M can be any point on S. E.g. in case of

Greenland, we take M = (λM=320◦,φM=72◦).

To summarize: the distance
−−−→
MM ′ is controlled by spec-

ifying α which determines the exact oblique stereographic

projection. The area of interest is chosen by specifying

M (λM ,φM ) and the IM grid extents xmin
IM , xmax

IM , ymin
IM and

ymax
IM .

2.2.3 The oblique stereographic projection

The longitude-latitude coordinates λP and φP of an arbitrary

point P on the spherical surface S are projected to a rectan-

gular plane S′ which coincides with the IM grid with origin

M ′. After specifying λM and φM , the coordinates xIMP ′ and

yIMP ′ of the projected point P ′ relative to the IM grid can be

calculated. Under the condition

λM = 0◦ for φM = −90◦ & φM = 90◦ (2.3)

the final result for the oblique stereographic projection is

xIMP ′ = R(cosφP sin(λP −λM))tP ′ (2.4)

yIMP ′ = R[sinφP cosφM−

(cosφP sinφM)cos(λP −λM)]tP ′ (2.5)

with

tP ′ =
1+cosα

1+cosφP cosφM cos(λP −λM)+sinφP sinφM

(2.6)

which is derived in Appendix A. The angles are in degrees

and the distances in m.

2.2.4 The inverse oblique stereographic projection

The final result for the inverse oblique stereographic projec-

tion for an arbitrary point P ′ in S′ to P in S, is given by

λP = 180◦ + 180
π

arctan
y3-D

P

x3-D
P

λP = 180
π

arctan
y3-D

P

x3-D
P

λP = 360◦ + 180
π

arctan
y3-D

P

x3-D
P

λP = 90◦

λP = 270◦

λP = 0◦































































for

x3-D
P < 0

x3-D
P > 0 & y3-D

P ≥ 0

x3-D
P > 0 & y3-D

P < 0

x3-D
P = 0 & y3-D

P > 0

x3-D
P = 0 & y3-D

P < 0

x3-D
P = 0 & y3-D

P = 0

(2.7)

α

M ′

M

I

S

S′

ta
ng

en
t pl

an
e
to

S
in

M

O

Fig. 3. This cross section shows how the position of the plane S′ is

determined by α. S′ is parallel to the plane which is tangent to the

sphere S in point M and S′ is shifted a certain distance MM ′ along
−−→
OM . This distance is determined by the intersection point I which

is controlled by α. The choice of α thus determines the distance

MM ′.

and

φP = 180
π

arctan
z3-D
P

√

x3-D
P

2
+y3-D

P

2

φP = 90◦

φP = −90◦



















for

x3-D
P 6= 0 or y3-D

P 6= 0

x3-D
P = y3-D

P = 0 & z3-D
P > 0

x3-D
P = y3-D

P = 0 & z3-D
P < 0

(2.8)

with

x3-D
P = R(cosλM cosφM)(tP −1)+x3-D

P ′ tP (2.9)

y3-D
P = R(sinλM cosφM)(tP −1)+y3-D

P ′ tP (2.10)

z3-D
P = R( sinφM)(tP −1)+z3-D

P ′ tP (2.11)

in which

tP =
2R2 +2Ra

R2 +2Ra+
(

x3-D
P ′

)2
+
(

y3-D
P ′

)2
+
(

z3-D
P ′

)2
(2.12)

in which

a = (cosλM cosφM)x3-D
P ′ +(sinλM cosφM)y3-D

P ′ +(sinφM)z3-D
P ′ (2.13)

and

x3-D
P ′ = RcosαcosλM cosφM −(sinλM)xIMP ′ −

(cosλM sinφM)yIMP ′ (2.14)

y3-D
P ′ = RcosαsinλM cosφM +(cosλM)xIMP ′ −

(sinλM sinφM)yIMP ′ (2.15)

z3-D
P ′ = RcosαsinφM +(cosφM)yIMP ′ (2.16)

which is derived in Appendix B. The angles are in degrees

and the distances in m.

www.geosci-model-dev.net/3/13/2010/ Geosci. Model Dev., 3, 13–41, 2010



18 T. J. Reerink et al.: Mapping technique of climate fields between GCM’s and ice models

X X X X X

XXXXXX

X X X X X

X

X

X X X

L
at

it
u

d
e

0 360

−87.86

87.86

Longitude

X

X

X

X X XX

X X X X XX

X X

X

X

X X

GCM IM

xIM

yIM

P
′

I

P
′

II

P
′

III P
′

IV

PI PII

PIIIPIV

Fig. 4. The figure illustrates the interpolation: through each grid point (xIM(m),yIM(n)) we draw an imaginary cross (red cross) that divides

the area around the grid point into four quadrants. Then in each quadrant we determine the projected GCM grid point that lies closest to

xIM(m), yIM(n) (blue crosses). Those points we call P ′
I

, P ′
II

, P ′
III

and P ′
IV

.

2.3 Interpolation of the projected fields

With the formula’s presented in Sect. 2.2.3 and 2.2.4 we

can project any GCM grid point (λ, φ) towards an IM grid

(xIM, yIM), and vice versa. Suppose we want to map a two-

dimensional GCM field (F 2-D
gcm ) to the IM grid, then the pro-

jected points will in general not coincide with the IM grid

points. Therefore we determine the mapped two-dimensional

IM field (F 2-D
im ) values at the IM grid by interpolation of the

projected GCM points in the surrounding quadrants. In the

opposite map direction, we determine the F 2-D
gcm values at the

GCM grid by averaging all projected IM grid points within

a certain radius, where each projected IM grid point con-

tributes depending on its distance to the considered GCM

point.

2.3.1 Interpolation on to the IM grid of a projected

GCM field: quadrant method

Let i and j be the longitudinal and latitudinal grid indices for

the GCM grid and Pij=(λ(i),φ(j)) a point at the GCM grid.

Furthermore, let m and n be the xIM and yIM grid indices for

the IM grid. Then corresponding to Pij , P ′
ij is the projected

point relative to the IM coordinate system and will in general

not coincide with an IM grid point but fall in between, see the

blue crosses in Fig. 4. To obtain the values of the F 2-D
im field

at the IM grid points (xIM(m),yIM(n)), the F 2-D
gcm field values

of the nearest P ′
ij points are interpolated. Since these P ′

ij do

not lie in an equidistant manner around (xIM(m),yIM(n)) we

use a quadrant method based on the Shepard interpolation

technique (Shepard, 1968).

In Fig. 4 an imaginary cross positioned at each IM grid

point (xIM(m),yIM(n)) divides the area around the grid point

into four quadrants. For each m, n combination we determine

in each quadrant the closest P ′
ij to (xIM(m),yIM(n)). Figure 4

demonstrates an example with P ′
I , P ′

II , P ′
III and P ′

IV being

the nearest IM grid points to the red cross.

Let dI , dII , dIII and dIV be the Euclidian distance for

the four quadrants respectively from each of these points to

the considered IM grid point (xIM(m),yIM(n)), then the for-

mula for the Shepard distance-weighted averaging interpola-

tion becomes:

F 2-D
im (xIM(m),yIM(n)) =

IV
∑

q=I

F 2-D
gcm (Pq)
(dq )e

IV
∑

q=I

1
(dq )e

(2.17)

where q counts over the four quadrants I,II,III , and IV ,

Pq is the nearest projected GCM grid point in quadrant q at

a distance dq relative to the considered IM grid point (m,n),

and e is the distance weighting exponent, usually e=2 is con-

sidered to be the fairest choice for this type of problems

(Shepard, 1968).

2.3.2 Interpolation on to the GCM grid of a projected

IM field: radius method

In this case the P ′
mn points coincide with the IM grid points,

and the corresponding projected points Pmn will in general

not coincide with the GCM grid points (λ(i),φ(j)). Be-

cause the Pmn will not lie in an equidistant manner around

(λ(i),φ(j)), and because in this case the large GCM grid

should represent the many fine IM grid points in that area,
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the radius method is used. This is similar to the Shepard in-

terpolation (Shepard, 1968) for a radius Rs of about half the

GCM grid size. The distance dmn(i,j) of a point Pmn to the

point Pij at (λ(i),φ(j)) is the shortest path over the spherical

surface S along a great circle:

dmn(i,j) = Rarccos
[

cos(φPmn)cos(φPij
)cos(φPmn−φPij

)+

sin(φPmn)sin(φPij
)
]

(2.18)

Weighting all projected IM points within a radius Rs using

the Shepard distance-weighted method, yields:

F 2-D
gcm(λ(i),φ(j)) =

∑

dmn(i,j)≤Rs

F 2-D
im (Pmn)

dmn(i,j)e

∑

d(i,j)≤Rs

1
dmn(i,j)e

(2.19)

To treat the GCM points at the edge of the IM grid correctly,

the IM grid is extended with the grid edge values.

