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           Fig. 1. Scanning the bible for textual matches to the pattern ‘X begat Y’ reveals a network of family relations.

Abstract— We present a new technique, the phrase net, for generating visual overviews of unstructured text. A phrase net displays 

a graph whose nodes are words and whose edges indicate that two words are linked by a user-specified relation. These relations 

may be defined either at the syntactic or lexical level; different relations often produce very different perspectives on the same text. 

Taken together, these perspectives often provide an illuminating visual overview of the key concepts and relations in a document or 

set of documents. 

Index Terms— Text visualization, tag cloud, natural language processing, semantic net. 

 

1 INTRODUCTION 

Scholars have long dreamed of turning text—from books to entire 
libraries—into maps. A visual perspective on a text has many 
potential uses. A map can serve as a summary and provide a 
jumping-off point for close reading. Mapping techniques may also be 
used to compare multiple texts, whether books by different authors 
or speeches by different politicians. 

Unfortunately, anyone who sets out to map a book quickly runs 
into two problems. The first is purely conceptual: most interesting 
texts are large (a typical novel has more than 100,000 words) so 
some kind of analysis and summarization is necessary to make them 
amenable to visualization. The key issue is to define an effective unit 
of analysis; such a unit could range from letters to words to general 
concepts and ideas. Due to the current state of natural language 
processing, choosing the right unit involves a tradeoff between 

reliability and validity. On one end of the scale, computers can 
reliably pick out the individual words in a book, leaving the task of 
putting the words together to a human.  On the other end, programs 
that aim to extract high-level meaning from text—say a semantic 
network of people and their relations—face significant error rates 
and are easily misunderstood by their users. 

The second problem in the visual display of text involves 
legibility. In most visualizations, one wants to use spatial position as 
a meaningful variable. Yet a readable set of words obeys spatial 
constraints on alignment, grouping, and type size. The conflict 
between positioning and legibility can lead to displays that are hard 
to read or where spatial position is essentially random. 

In this paper we introduce a new text mapping technique, the 
phrase net, which seeks a balance both in analysis and display. Our 
unit of analysis is a “phrase,” i.e., a particular relationship between 
words that can be defined using either simple pattern matching or 
syntactic analysis. This unit provides a higher level of analysis than 
individual words, but is easily understood by users and does not 
require unreliable artificial intelligence. Our visual displays use a 
standard graph layout engine that has been modified to ensure that 
text is readable via constraints on alignment and grouping. 

In addition to describing the design and implementation of the 
phrase net, we also provide a series of sample use cases. Some of 
these were derived from our own exploration. To find others, we 
deployed a simplified version of the phrase net on the Many Eyes 
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site, where any user could create their own visualizations of text. 
While the period of deployment was too short to draw quantitative 
conclusions about usage, it resulted in several interesting usage 
scenarios that had not occurred to us. 

2 RELATED WORK 

To place the phrase net in context, we review some existing systems 
that create maps of text. We focus on the two questions mentioned in 
the introduction: What is the unit of textual analysis? How does the 
visualization handle legibility concerns? 

At the simplest level of analysis, many visualizations focus on 
individual words. The simplest example is the tag cloud. 
Conventional tag clouds display up to several hundred words, 
typically aligning them in rows for readability. This method of 
alignment, however, means that the only use of the spatial dimension 
is the order of words (typically alphabetical). More advanced forms 
of tag clouds, such as Wordle  [6] or Word Clouds  [2] enhance 
readability through careful typography—at the expense of a near-
random spatial layout. 

Not all visualizations that are based on single words dispense 
with space as a variable, however. The TextArc tool  [5] uses a 
projection that places words in a two-dimensional space based on 
where they occur in the text. This method adds another layer of 
information, letting viewers see which words are only used in 
specific sections, and ensuring that two words that consistently occur 
in the same passages will be near each other onscreen. The 
downside, however, is legibility: the number of words shown, 
coupled with their continuously varying locations, means that letters 
overlap and there are often no clear groupings. 

This legibility problem is shared by other systems that perform 
some type of multidimensional scaling. In the algorithm of Sarkar et 
al.  [17], for example, word co-occurrence relations are analyzed 
instead of simple word frequency. Based on this co-occurrence data, 
words are mapped to points in two-dimensional space. As with 
TextArc, the result may be intriguing, but the resulting display has 
no clear visual organization and can be hard to read 

Some visualization systems attack the problem by using semantic 
analysis. ThemeRiver  [10], for example, displays the ebb and flow of 
“themes” over time in a large body of text. The ThemeRiver display 
typically only tracks a few themes at a time (published examples 
show at most a few dozen) and therefore can handle label typography 
in the same way as a standard graph. 