3 Model specifications

3.1 The CCSM model

The Community Climate System Model (CCSM, see

http://www.ccsm.ucar.edu), designed by NCAR is a GCM

with four separate model components simulating the Earth’s

atmosphere, ocean, land surface, and sea-ice which are cou-

pled by a central coupler component. We are mostly inter-

ested in the fields from the CCSM3 atmosphere component

for realistic OBLIMAP mapping tests.

The CCSM3 atmosphere fields are defined on a regu-

lar longitude-latitude T42 grid with 128×64 grid points, see

Fig. 5. It has a horizontal resolution of 2.8◦. The grid al-

most covers the complete globe but the latitude is restricted

between −87◦ and +87◦ north. Data output are in netcdf for-

mat. We used the December–February averages of the last

five years of a present day control run. The results of this

control run agree with Collins et al. (2005).

For the surface height we used the surface geopotential

(PHIS) from CCSM. The CCSM surface temperature (TS) is

the temperature of the Earth’s surface at this surface geopo-

tential. For the surface mass balance we added two CCSM

components: the convective snow rate (PRECSC) and the

large-scale snow rate (PRECSL). We left out the evaporation

and the runoff in the CCSM cases because these fields are

only available in the CCSM land files for the land mask. And

the complications to extend these fields are not in proportion

to our goal of just providing realistic fields for our test cases.

3.2 The RACMO model

The Regional Climate Model (RACMO2 van Meijgaard

et al., 2009) has been used to obtain best estimates for present

day atmospheric fields using model physics and all available

observations. Here, we use the surface temperature and sur-

face mass balance resulting from the regional run for Antarc-

tica with RACMO2/ANT (Van de Berg et al., 2006) and from

the regional run for Greenland with RACMO2/GR (Ettema

et al., 2009). The RACMO2/ANT data is defined on a re-

duced gaussian grid with 134×122 grid points and a resolu-

tion of approximately 55 km. RACMO2/GR data is defined

on a reduced gaussian grid with 246×312 grid points and a

resolution of approximately 11 km, and covers 9.44 1012 m2

in total.

The RACMO surface mass balance fields are masked to

the ice covered area because the runoff is only calculated

there. We estimated the surface mass balance of the majority

of the non ice covered points by summing the precipitation

and the evaporation and subtracting 800 mm water equivalent

runoff per year, but the surface mass balance for points close

to the ice margin are estimated with help of the ice masked

points in a short radius by a Shepard distance weighting to

provide a better local estimate.

3.3 The ICEDYN model

The ICEDYN model, developed at IMAU-Utrecht, is a so

called 3-D thermomechanical ice model which is suited to

simulate large ice caps like Antarctica and Greenland or

smaller glacier systems over hundred thousands of years.

The current ICEDYN revision is rather flexible by using a

configuration file in which all grid specifications and time

stepping choices can be specified. Choices for proper local

forcings as surface temperature and surface mass balance can

be specified in this configuration file, and new ones can eas-

ily be added in the current modular set up of ICEDYN. By

default a 3-D thermomechanical ice-sheet is coupled with a

2-D ice-shelf, but also a simple shelfless shallow ice approxi-

mation (SIA) computation is optional from the configuration

file. Both input and output of ICEDYN are in netcdf format.

ICEDYN performs well against the EISMINT benchmark

experiments (Huybrechts et al., 1996; Payne et al., 2000),

which can be repeated by just using the EISMINT configura-

tion file.

Depending on the experimental set up, the ICEDYN model

is capable of modeling each ice cap for which certain initial

and reference fields are available, and for which the forcing

is known. OBLIMAP is developed as a part of ICEDYN

and has a similar flexible grid specification from a configura-

tion file. Using ICEDYN is convenient to test the OBLIMAP

mapping for many grid configurations. The coordinates of

the ICEDYN grid points are rectangular cartesian coordi-

nates like the IM grid points in OBLIMAP.

The ICEDYN fields are defined on a rectangular (xIM, yIM)

grid. An example is shown in Fig. 6 with 281×281 grid

points. In this case the default horizontal resolution in x- and

y-direction is 20 km and represents Antarctica with a limited

area of 5600 km×5600 km.
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°Fig. 5. The figure shows a global image of the surface temperature field between −87◦ and +87◦ north (the color scale is in Kelvin). On top,

in black, the CCSM grid of the atmosphere component at T42 resolution is shown.

Fig. 6. The figure shows an image of the surface height of Antarctica (the color scale is in meter). On top, in black, the relatively fine IM grid

is shown, which is in reality five times finer with a grid spacing of 20 km. The origin of the IM grid M ′(xIM(m=141)=0,yIM(n=141) = 0)

represents the South Pole, where m and n are the IM grid numbers in the x- and y-direction, respectively.

Geosci. Model Dev., 3, 13–41, 2010 www.geosci-model-dev.net/3/13/2010/



T. J. Reerink et al.: Mapping technique of climate fields between GCM’s and ice models 21

4 Mapping experiments

Several realistic mapping experiments with CCSM and

RACMO data will demonstrate the performance of

OBLIMAP. Each experiment concerns a particular area and

GCM data set of interest for which the surface temperature

(Ts), the surface mass balance (MB), and the surface height

(Hs) will be mapped to and fro. The deviations between these

to and fro mapped 2-D fields and the initial field will be used

to quantify the performance of the mapping.

Grid point coordinates which are to and fro projected with

the oblique stereographic projection and its inverse remain

identical, which means the projection is exact. However, pro-

jected points have to be interpolated on the target grid, this

causes deviations after to and fro mapping. These deviations

evidently increase in case the resolution of the IM and the

GCM differs. Therefore, in our experiments we start with

the fields of the coarse GCM to prevent interfering deviations

which are not due to the mapping technique itself.

In most situations we use the quadrant method to interpo-

late. But in case the target grid resolution is about four or

more times coarser the radius method is used, representing a

better estimate of the many fine gridded points within each

single coarse target grid point. After IM-GCM mapping, the

mapped field values of the limited IM area are merged with

those initial GCM field values which are not involved in the

mapping. Averages and standard deviations (σ ) are calcu-

lated over the involved mapped points only.

Fourteen miscellaneous experiments show the accuracy

and the robustness of the OBLIMAP mapping for two dif-

ferent types of GCM data (Sect. 3.1 and 3.2). These fourteen

experiments and their specifications are listed in Table 1, the

abbreviations of the data sets are explained in Table 2. Fig-

ures 7–14 show the results of a number of these experiments

representing tests with: three GCM data sets (differing in res-

olution, in grid distribution, and in global extent), areas cov-

ering data gaps (e.g. Antarctica), areas at the border of the

GCM domain (e.g. Ellesmere), areas with complicated pat-

terns because of the topography (e.g. Ellesmere), local areas

being part of a larger (glaciated) system (e.g. Jakobshavn),

areas covering the Greenwich longitude (e.g. Svalbard), dif-

ferent amount of involved mapped points (e.g. Greenland

versus Peninsula), different IM extents, and a spread of

oblique locations.

The deviation field is the to and fro mapped GCM field

minus the initial GCM field. The average mapped deviation

(AMD) is the mean absolute error (MAE) of this deviation

field, and is presented in Table 3 together with the 2σ confi-

dence interval. In addition the field range and the field aver-

age are shown in Table 3 to judge these AMD and 2σ inter-

vals. For several of the experiments we show in Figs. 7–14

the initial GCM field, the deviation field, and the mapped IM

field for Ts , MB, and Hs . The to and fro mapped GCM fields

are omitted because they look identical, as a result of the ac-

curate mapping. At the bottom of these figures the distribu-

tions of the deviations for Ts , MB, and Hs are shown, where

we sampled the full deviation range in 300 intervals. Most of

them are sharply peaked around zero, indicating that the ma-

jority of the deviations are quite small. Although these dis-

tributions are not normal, their 2σ interval represents about

95% confidence. Points falling within 1σ and 2σ are plotted

blue to visualize the confidence intervals.

If necessary OBLIMAP is capable of converting the units

of Ts , MB, and Hs respectively to Kelvin, meter ice equiv-

alent (mieq) per year (using an ice density of 910 kg m−3),

and meter, for the IM. In the tables and the figures all results

including the GCM ones are presented in these IM units.

In experiments 1–3 the fields are mapped between CCSM

and ICEDYN, for the results see Table 3. Because in these

experiments the CCSM grid is coarse compared to the ICE-

DYN grid we used for the ICEDYN-CCSM mapping the ra-

dius method with Rs∼125 km, which is 0.8 times half the

CCSM grid diameter. We multiplied by a factor 0.8 to ensure

we include only points within each grid cell itself, because

the grid sizes differ slightly per latitude, whereas Rs is taken

constant in the current version of OBLIMAP. In Figs. 7 and

8 we show the results for Antarctica and Greenland, note that

the low number of involved points for Greenland is reflected

in the distribution plots. A lack of CCSM data between −90◦

and −87◦ complicates the mapping for Antarctica, however

with our quadrant interpolation method we obtain realistic

results of the south pole area for ICEDYN.

The higher RACMO resolution allows mapping tests on

fields with sharper contours and larger gradients. Experi-

ments 4–11 map the RACMO/GR data set RG2 and exper-

iments 12–14 map the RACMO/ANT data set RA, or parts

of them. For the results see Table 3. In experiment 4, see

Fig. 9, the IM grid covers Greenland entirely with a 10 km

resolution. While in experiments 5–8, see Figs. 10–12, and in

experiments 9–11 grids with a resolution of a few kilometer

are used to map local areas. Experiment 12, see Fig. 13, con-

cerns Antarctica entirely. While experiment 13, see Fig. 14,

and experiment 14 show a local mapping case of this RA

data set. The difference in grid resolution is that large for the

ICEDYN-RACMO mapping that we used a radius interpola-

tion method with Rs∼4.4 km for experiments 5–11, and with

∼22 km for experiments 13–14 (see Table 1).

In general we see for all the experiments (Figs. 7–14) that

the range and pattern of the mapped IM field are in very good

agreement with the initial GCM fields. And as mentioned be-

fore, after to and fro mapping the GCM fields look identical.

From Table 3 and Figs. 7–14 we see for various grids for

different locations a maximum AMD of 0.1 K for Ts . The

AMD for Hs is about a few meter for these data. The AMD

for MB varies between one millimeter and a centimeter ice

equivalent per year, depending on the range of MB. The in-

terpretation of the deviations of a field with a relatively wide

range around zero (like the MB) is more complicated because

of the difference in relative deviations. In these cases the

range relative deviation (RRD), equal to the percentage of
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Fig. 7. The figure shows top-down for Antarctica (data set A) the initial GCM fields (left panels), the mapped IM fields (right panels) and

the differences in the GCM fields after to and fro mapping (central panels) for Ts , MB, Hs , and the distributions of those differences after to

and fro mapping. The surface temperature Ts (in Kelvin), the surface height Hs (in m), and the surface mass balance MB (in mieq per year)

are indicated by the color bars left of each field panel. For convenience the points in the distribution graphs between 1σ and 2σ are plotted

blue, and the points within 1σ are connected by a spline.
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Fig. 8. This figure concerns Greenland (data set A), see further the caption of Fig. 7.
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Fig. 9. This figure concerns Greenland (data set RG2), see further the caption of Fig. 7.
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Fig. 10. This figure concerns Ellesmere (data set RG2), see further the caption of Fig. 7.
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Fig. 11. This figure concerns Svalbard (data set RG2), see further the caption of Fig. 7.
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Fig. 12. This figure concerns Jakobshavn (data set RG2), see further the caption of Fig. 7.
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Fig. 13. This figure concerns Antarctica (data set RA), see further the caption of Fig. 7.
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Fig. 14. This figure concerns Ross (data set RA), see further the caption of Fig. 7.
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Table 1. Overview of the mapping experiments. The first column numbers the various mapping experiments for several areas and data sets.

The IM grid sizes Nx , Ny , the grid spacing 1x=1y (in km), the intersection angle α, and the coordinates of the middle point of interest

M(λM , φM ) (in ◦) are listed. The data sets are specified in Table 2. All α are as given by Eq. (2.2) except for Antarctica where a little

smaller α of 19◦ is used. The search radius Rs is shown for those experiments which use the radius method for the IM-GCM mapping. If Rs

is absent the quadrant method is used, like for all GCM–IM mappings. And N is the amount of points which are involved in the mapping.

no area data Nx Ny 1x α λM φM Rs N

set (km) (◦) (◦) (◦) (km)

1 Antarctica A 281 281 20 19.0 0.0 -90.0 125.0 1268

2 Greenland A 76 141 20 7.5 320.0 72.0 125.0 160

3 Himalaya A 200 200 20 14.5 90.0 32.0 125.0 195

4 Greenland RG2 153 283 10 7.5 320.0 72.0 34880

5 Ellesmere RG2 211 281 3 2.6 278.2 79.8 4.4 4328

6 Svalbard RG2 200 235 2 1.6 18.2 78.5 4.4 1529

7 Iceland RG2 271 200 2 1.7 341.2 65.0 4.4 1736

8 Jakobshavn RG2 200 200 2 1.4 308.7 70.0 4.4 1268

9 Helheim RG2 200 200 2 1.4 323.9 67.1 4.4 1268

10 Humboldt RG2 200 200 2 1.4 298.0 80.0 4.4 1284

11 Storstrømmen RG2 200 200 2 1.4 336.3 76.7 4.4 1272

12 Antarctica RA 281 281 20 19.0 0.0 −90.0 10367

13 Amery RA 200 200 4 2.9 67.9 −73.1 22.0 206

14 Peninsula RA 200 200 4 2.9 291.5 −72.2 22.0 204

Table 2. This table lists the GCM model with which each data set is created, and the area and epoch of that run. The references describe

these model runs.

data set model area epoch reference

A CCSM3 global Dec–Feb averaged Collins et al. (2005)

RG2 RACMO Greenland 1990–2007 averaged Ettema et al. (2009)

RA RACMO Antarctica 1980–2004 averaged Van de Berg et al. (2006)

the AMD divided by the field range, might be more appro-

priate to judge the quality of the mapping. The drawback of

the RRD is its dependence on the incidental field extremes.

However, the fact that the RRD is for all experiments below

0.5% confirms the accuracy of the OBLIMAP mapping.

The largest deviations in experiment 4 concern the areas

Ellesmere, Jakobshavn, Helheim, and Storstrømmen, con-

taining the largest gradients with irregular patterns. These

areas are locally mapped in experiments 5, 8, 9, and 11. For

instance, the results of experiments 5 and 8 for Ellesmere

and Jakobshavn in Figs. 10 and 12 show a detailed mapping.

Note that experiment 10 for Humboldt with exactly the same

mapping conditions as experiment 8 for Jakobshavn (see Ta-

ble 1), reveals about two times smaller deviations because of

the less complex gradients in the Humboldt fields (see Ta-

ble 1).

The local experiments show smaller AMD’s and smaller

2σ intervals. This has to do with the large gradients and the

smaller IM grid resolution in combination with the radius

method, which is used for the IM-GCM mapping in those

cases. In the local experiments the contributing points within

Rs are originating predominantly from the same GCM grid

points. Whereas in experiment 4 the quadrant method uses

the values of the neighbour GCM points, causing larger de-

viations due to the large gradients.

Mapping large areas like the entire Northern Hemisphere,

any other oblique Hemisphere, or even areas larger than this

is possible. Select such a part of the globe by specifying an

angle γ being equal to the angle ICM ′ (see Fig. 2). For a

given γ , an optimal α and a matching Nx1x extent for a

squared IM grid can be obtained with:

α = 2arctan

(

√

1

2π
tan(γ )

)

(4.1)

Nx 1x = R[1+cos(α)]tan(γ ) (4.2)

for 0◦≤γ≤90◦. With γ=45◦ half the globe is mapped, yield-

ing α=43.5◦, and with e.g. Nx=200 we have 1x=58 km.

Results of mapping the Northern Hemisphere with data set A

are in line with those in Table 3, however for such extended

cases the local scaling differences become rather large and

the large “easy” oceanic areas suppress the average devia-

tions.
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Table 3. The table presents for each mapping experiment the field range and field average for comparison with the average mapped deviation

(AMD) and its standard deviation (σ ). The AMD is the mean absolute error (MAE) of the deviations of the to and fro mapped GCM field,

and is used to quantify the quality of the mapping. About 95% of the mapped field deviations (all inside the range of 94–99%) lays within

the 2σ interval. The range relative deviation RRD is the AMD divided by the field range, in percent.

no area data field range field AMD 2σ RRD

set average (%)

Ts (Kelvin)

1 Antarctica A 240.2 277.6 264.6 0.04 0.18 0.11

2 Greenland A 238.8 280.0 253.0 0.15 0.50 0.37

3 Himalaya A 251.5 301.5 274.9 0.06 0.20 0.12

4 Greenland RG2 240.4 282.5 260.2 0.12 0.70 0.27

5 Ellesmere RG2 242.8 263.0 254.3 0.06 0.24 0.30

6 Svalbard RG2 256.0 276.0 267.2 0.06 0.28 0.32

7 Iceland RG2 265.2 281.8 276.0 0.03 0.15 0.20

8 Jakobshavn RG2 248.5 270.8 261.6 0.05 0.25 0.23

9 Helheim RG2 246.1 277.5 260.6 0.03 0.17 0.10

10 Humboldt RG2 244.0 259.1 251.3 0.03 0.14 0.20

11 Storstrømmen RG2 243.5 263.9 253.8 0.03 0.12 0.13

12 Antarctica RA 212.0 278.5 253.3 0.05 0.22 0.07

13 Amery RA 225.1 254.9 238.7 0.03 0.14 0.11

14 Peninsula RA 245.8 267.8 257.3 0.06 0.22 0.28

MB (mieq per year)