The Docuburst technique  [3] and Gist Icons  [4] use a pre-existing 
ontology, Wordnet  [7], to group words that have related meanings. 
While this allows for a natural summary, it is not without problems. 
Words with multiple meanings can only occur in one location. The 
categories in Wordnet, like most ontologies, are not completely 
intuitive—e.g., few users will naturally understand the distinction 
between an “entity” and an “object,” or expect to see “laryngitis” 
listed as a type of “psychological feature.” Both systems rely on 
radial-style visualizations that present a typographical challenge. 
Gist Icons  [4] for instance, shows over a hundred word frequencies 
at once, literally leaving no room for any text. The Docuburst system 
uses interaction to tackle this problem.  

Another common approach—one that we follow as well—is to 
depict relationships in a text using a network. The analogy is with the 
idea of a “semantic net”  [18], which has often been used to represent 
relations between concepts. Often these nets are based on co-
occurrence relations. For example  [14] creates a network of related 
terms from patent filings. Peter Cho created a network of words from 
news stories  [1] based on information about which words often 
followed which other words.  

These systems can be beautiful and informative, but the approach 
suffers from two drawbacks. First, when a typical graph layout 
algorithm is used to arrange words, it can lead to a set of jumbled 
text, much as in the case of multidimensional scaling. (The Cho 
example is beautiful, but was adjusted by hand.) Second, simply 
looking at co-occurrence shows only one generic type of relation. In 

any complicated text there are more specific relationships: agents 
acting on objects, people possessing things, actions taking place at 
locations. Simply looking at co-occurrence gives no way of focusing 
on a type of relation. 

The technique presented in this paper attempts to address these 
shortcomings. We analyze text at the level of relations between 
words, rather than individual words, and allow users to specify those 
relations in a variety of ways. We also tune a standard graph layout 
to create a more legible arrangement of words.  

3 HOW THE PHRASE NET WORKS 

The phrase net extracts and then visualizes networks of terms from 
bodies of text. In this section we give a basic description of these two 
steps and the ideas behind them. We do this by conceptually 
separating the visualization into different stages that map directly to 
the two main questions defined in the introduction. In the text 
analysis stage we define the unit of analysis and extract a network of 
terms from the raw text. Subsequently, in the network abstraction 
and visual representation stages we deal with the problem of 
rendering this network effectively. This section discusses each of 
these stages separately. 

3.1 Text analysis 

To convert a text into a network  we define the nodes to be a subset 
of words occurring in the text, and edges to represent certain 
relations between these words. There are many ways to choose these 
node and edge sets. For example, one straightforward method is to 
take the nodes to be all words, and link two terms if they appear in 
immediate succession in the text without punctuation between them. 
We now discuss two finer-grained methods, each based of which 
uses a certain kind of template to define connections between words. 
The first method uses syntactic patterns to define word relations, 
while the second relies on orthographic pattern matching. 

3.1.1 Syntactic linking 

A natural thought is to use patterns based on the syntactic structure 
of English sentences. To explore this idea, we used the open-source 
Stanford Parser  [13]. Conveniently, one of the output formats of this 
system is a “typed dependency parse,” which breaks a sentence into 
pairs of words connected by relations. The relations can be any of 
several dozen types, ranging from common types like “conjunct” (as 
in “A and B”) to very specific, such as “element of compound 
number.”  

Given a text that has been parsed in this way, our software allows 
the user to specify one or more of these relations and then creates a 
graph where nodes correspond to words, and edges indicate pairs of 
words that are connected by the specified relations. There are two 
advantages of using these dependencies rather than relying on a 
simple method such as word adjacency. First, it gives far more fine-
grained control over the network, allowing the user to spotlight only 
certain types of relationships in the text. Second, it avoids obvious 
problems inherent in simple word-order approaches: in a sentence 
like “the keys were found,” a typed-dependency parse will know that 
“keys” and “found” are related. 

Unfortunately, this increased sophistication comes at the price of 
an unwieldy amount of processing power. For example, running the 
parser on the novel Pride and Prejudice (about 1 MB of text, and 
slightly under 6,000 sentences) requires more than 24 hours of CPU 
time on a Windows Thinkpad T60 with 2GB of RAM. This is more 
time than it would take an average human to read the whole book. 
Such a lengthy processing time significantly increases the upfront 
cost  [21] of the visualization, and makes interactive exploration of 
different corpora a challenge. 