1 Antarctica A 0.00 0.61 0.19 0.001 0.005 0.20

2 Greenland A 0.12 1.17 0.40 0.003 0.014 0.33

3 Himalaya A 0.00 1.02 0.20 0.002 0.010 0.24

4 Greenland RG2 −3.18 4.22 −0.10 0.018 0.114 0.25

5 Ellesmere RG2 −1.52 1.18 −0.42 0.006 0.026 0.23

6 Svalbard RG2 −1.15 0.99 −0.17 0.006 0.027 0.30

7 Iceland RG2 −2.46 2.07 −0.08 0.010 0.044 0.22

8 Jakobshavn RG2 −2.91 0.71 −0.43 0.006 0.033 0.18

9 Helheim RG2 −1.08 3.69 0.90 0.006 0.029 0.13

10 Humboldt RG2 −1.35 0.54 −0.33 0.004 0.016 0.19

11 Storstrømmen RG2 −1.73 0.37 −0.27 0.003 0.013 0.12

12 Antarctica RA −0.35 4.36 0.44 0.003 0.026 0.07

13 Amery RA −0.04 0.42 0.09 0.001 0.005 0.22

14 Peninsula RA −0.08 3.33 0.67 0.010 0.040 0.29

Hs (meter)

1 Antarctica A −111 3629 871 3.1 10.9 0.08

2 Greenland A −65 2397 902 5.2 20.1 0.21

3 Himalaya A −21 5034 1502 7.7 27.6 0.15

4 Greenland RG2 −12 3227 922 6.8 38.1 0.21

5 Ellesmere RG2 −10 1777 305 2.8 10.9 0.16

6 Svalbard RG2 −10 1111 116 1.7 7.4 0.15

7 Iceland RG2 −24 1672 241 1.8 7.3 0.11

8 Jakobshavn RG2 0 2529 788 2.2 10.4 0.09

9 Helheim RG2 0 3088 1354 1.8 7.9 0.06

10 Humboldt RG2 0 2220 887 1.6 6.4 0.07

11 Storstrømmen RG2 −10 2626 1035 1.3 5.6 0.05

12 Antarctica RA 0 4056 858 3.5 20.9 0.09

13 Amery RA 31 3164 1880 3.2 12.1 0.10

14 Peninsula RA 0 1930 497 7.4 25.9 0.38
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Table 4. The table presents for each mapping experiment the dif-

ference between the area-integrated mass balance at the GCM and

the IM grid: 1MB in mieq per year. These area-integrated differ-

ences are divided by the total mapped area, to overcome a bias due

to small differences in surface size at the grid edges. With δMB we

denote the range relative 1MB, which equals the 1MB divided by

the range of MB in percent.

no area data set 1MB δMB

(mieq y−1) (%)

1 Antarctica A 0.003 0.45

2 Greenland A 0.002 0.18

3 Himalaya A 0.006 0.63

4 Greenland RG2 0.005 0.07

5 Ellesmere RG2 0.004 0.14

6 Svalbard RG2 0.006 0.26

7 Iceland RG2 0.005 0.11

8 Jakobshavn RG2 0.010 0.27

9 Helheim RG2 0.009 0.19

10 Humboldt RG2 0.002 0.12

11 Storstrømmen RG2 0.001 0.03

12 Antarctica RA 0.004 0.09

13 Amery RA 0.001 0.28

14 Peninsula RA 0.004 0.10

Finally, in Table 4 we present the differences of the area-

integrated mass balance per surface unit between the GCM

grid and the IM grid, 1MB (in mieq y−1), and δMB (in %)

which is equal to the range relative 1MB. Table 4 shows

for our experiments nearly conserved mapping of the mass

balance with 1MB ≤ 0.01 mieq y−1 which is equivalent with

a δMB typically about 0.2%.

5 Discussion

The oblique projection formula’s are capable of performing a

projection of a field defined on a grid which is based on geo-

graphical coordinates around any point at the Earth’s surface

with an optimal centered projection for this location. Both,

Snyders and our oblique stereographic projection, yield the

same results for our applications, in case we adopt α into the

Snyder projection instead of k0. Working with α is more in-

tuitive, and an α for an optimal projection is estimated by

OBLIMAP in advance, so a least squared method (see Sny-

der, 1987, p. 157) can be avoided. Though, an optimal α can

be different from Eq. (2.2), in case the area of interest differs

significantly from the total grid area. For example, one needs

a relatively large grid for Antarctica to include the Peninsula

branch. In that case one can choose α a little bit smaller,

fitting better to a one to one projection for the average conti-

nent. For example, Eq. (2.2) yields α=20.6◦ in experiments 1

and 12 for Antarctica, but we used 19◦.

However, our equations follow a direct oblique approach

which is well documented, are unique for all situations, guar-

antee a continuous collection of well defined Cartesian ori-

entated projection planes over the globe, use the intuitive an-

gle α to define an optimal projection plane, and compared

to Snyder (1987) our inverse projection is two times faster in

computation avoiding the use of both arcsin and arccos which

are vertical-asymptotic functions. Furthermore, our direct

oblique methodology might be of interest in future applica-

tions of high accuracy: to derive an oblique stereographic

projection and its inverse in case the Earth’s surface is rep-

resented by a geoid, or by a function which is even closer to

the Earth’s topography. In that case S should be replaced by

that function, but T remains a sphere through M ′.

Repeating our applications with the Lambert azimuthal

equal-area projection, reveals very similar results for both

projection methods. These results are in agreement with the

quotes of Snyder (1987, p. 3 and 5): “It cannot be said that

there is one “best” projection for mapping. It is even risky

to claim that one has found the “best” projection for a given

application” and for areas as large as the USA: “a trained

eye cannot often distinguish whether the map is equal-area

or conformal”. For small areas the distortions are that small

that an equal-area method is convenient because of its surface

conservation.

For those cases that a GCM data set is provided on a

grid which coincides with an ellipsoid instead of a sphere,

OBLIMAP contains the equivalent oblique stereographic and

the oblique Lambert azimuthal equal-area projection and

their inverse for the ellipsoid (see Snyder, 1987, p. 160 and

187, respectively), with the frequently used World Geode-

tic System 1984 (WGS84) ellipsoid as the default. As noted

by Snyder (1987) these ellipsoidal projections are not strictly

perspective. The mapping accuracy with the ellipsoidal pro-

jections are in agreement with those for the sphere as ex-

pected, because the accuracy depends mainly on the interpo-

lation.

In case the grid is irregular, in practice this concerns the

GCM grid, OBLIMAP contains the option to read the 2-D

fields with the longitude and latitude coordinates of the grid

points. This allows the projection of fields which are defined

on a grid with an arbitrary distribution, because of the combi-

nation with the quadrant and the radius interpolation method

which search and weigh by distance only. The latter makes

the method also robust for data gaps.

Depending on the ratio of the IM and GCM resolution and

on the mapping direction, the quadrant or the radius interpo-

lation method can be used. In case both grid resolutions are

of similar size or in case the target grid is finer, the quad-

rant method is evidently the best option. Otherwise, in case

the target grid is about four or more times coarser the radius

method is most suited representing more than the centered

points only. Actually, in our mapping experiments the quad-

rant method generates about ten times lower AMD’s for those

latter cases, but that is because of our experimental set up in
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which we start with the coarse grid. So, we used the radius

method representing a realistic and fair test of the OBLIMAP

performance for those cases.

Of course the OBLIMAP performance is sensitive to data

gaps, to a large difference in resolution between the IM and

the GCM, and to steep gradients in combination with irregu-

lar field patterns, factors controlling any interpolation. How-

ever, OBLIMAP treats them correctly, and also the limited

extent of the IM grid is treated properly, which is reflected

by the results revealing no artifacts.

The OBLIMAP fortran90 code is easy to implement be-

cause it is compact and modular. Simultaneous and fast map-

ping of fields is possible after a first scan of both grids and by

knowing the projection specifications. The scan, by far the

most time consuming, comprises the projection of the grid

coordinates to the target grid and the search of the nearby

projected points thereafter, necessary to estimate the field

value of each target grid point by interpolation. By storing

the indices of the projected grid points and the distance be-

tween those points and the target grid points, a subsequent

mapping consumes far less time.

The simultaneous 2-D mapping property of OBLIMAP al-

lows mapping of 3-D fields layer by layer. Note that each

layer will be treated equally with respect to the projection,

i.e. no vertical adjustments are applied for the difference in

R. Actually, any field is mapped as a 2-D level field, i.e. no

volume conserving corrections are applied for a field like ice

thickness.

Down scaling of the forcing fields after mapping will be

required to match the ice topography. This part of the IM-

GCM coupling is beyond the scope of the work presented

here. However, because the topographic data from Bamber

et al. (2001) are used for the RACMO run of Greenland, a

present day equilibrium run of the Greenland ice sheet is di-

rectly possible with the mapped RACMO Ts and MB because

it matches with an equally (re)mapped Bamber et al. (2001)

topography.

6 Conclusions

This work accompanies the OBLIMAP mapping routines

which are available from the GMD site (see supplemen-

tary material http://www.geosci-model-dev.net/3/13/2010/

gmd-3-13-2010-supplement.zip). The core of these routines

are the oblique and the inverse oblique stereographic and

Lambert azimuthal equal-area projections for both the sphere

and the WGS84 ellipsoid. Besides these optimal centered

projections, the routines deal with all kinds of IM-GCM res-

olution ratios with respect to the interpolation on to these

grids, with data gaps, with limited grid extents, with ad-

justable unit conversions, with merging the local IM results

with the GCM data, and they incorporate a fast mapping op-

tion once a scan of the contributing projected points around

each target grid point is performed.

The scan needs the grid extents. The GCM grid extents are

deduced from the initial GCM grid, whereas the IM grid ex-

tents are specified by Nx , Ny , 1x, 1y. An optimal intersec-

tion angle α depends on the IM extents, and has to be speci-

fied. The same holds for the coordinates λM and φM defining

to the central point of the projection. The final scan option

concerns the choice between the quadrant and the radius in-

terpolation method for each mapping direction. In case of

the radius method the search radius Rs has to be specified as

well.

With three different data sets of various resolutions and

based on two different GCM’s (CCSM and RACMO), four-

teen miscellaneous mapping experiments show accurate re-

sults for several locations. The average of the surface temper-

ature deviations is 0.1 K or less and the 2σ intervals are be-

tween 0.1 and 0.7 K, for all these experiments (see Table 3).

The results of the surface mass balance and the surface height

are more complex to interpret because relatively small de-

viations of large values are mixed with those of small val-

ues, however their average deviation compared to their field

range deviates less than 0.4%. Considering the difference

in field patterns the range relative deviations are compara-

ble for all three quantities. With range relative mass balance

deviations of a few tenth percent (see Table 4) various exper-

iments showed nearly conserved GCM-IM mapping. To put

these results in perspective, the uncertainty of the CCSM sur-

face temperature has to be assumed to be about a few degrees

(Collins et al., 2005), for RACMO-Greenland 2 K (J. Ettema,

personal communication, 2009), and for RACMO-Antarctica

2–4 K (Van de Berg et al., 2007).

Appendix A

Derivation of the oblique stereographic projection:

from GCM to IM

Each GCM point P on S is projected along
−→
CP to P ′ in S′,

whereupon its relative position with respect to the IM coordi-

nates xIM and yIM are determined, see Fig. 2. The approach

will be:

– Specifying α, which defines the exact oblique stereo-

graphic projection.

– Specifying λM and φM the coordinates of the middle

point of interest M , with which the projection axis for

any point P is known.

– Express M and M ′ in 3-D rectangular coordinates.

– Find a parameterized 3-D vector expression for the pro-

jection axis
−→
CP .

– Find the 3-D rectangular coordinates of P ′, which is the

point of intersection of
−→
CP and S′.
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– Find the coordinates of P ′ relative to the IM coordinate

system.

The rectangular coordinates in R
3 of a point M in the mid-

dle of an area of interest on S with a radius R, can be ex-

pressed in the spherical coordinates of M (λ, φ, r)=(λM , φM ,

R) with use of Eq. (C2)

M
(

x3-D,y3-D,z3-D
)

=
−−→
OM =

R(cosλM cosφM ,sinλM cosφM ,sinφM) (A1)

Because M ′ is situated on
−−→
OM (see Fig. 2), we have in

spherical coordinates in R
3

M ′ = (λM ′ ,φM ′ ,rM ′) = (λM ,φM ,Rcosα) (A2)

In rectangular coordinates in R
3 this becomes with use of

Eq. (C2)

M ′
(

x3-D,y3-D,z3-D
)

=
−−→
OM ′ =

Rcosα(cosλM cosφM ,sinλM cosφM ,sinφM) (A3)

In an oblique stereographic projection an arbitrary point P

(not too far from M) on the spherical surface S is projected

along the line
−→
CP to a rectangular plane S′. The projected

point P ′ is situated at the point of intersection of the line
−→
CP and the plane S′. By using a parameterized 3-D vector

representation
−−→
CQ along the line

−→
CP and an equation for the

plane S′ we can calculate the 3-D rectangular coordinates of

P ′. The relative position of P ′ to the axes xIM and yIM of

the IM grid give the coordinates xIMP ′ and yIMP ′ of P ′ in the

IM grid we are looking for. For the latter step we need the

parameterized 3-D vector representations of the IM grid axes

l3-D
xIM

and l3-D
yIM

.

A1 Determine P ′

In this section we will determine the 3-D rectangular coor-

dinates of the projected point P ′. In Sect. A1.1 a parameter

representation for the vector
−−→
CQ along the line

−→
CP is given,

and in Sect. A1.2 an equation for the plane S′. In Sect. A1.3

we determine the parameter value tP ′ belonging to the point

P ′, the intersection point of
−−→
CQ and S′. In the last step, in

Sect. A1.4, we substitute this tP ′ into the parameter represen-

tation of
−−→
CQ to obtain the coordinates of P ′.

A1.1 The parameter representation
−−→
CQ

For each arbitrary point P=(λP ,φP ,R) on S the vector
−−→
OP

in 3-D rectangular coordinates is

P
(

x3-D,y3-D,z3-D
)

=
−−→
OP

= R(cosλP cosφP ,sinλP cosφP ,sinφP ) (A4)

If Q is a point situated on the line
−→
CP then the parameter

representation of
−−→
CQ can be given by

−−→
CQ =

−→
OC +

(−−→
OP −

−→
OC

)

t for some t ∈ R (A5)

Because C and M are anti-poles we have

−→
OC = −

−−→
OM (A6)

this substituted in Eq. (A5) gives

−−→
CQ = −

−−→
OM +

(−−→
OP +

−−→
OM

)

t (A7)

which becomes with Eq. (A1) and Eq. (A4)

−−→
CQ = −R(cosλM cosφM ,sinλM cosφM ,sinφM)

+R(cosλP cosφP +cosλM cosφM ,sinλP cosφP

+sinλM cosφM ,sinφP +sinφM)t

So the coordinates of Q on
−−→
CQ=

(

x3-D
Q ,y3-D

Q ,z3-D
Q

)

expressed in t are

x3-D
Q = R((cosλM cosφM)(t −1)+(cosλP cosφP )t) (A8)

y3-D
Q = R((sinλM cosφM)(t −1)+(sinλP cosφP )t) (A9)

z3-D
Q = R(( sinφM)(t −1)+( sinφP )t) (A10)

A1.2 The equation of S′

Because
−−→
OM is perpendicular to S′ we can take the compo-

nents of M (see Eq. A1) as the normal vector NS′ for S′

NS′

(

x3-D,y3-D,z3-D
)

= (cosλM cosφM ,sinλM cosφM ,sinφM) (A11)

Using this as the normal vector in Eq. (C3), this gives an

equation for S′

S′ : cosλM cosφMx3-D+sinλM cosφMy3-D+sinφMz3-D = k

(A12)

for some k∈R. To determine k we fill in M ′ (see Eq. A3)

because it is part of S′, to obtain the final equation for S′:

S′ : cosλM cosφMx3-D +sinλM cosφMy3-D +sinφMz3-D

= Rcosα (A13)

A1.3 Determing the parameter t=tP ′ for P ′

P ′ is situated at the intersection of
−−→
CQ and S′. To obtain

tP ′ we substitute the 3-D rectangular coordinates of Q=P ′

given by Eqs. (A8)–(A10) for t=tP ′ into the plane Eq. (A13)

for S′

cosλM cosφM [R((cosλM cosφM)(tP ′ −1)+(cosλP cosφP )tP ′)]

+sinλM cosφM [R((sinλM cosφM)(tP ′ −1)+(sinλP cosφP )tP ′)]

+ sinφM [R(( sinφM)(tP ′ −1)+( sinφP )tP ′)]

= Rcosα
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which equals

(tP ′−1)+[cosφM cosφP (cosλM cosλP +sinλM sinλP )

+sinφM sinφP ]tP ′ = cosα

and with Eq. (C5) this becomes

(1+cosφM cosφP cos(λM−λP )+sinφM sinφP )tP ′=1+cosα

so finally we get for tP ′

tP ′=
1+cosα

1+cosφM cosφP cos(λM−λP )+sinφM sinφP

(A14)

A1.4 The coordinates of P ′

Substitution of t=tP ′ given by Eq. (A14) into Eqs. (A8)–

(A10) for Q, gives the coordinates of P ′. So the coordinates

of P ′ are given by

x3-D
P ′ = R((cosλM cosφM)(tP ′ −1)+(cosλP cosφP )tP ′) (A15)

y3-D
P ′ = R((sinλM cosφM)(tP ′ −1)+(sinλP cosφP )tP ′) (A16)

z3-D
P ′ = R(( sinφM)(tP ′ −1)+( sinφP )tP ′) (A17)

with

tP ′=
1+cosα

1+cosφM cosφP cos(λM−λP )+sinφM sinφP

(A18)

A2 The parameter representations of the IM grid axes

The IM grid coincides with the plane S′. The origin of the

IM axes xIM and yIM coincides with the point M ′ = (xIM =

0, yIM=0). In this section we will obtain the parameter repre-

sentations l3-D
xIM

and l3-D
yIM

for the xIM and yIM axes respectively,

in the 3-D rectangular coordinates.