Fig 1. Edge compression: Collapsing networks based on identical network neighborhoods. The darker nodes in (a) all have identical 

neighbor sets {a} and can be collapsed into a singe clustered node. Although the nodes in (b) are all structurally interchangeable they have 

different neighbor sets {i,j}, {h,j} and {h,i} respectively; we can still merge them if we consider Nself set {h,i,j} instead. The graph in (c) has 

neighbor sets {l,m,n} for both K and O (dark blue) and Nself set {k,l,m,n,o} (light blue) for L, M and N. 
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3.1.2 Orthographic linking 

To allow more rapid exploration, we investigated a second 
method: simple text-based pattern matching. For example, instead of 
using a parser to look for possessive relations between nouns, we can 
define an edge (X,Y) for each literal occurrence of “… X’s Y…” 
which allows us to extract basic genitive relationships from the text. 
Similarly we can look at occurrences of “… X at Y …” which might 
hint at relationships between objects and places.  

Using regular expressions we can define a wide variety of 
potentially interesting patterns. For example, we might require that 
both X and Y start with a capital letter, that either one is a number, or 
define complex patterns such as “… because X (is|are|was|were) Y 
…”. Matching regular expressions can be done at interactive speeds 
(a few seconds for a text of a million words). 

We often found these simple pattern matching techniques as 
useful as full parse-based methods when applied to sufficiently large 
bodies of text. The basic idea is reminiscent of Hearst patterns  [11] 
for extracting hypernym relations—with enough data, seemingly 
“superficial” methods produce useful results. A bonus is that simple 
pattern matching can be explained to users without resorting to 
technical linguistics terminology.  

Figure 2 shows a comparison of two networks generated by these 
two different methods (with filtering as described below). Although 
the main terms are very similar, the syntactical parser also picks up 
occurrences such as “looked at the time”. The orthographical parser 
ignores the “looked at the” match, since “the” is classified as a stop 
word.  
 

3.2 Network filtering 

After parsing the text, we are left with a graph where nodes 
represent words in the source text and edges represent a particular 
connection between those words. The edges are directed—
representing the order the words occurred in the slots in the pattern—
and weighted according to the number of times the pattern was 
matched. This graph is potentially too large to render legibly on 
screen, so we include a filtering phase to reduce its size. As a first 

step, we provide the user the option of removing nodes representing 
commonly occurring words in the English language. These 
“stopwords” often do not add useful information content and greatly 
increase the density of the graph as they occur in combinations with 
many other words.  

The next step is to rank words by relevance. There are several 
simple possible relevance measures. One is degree in the network; 
another is overall frequency in the text. In our prototype we found 
that overall frequency was a good relevance measure, with the 
additional benefit that the resulting display was directly analogous to 
a word cloud view. Given a relevance rating, we allow the user to set 
a maximum number N of nodes to display. Our software then looks 
at the induced subgraph for the N most relevant nodes, discards any 
degree-zero nodes, and displays the resulting graph, Both this step 
and the stopword filtering can be executed efficiently; stopword 
filtering is easily integrated with the pattern matching stage, while 
the second step involves a single sort of the terms and a linear time 
filtering operation. 

3.3 Edge compression 

Despite the simplification induced by node filtering, standard 
graph layouts often produced busy and confusing graphs. One 
common problem involved a node with many degree-one neighbors. 
Most graph layouts, when applied to such a node, will produce a 
“starburst” of edges evenly spread across different angles and 
distances. This can be effective when nodes are drawn as points or 
circles, but creates an unreadable mass of overlapping text when the 
nodes are words. 

To address this problem and draw the graph in a “text friendly” 
manner, we perform a step we call edge compression. To motivate 
this step, note that all the degree-one nodes in a starburst are 
topologically equivalent, in the sense that permuting two of them 
will result in an isomorphic graph. Since they are equivalent in this 
sense, we collapse them to a single large node, and draw them in a 
nicely flush-left vertical column, with a single edge drawn between 
this column and the central node of the starburst (Fig. 1a). While 
information is lost about the specific edge weights, all the original 
topological information remains available. 



 

This method generalizes naturally: whenever we have a set of 
nodes that are topologically equivalent, we can collapse them into a 
single supernode. These sets form equivalence classes, so the 
supernodes are well-defined. Furthermore, it is immediate that sets of 
equivalent nodes must either be completely disconnected from each 
other, or must form a clique. We indicate the difference by drawing a 
small self-loop for cliques as in Fig 1b. Edge-compression saves 
time in the layout procedure, improves the quality of the resulting 
layout, and creates a cleaner visual representation. Fortunately, it is 
also straightforward to perform this calculation efficiently. For each 
node x, with neighbor set N(x), define Nself(x)  :=  N(x) + {x}. Nodes 
x and y are topologically equivalent if N(x) = N(y) or Nself(x) = 
Nself(y). Note that this computation can be applied to both directed 
and undirected graphs. For undirected graphs we can directly 
compare the set of neighbors, while for directed graphs we need to 
compare neighbors connected by an in-edge and neighbors 
connected by an out-edge separately. In our particular case direction 
is relevant, so we perform directed edge compression. 