A2.1 The inner help sphere T

We introduce an extra inner help sphere T which goes

through M ′ with O as origin. Because T goes through M ′

the radius of T is RT =Rcosα. The plane S′ is the tangent

plane in M ′ to this help sphere T . The tangent line to T in

the positive λ direction at point M ′ in the plane S′ is chosen

to coincide with the positive xIM axis, while the tangent line

to T in the positive φ direction at point M ′ in the plane S′ is

chosen to coincide with the positive yIM axis. To calculate

the 3-D parameter representations of these xIM and yIM axes

of the IM grid we need respectively the derivatives in λ and

φ direction of T in M ′.

The 3-D rectangular coordinates of T can with Eq. (C2)

be given as

T
(

x3-D,y3-D,z3-D
)

= Rcosα(cosλcosφ,sinλcosφ,sinφ)

(A19)

A2.2 The λ and φ-derivatives in M ′ on T

The λ-derivative on the spherical surface T in rectangular

coordinates is

∂λT
(

x3-D,y3-D,z3-D
)

= ∂λ(Rcosα(cosλcosφ,sinλcosφ,sinφ))

= Rcosαcosφ(−sinλ,cosλ,0) (A20)

with norm
∣

∣

∣
∂λT

(

x3-D,y3-D,z3-D
)∣

∣

∣
= Rcosα |cosφ| (A21)

The normalized λ-derivative vector in point M ′ is then

∂λT (M ′) =
cosφM

|cosφM |
(−sinλM ,cosλM ,0) (A22)

For the range −90◦<φM<90◦ we have that

cosφM

|cosφM |
= 1 (A23)

Except for the north and the south pole, which should be

treated separately anyhow because λ is not unambiguous at

the poles, Eq. (A22) becomes

∂λT (M ′) = (−sinλM ,cosλM ,0) for −90◦ < φM < 90◦

(A24)

The φ-derivative on the spherical surface T in rectangular

coordinates is

∂φT
(

x3-D,y3-D,z3-D
)

= ∂φ (Rcosα(cosλcosφ,sinλcosφ,sinφ))

= Rcosα( −cosλsinφ,−sinλsinφ,cosφ) (A25)

with norm
∣

∣

∣
∂φT (x3-D,y3-D,z3-D)

∣

∣

∣
= Rcosα (A26)

The normalized φ-derivative vector in point M ′ is then

∂λT (M ′) = (−cosλM sinφM ,−sinλM sinφM ,cosφM)

(A27)

A2.3 The parameter representations of l3-D
xIM

and l3-D
yIM

The parameter representations l3-D
xIM

and l3-D
yIM

describe respec-

tively the xIM and the yIM axes in 3-D rectangular coordi-

nates with parameters u and v, respectively:

l3-D
xIM

=
−−→
OM ′ +dl

3-D
xIM

u for some u ∈ R (A28)

l3-D
yIM

=
−−→
OM ′ +dl

3-D
yIM

v for some v ∈ R (A29)

Here are dl
3-D
xIM

and dl
3-D
yIM

the normalized xIM and yIM-

directions respectively. Actually u and vare the xIM and yIM
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coordinates of some point in S′, because their values are the

values along the axes and relative to the origin M ′ of the IM

grid.

The plane S′ is the tangent plane in M ′ to T . The tangent

line to T in the positive λ direction at point M ′ in the plane

S′ is chosen to coincide with the positive xIM axis, while the

tangent line to T in the positive φ direction at point M ′ in the

plane S′ is chosen to coincide with the positive yIM axis.

Therefore the λ-derivative on T in M ′ gives the direction

of the xIM-axis and the φ-derivative on T in M ′ gives the di-

rection of the yIM-axis. So the normalized λ-derivative vec-

tor in M ′ equals the normalized xIM direction vector and the

normalized φ-derivative vector in M ′ equals the normalized

yIM direction vector

dl
3−D
xIM

= ∂λT (M ′) (A30)

dl
3−D
yIM

= ∂φT (M ′) (A31)

In this paragraph, we only consider the oblique cases. Be-

cause the λ-direction is undetermined for the polar cases with

φM=− 90◦ and φM=90◦, they will be handled in the next

paragraph. Then, substituting Eqs. (A24) and Eq. (A27) re-

spectively in Eqs. (A30)–(A31) we get

−−→
dl

3-D
xIM

= (−sinλM ,cosλM ,0) (A32)

−−→
dl

3-D
yIM

= (−cosλM sinφM ,−sinλM sinφM ,cosφM) (A33)

Using Eq. (A3) and respectively Eqs. (A32)–(A33) in

Eqs. (A28)–(A29) we obtain

l3-D
xIM

= Rcosα(cosλM cosφM ,sinλM cosφM ,sinφM)

+(−sinλM ,cosλM ,0)u (A34)

l3-D
yIM

= Rcosα(cosλM cosφM ,sinλM cosφM ,sinφM)

+(−cosλM sinφM ,−sinλM sinφM ,cosφM) v (A35)

A2.4 The l3-D
xIM

and l3-D
yIM

including the SP and the NP

In case of a polar stereographic projection the chosen M

coincides with the SP or the NP with φM=SP= − 90◦ or

φM=NP=90◦ respectively. In those cases we need perpen-

dicular cartesian IM coordinates as well, but the lambda di-

rection is undefined, so we can not use Eq. (A24). Therefore,

in the polar cases, we take the limit of the φ-derivative vector

in point M ′ (study e.g. Fig. 2) and take that direction as the
−−→
dl

3-D
yIM

. The
−−→
dl

3-D
xIM

is constructed perpendicular to this
−−→
dl

3-D
yIM

such that they form a cartesian coordinate system pointing

outward. The parameter representation for the south pole

(φM=−90◦) becomes

l3-D
xIM

= (0,0,−Rcosα)+(0,1,0) u (A36)

l3-D
yIM

= (0,0,−Rcosα)+(1,0,0) v (A37)

And the parameter representation for the north pole

(φM=90◦) becomes

l3-D
xIM

= (0,0,Rcosα)+(0,1,0) u (A38)

l3-D
xIM

= (0,0,Rcosα)+(−1,0,0) v (A39)

Taking the undetermined λM equal to zero in Eqs. (A34)–

(A35) gives exactly the required parameter representations

for both polar cases as in Eqs. (A36)–(A39). So, conve-

niently, under the condition

λM = 0 for φM = −90 & φM = 90 (A40)

for all projection cases the same parameter representations

l3-D
xIM

= Rcosα(cosλM cosφM ,sinλM cosφM ,sinφM)

+(−sinλM ,cosλM ,0)u (A41)

l3-D
yIM

= Rcosα(cosλM cosφM ,sinλM cosφM ,sinφM)

+(−cosλM sinφM ,−sinλM sinφM ,cosφM)v (A42)

can be used. Writing the components separately for the pa-

rameter representation l3-D
xIM

which describes the xIM axis in

the 3-D rectangular coordinate system we have (see Eq. A41)

l3-D
xIM

:











x3-D = Rcosα cosλM cosφM −(sinλM)u

y3-D = Rcosα sinλM cosφM +(cosλM)u

z3-D = Rcosα sinφM

(A43)

Writing the components separate for the parameter represen-

tation l3-D
xIM

which describes the yIM axis in the 3-D rectangu-

lar coordinate system we have (see Eq. A42)

l3-D
yIM

:











x3-D = Rcosα cosλM cosφM −(cosλM sinφM)v

y3-D = Rcosα sinλM cosφM −(sinλM sinφM)v

z3-D = Rcosα sinφM +( cosφM)v

(A44)

Both parameter equations Eqs. (A43)–(A44) hold for any

specified coordinate M .

A3 The coordinates xIMP ′ and yIMP ′

The relative position of P ′ to the l3-D
xIM

and l3-D
yIM

axes of the

IM grid give the coordinates xIMP ′ and yIMP ′ of P ′ in the IM

grid. P ′, l3-D
xIM

and l3-D
yIM

are all situated in the plane S′. We

create a plane W1 (see Fig. A1) which is perpendicular to the

line l3-D
xIM

and through P ′, the point of intersection of W1 with

l3-D
xIM

we call point Q1. Substituting the coordinates of the

parameter representation l3-D
xIM

into the equation for plane W1

will give the value of u=uP ′ which equals the xIMP ′ coordi-

nate. Analogue we create a plane W2 (see Fig. A2) which

is perpendicular to the line l3-D
yIM

and through P ′, the point of
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xIM

yIM

M ′

P ′

Q1

Q2

W1

Fig. A1. The figure shows how plane W1 is created: perpendicular

to the l3-D
xIM

axis and through P ′. The red distance between M ′ and

Q1 is u=uP ′ which is the value of the xIMP ′ coordinate.

intersection of W2 with l3-D
yIM

we call point Q2. Substituting

the coordinates of the parameter representation l3-D
yIM

into the

equation for plane W2 will give the value of v=vP ′ which

equals the yIMP ′ coordinate.

To calculate uP ′ and vP ′ we first have to find the equations

for the planes W1 and W2.

A3.1 The equation for plane W1

Because
−−→
dl

3-D
xIM

(see Eq. A32) is a normal vector to W1, in

combination with Eq. (C3), we can create an equation for the

plane W1 (see Fig. A1)

W1 : (−sinλM)x3-D +(cosλM)y3-D = k1 (A45)

Note that under condition (A40) this equation holds for all

projection cases. To determine k1 we substitute the point

P ′ situated in plane W1, the coordinates of P ′ are given by

Eqs. (A15)–(A17)

−(sinλM)R((cosλM cosφM)(tP ′ −1)+(cosλP cosφP )tP ′)

+(cosλM)R((sinλM cosφM)(tP ′ −1)+(sinλP cosφP )tP ′) = k1

The left terms cancel and we get

k1 = R(cosφP )(sinλP cosλM −cosλP sinλM)tP ′

and with use of Eq. (C6) we obtain

k1 = R(cosφP sin(λP −λM))tP ′ (A46)

xIM

yIM

M ′

P ′

Q1

Q2

W2

Fig. A2. The figure shows how plane W2 is created: perpendicular

to the l3-D
xIM

axis and through P ′. The red distance between M ′ and

Q2 is v=vP ′ which is the value of the yIMP ′ coordinate.

A3.2 Calculation of the parameter u=uP ′

Substituting the coordinates of the parameter representation

l3-D
xIM

(A43) into Eq. (A45) for plane W1, gives the u=uP ′ for

Q1

− (sinλM)(RcosαcosλM cosφM −(sinλM)uP ′)

+ (cosλM)(RcosαsinλM cosφM +(cosλM)uP ′) = k1

The left terms cancel so we get

uP ′ = k1

filling in Eq. (A46) for k1 we get under condition (A40) for

all projection cases

uP ′ = R(cosφP sin(λP −λM))tP ′ (A47)

which is the xIMP ′ coordinate we are looking for.

A3.3 The equation for plane W2

Because
−−→
dl

3-D
yIM

(see Eq. A33) is a normal vector to W2, in

combination with Eq. (C3), we can create an equation for the

plane W2 (see Fig. A2)

(−cosλM sinφM)x3-D+

(−sinλM sinφM)y3-D +(cosφM)z3-D = k2 (A48)

To determine k2 we substitute the point P ′ situated in

plane W2, the coordinates of P ′ are given by Eqs. (A15)–

(A17)

−(cosλM sinφM)R((cosλM cosφM)(tP ′ −1)+(cosλP cosφP )tP ′)

−(sinλM sinφM)R((sinλM cosφM)(tP ′ −1)+(sinλP cosφP )tP ′)

+( cosφM)R( (sinφM)(tP ′ −1)+ (sinφP )tP ′) = k2
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The left terms cancel and we get

k2 = −R[(sinφM cosφP )(cosλM cosλP +sinλM sinλP )

−cosφM sinφP ]tP ′

which becomes with Eq. (C5)

k2 = R[cosφM sinφP −(sinφM cosφP )cos(λM −λP )]tP ′

(A49)

A3.4 Calculation of the parameter v=vP ′

Substituting the coordinates of the parameter representation

l3-D
yIM

(A44) into Eq. (A48) for the plane W2, gives the v for

Q2

−(cosλM sinφM)(RcosαcosλM cosφM −(cosλM sinφM)vP ′)

−(sinλM sinφM)(RcosαsinλM cosφM −(sinλM sinφM)vP ′)

+(cosφM)(RcosαsinφM +(cosφM)vP ′ = k2

The left terms cancel and the right terms just add to one times

vP ′ , with Eq. (A49) for k2 resulting in

vP ′=k2=R[cosφM sinφP −(sinφM cosφP )cos(λP −λM)]tP ′ (A50)

which is the yIMP ′ coordinate we are looking for.

A4 The final oblique stereographic projection

The longitude-latitude coordinates λP and φP of an arbitrary

point P on the spherical surface S are projected to a rectan-

gular plane S′ which coincides with the IM grid with origin

M ′. As soon as the middle point of the area of interest on S is

known by specifying λM and φM the coordinates xIMP ′ and

yIMP ′ of the projected point P ′ relative to the IM grid can be

calculated by

xIMP ′ = uP ′ (A51)

yIMP ′ = vP ′ (A52)

The final result for the oblique stereographic projection is

(see Eqs. A47, A50, and A18) under the condition (see

Eq. A40)

λM = 0◦ for φM = −90◦ & φM = 90◦ (A53)

we have

xIMP ′ = R(cosφP sin(λP −λM))tP ′ (A54)

yIMP ′ = R[sinφP cosφM−

(cosφP sinφM) cos(λP −λM)]tP ′ (A55)

with

tP ′ =
1+cosα

1+cosφP cosφM cos(λP −λM)+sinφP sinφM

(A56)

Appendix B

Derivation of the inverse oblique stereographic

projection: from IM to GCM

In the inverse oblique stereographic projection the point P ′

with IM coordinates xIMP ′ and yIMP ′ is known, so in this case

we have to find the longitude-latitude coordinates λP and φP

of point P . Point P is obtained by projecting P ′ which is

situated in plane S′, to the spherical surface S along the line
−−→
CP ′. We have to calculate the 3-D rectangular coordinates

of P , with which λP and φP can be determined.

But first we need a parameter representation
−−→
CQ along

−−→
CP ′ to determine the parameter t=tP for its point of inter-

section with S. To prepare the construction of
−−→
CQ, we first

express
−−→
OP ′ in the given IM coordinates xIMP ′ and yIMP ′ .

And for S we need an equation of the spherical surface.

B1 Determing P

Projecting a point P ′, which is situated in plane S′, along the

line
−−→
CP ′ on the spherical surface S gives the projected point

P . We have to calculate the 3-D rectangular coordinates of

P . First we express
−−→
OP ′ in the given IM coordinates xIMP ′

and yIMP ′ . Then we use
−−→
OM and

−−→
OP ′ to create the pa-

rameter representation
−−→
CQ. The parameter t at the point of

intersection of
−−→
CQ and S is obtained by substituting the co-

ordinates of
−−→
CQ with t=tP into the equation for S. With this

tP the 3-D coordinates of P can be found by substituting tP

into
−−→
CQ.

B1.1 Calculation of
−−→
OP ′

The IM coordinates xIMP ′ and yIMP ′ of the given point P ′

situated in S′ are used to express
−−→
OP ′. From Fig. 2 in com-

bination with Fig. A1 or Fig. A2 we see that

−−→
OP ′ =

−−→
OM ′ +

−−→
dl

3-D
xIM

xIMP ′ +
−−→
dl

3-D
yIM

yIMP ′ (B1)

substitution of Eq. (A3) and Eqs. (A32)–(A33) gives

−−→
OP ′ = Rcosα(cosλM cosφM ,sinλM cosφM ,sinφM)

+ (−sinλM ,cosλM ,0)xIMP ′

+ (−cosλM sinφM ,−sinλM sinφM ,cosφM)yIMP ′
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The coordinates of P ′ equal the components of
−−→
OP ′=(x3-D

P ′ ,y3-D
P ′ ,z3-D

P ′ ) which are given by

x3-D
P ′ = RcosαcosλM cosφM −(sinλM)xIM

P ′ −

(cosλM sinφM)yIMP ′ (B2)

y3-D
P ′ = RcosαsinλM cosφM +(cosλM)xIM

P ′ −

(sinλM sinφM)yIMP ′ (B3)

z3-D
P ′ = RcosαsinφM +(cosφM)yIMP ′ (B4)

B1.2 The parameter representation
−−→
CQ

In contrast to Eq. (A5) we want to express
−−→
CQ this time

relative to P ′, because the IM coordinates of P ′ are given.

The 3-D rectangular coordinates of P ′, expressed in the IM

coordinates xIMP ′ and yIMP ′ , are given by Eqs. (B2)–(B4)

and come into account via
−−→
OP ′.

If Q is a point situated on the line
−−→
CP ′ then the parameter

representation of
−−→
CQ can be given with

−−→
CQ =

−→
OC +(

−−→
OP ′ −

−→
OC)t for some t ∈ R (B5)

with
−→
OC=−

−−→
OM as in Eq. (A6) this becomes

−−→
CQ = −

−−→
OM +(

−−→
OP ′ +

−−→
OM)t (B6)

=
−−→
OM(t −1)+

−−→
OP ′t (B7)

with
−−→
OM as in Eq. (A1) and the components of

−−→
OP ′, equal

to the coordinates of P ′ as in Eqs. (B2)–(B4), we get

−−→
CQ = R(cosλM cosφM ,sinλM cosφM ,sinφM)(t −1)

+

(

x3-D
P ′ ,y3-D

P ′ ,z3-D
P ′

)

t (B8)

So the coordinates of Q on
−−→
CQ=

(

x3-D
Q ,y3-D

Q ,z3-D
Q

)

ex-

pressed in t are

x3-D
Q = R(cosλM cosφM)(t −1)+x3-D

P ′ t (B9)

y3-D
Q = R(sinλM cosφM)(t −1)+y3-D

P ′ t (B10)

z3-D
Q = R( sinφM)(t −1)+z3-D

P ′ t (B11)

with x3-D
P ′ , y3-D

P ′ and z3-D
P ′ as in Eqs. (B2)–(B4).

B1.3 The equation for S

Because the radius of the Earth is R, the equation for the

spherical Earth’s surface S in R
3 with Eq. (C4) is

S :

(

x3-D
P

)

+

(

y3-D
P

)

+

(

z3-D
P

)

= R2 (B12)

B1.4 Determining the parameter t=tP for P

P is situated at the intersection of
−−→
CQ and S. To obtain tP

we substitute the 3-D rectangular components of
−−→
CQ given

by Eqs. (B9)–(B11) with t=tP into the plane Eq. (B12) for S

[

R(cosλM cosφM)(tP −1)+x3-D
P ′ tP

]2

+

[

R(sinλM cosφM)(tP −1)+y3-D
P ′ tP

]2

+

[

R( sinφM)(tP −1)+z3-D
P ′ tP

]2
= R2

which equals

R2(cosλM cosφM)2(tP −1)2 +

2R(cosλM cosφM)x3-D
P ′ (tP −1)tP +

(

x3-D
P ′

)2
t2
P

+ R2(sinλM cosφM)2(tP −1)2 +

2R(sinλM cosφM)y3-D
P ′ (tP −1)tP +

(

y3-D
P ′

)2
t2
P

+ R2( sinφM)2(tP −1)2 +

2R( sinφM)z3-D
P ′ (tP −1)tP +

(

z3-D
P ′

)2
t2
P = R2

the left squared trigonometric-terms sum up to one, so we get

R2(tP −1)2 +

(

(

x3-D
P ′

)2
+

(

y3-D
P ′

)2
+

(

z3-D
P ′

)2
)

t2
P

+ 2R
(

(cosλM cosφM)x3-D
P ′ +(sinλM cosφM)y3-D

P ′

+ (sinφM)z3-D
P ′

)

(tP −1)tP = R2

and then

R2t2
P −2R2tP +R2 +bt2

P +2Rat2
P −2RatP = R2

with

a = (cosλM cosφM)x3-D
P ′ + (sinλM cosφM)y3-D

P ′ + (sinφM)z3-D
P ′

b = (x3-D
P ′ )2 + (y3-D

P ′ )2 + (z3-D
P ′ )2

which equals

(R2 +2Ra+b)t2
P = (2R2 +2Ra)tP

One solution tP =0 gives point C, which we are not looking

for. In the other case tP 6=0, so we can divide by tP and end

up with

tP =
2R2 +2Ra

R2 +2Ra+b
(B13)

finally we write for tP

tP =
2R2 +2Ra

R2 +2Ra+
(

x3-D
P ′

)2
+
(

y3-D
P ′

)2
+
(

z3-D
P ′

)2
(B14)
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with

a = (cosλM cosφM)x3-D
P ′ +

(sinλM cosφM)y3-D
P ′ +(sinφM)z3-D

P ′ (B15)

B1.5 The 3-D rectangular coordinates of P

The 3-D rectangular coordinates of P can be obtained by

taking t=tP in Eqs. (B9)–(B11) for the components of
−−→
CQ.

So the coordinates of P can be given by

x3-D
P = R(cosλM cosφM)(tP −1)+x3-D

P ′ tP (B16)

y3-D
P = R(sinλM cosφM)(tP −1)+y3-D

P ′ tP (B17)

z3-D
P = R( sinφM)(tP −1)+z3-D

P ′ tP (B18)

with tP as in Eq. (B14)

tP =
2R2 +2Ra

R2 +2Ra+
(

x3-D
P ′

)2
+
(

y3-D
P ′

)2
+
(

z3-D
P ′

)2
(B19)

with a as in Eq. (B15)

a = (cosλM cosφM)x3-D
P ′ +(sinλM cosφM)y3-D

P ′ +(sinφM)z3-D
P ′

(B20)

with x3-D
P ′ , y3-D

P ′ and z3-D
P ′ as in Eqs. (B2)–(B4)

x3-D
P ′ = RcosαcosλM cosφM −(sinλM)xIMP ′ −

(cosλM sinφM)yIMP ′ (B21)

y3-D
P ′ = RcosαsinλM cosφM +(cosλM)xIMP ′ −

(sinλM sinφM)yIMP ′ (B22)

z3-D
P ′ = RcosαsinφM +(cosφM)yIMP ′ (B23)

B2 The inverse projected λP

Considering the positive and negative values of the coordi-

nates of P in the different quadrants the λP can be deter-

mined. The λP for an arbitrary point P , inverse projected

from a point P ′ in S′ to S, is given by

λP = 180◦ + 180
π

arctan
y3-D

P

x3-D
P

λP = 180
π

arctan
y3-D

P

x3-D
P

λP = 360◦ + 180
π

arctan
y3-D

P

x3-D
P

λP = 90◦

λP = 270◦

λP = 0◦



















































for

x3-D
P < 0

x3-D
P > 0 & y3-D

P ≥ 0

x3-D
P > 0 & y3-D

P < 0

x3-D
P = 0 & y3-D

P > 0

x3-D
P = 0 & y3-D

P < 0

x3-D
P = 0 & y3-D

P = 0

(B24)

with x3-D
P and y3-D

P as in Eqs. (B16) and (B17).

B3 The inverse projected φP

And the φP for the arbitrary point P , inverse projected from

a point P ′ in S′ to S, is given by

φP = 180
π

arctan
z3-D
P

√

x3-D
P

2
+y3-D

P

2

φP = 90◦

φP = −90◦



















for

x3-D
P 6= 0 or y3-D

P 6= 0

x3-D
P = y3-D

P = 0 & z3-D
P > 0

x3-D
P = y3-D

P = 0 & z3-D
P < 0

(B25)

with x3-D
P , y3-D

P and z3-D
P as in Eqs. (B16)–(B18). We omitted

the trivial case x3-D
P =y3-D

P =z3-D
P =0.

Appendix C

Some basic geometrical math

Points lying on the surface of an arbitrary sphere K with ra-

dius RK can be described in geographical coordinates in R
3

with λ, φ and r:

K : (λ,φ,r) = (λ,φ,RK) (C1)

The same sphere K described in rectangular cartesian coor-

dinates x3-D, y3-D and z3-D in R
3 can be expressed in terms

of the 3-D spherical angle coordinates and the radius RK of

sphere K (see Fig. 1):

K :

(

x3-D,y3-D,z3-D
)

= RK (cosλcosφ,sinλcosφ,sinφ)

(C2)

If L is a plane in R
3 with a normal vector N=(nx,ny,nz)

in rectangular coordinates in R
3, then plane L in R

3 can be

given by the equation

L : nxx
3-D +nyy

3-D +nzz
3-D = k for some k ∈ R (C3)

The equation for a sphere with radius RK is

x2 +y2 +z2 = R2
K for (x,y,z) ∈ R

3 (C4)

Two trigonometric summation rules we will use are

cos(a)cos(b)+sin(a)sin(b) = cos(a−b) = cos(b−a) (C5)

sin(a)cos(b)−cos(a)sin(b) = sin(a−b) = −sin(b−a) (C6)
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