For simple (i.e. no self loops, no multi-edges) unweighted graphs, 
the edge-compressed representation is lossless, meaning that all basic 
information can still be extracted from the resulting diagram (Fig. 
1c). The actual reduction in the number of edges depends on the 
structure and density of the graph, but we the low complexity and 
often lossless compression of the network representation potentially 
makes this algorithm valuable to other graph drawing cases.  

3.4 Visual Representation 

After data extraction and network filtering we are left with a network 
containing several clusters, some composed of a single node and 
others made up of a collection of topologically equivalent nodes. The 
clusters are connected by edges where the weight of an edge depends 
on the number times a matching pattern was found between the term 
or terms in the two clusters. 

3.4.1 Layout 

We render each connected component in this network using a node-
link diagram, where individual nodes are replaced with a rendered 
version of the term(s) they represent. Each term is scaled 
proportionally to the total number of occurrences in the text, as in a 
tag cloud. For clusters containing multiple terms, we render all the 

terms in a vertical list, scaling each of them individually based on 
frequency of occurrence. Layouts are computed using a stress 
majorization algorithm  [8]. A post-processing step removes any 
remaining overlaps using an algorithm based on the Force-Transfer 
approach  [12], and enforces a minimum distance between words. 
Individual connected components in the network are laid out using 
an incremental approach that tries to minimize the total area of the 
layout, while avoiding overlap. In a final step, node coordinates in 
the layout are scaled so that the resulting layout matches the aspect 
ratio of the screen.  

3.4.2 Encoding 

Since connections between clusters are typically directional (i.e. 
there is a match for ‘cold and strange’ in Fig. 3, but ‘strange and 
cold’ never occurs in the text) we indicate them with arrows, where 
the thickness of an arrow is proportional to the weight of an edge. 
Every term is rendered in a heavy font with compressed spacing, for 
a compact and coherent visual representation. As an additional 
encoding, we decided to encode the ratio of out-degree to in-degree 
for a node and render terms with a high ratio (i.e. more out-edges 
than in-edges) in a darker color. This allows the user to quickly spot 
terms that only occur in the first or last part of the matching pattern. 
The colors follow a sequential palette running from light to dark 
blue; an early version of the system used a diverging color scheme 
that seemed to lead to a cluttered display. Basic zoom and pan 
controls allow the user modify the viewport, while popover hints 
provide more contextual information on demand, such as the actual 
textual matches for a relationship. 

3.5 User Interface and Many Eyes deployment 

We developed several versions of the phrase net. The first two were 
aimed at experts, and allowed users either to type in regular 
expressions as matching templates or—if a parsed text had been 
loaded—to choose syntactic relationships from a menu. While these 
simple interfaces were effective for our own experimentation, we 
discovered they were confusing for users who were unfamiliar with 
the software. 

To better understand how people might spontaneously use phrase 
nets, we deployed a version on the Many Eyes  [19] web site. 
Because of the long time required to perform syntactic parsing, this 

Fig 2. Comparing phrase nets of Pride and Prejudice. The left network was generated by an orthographical parser matching ‘X at Y’, while 

the right network was generated by a syntactical parser looking for the preposition ‘at’. Both manage to identify major locations in the novel., 

yet the orthographical parser finished in under a second, whereas the syntactical parser took over 24 hours. 



version used regular expression templates as a matching device. Of 
course, it would be unreasonable to expect novice users to master 
standard notations for regular expressions. This posed an interface 
challenge: how to combine maximum flexibility with an accessible 
user experience. To that end, we iterated over several UI options, 
testing them informally with users in our lab. 

We settled on using a simplified version of the basic regular 
expression syntax: instead of the cryptic (\w+) notation to match an 
arbitrary word, we used a single asterisk. For instance, if a user 
wants to define a pattern that looks for two words connected by 
“and”, she would type in: “* and *”. Users may either enter matching 
patterns in this simplified form or enter them in full regular 
expression syntax.  

In addition to this text-based input method, we also included a 
“beginner’s menu” with a number of preset patterns. This menu not 
only lists a series of simple regular expressions to get the user 
started, it also serves as a visual guide for how phrase net patterns 
work (Figure 3). On this list, each pattern appears as a pairing of 
words with a curved arrow between them, labeled with that pattern’s 
connector. The first word of the pair appears in dark blue and the 
second in light blue. This distinction echoes the phrase net color 
coding. Users’ choice of a preset pattern is reflected on the more 
advanced free-text input field so that novices may learn how the 
simplified regular expression syntax works. Finally, users may also 

change the maximum number of words on the graph and choose 
whether to include stop words in the network. 

4 EXAMPLE USE CASES 

The examples in this section illustrate how phrase nets have been 
utilized so far and the kinds of insight that have been generated by 
these graphs. We discuss graphs that have been created by the 
authors as well as those generated by Many Eyes users. 

4.1 Styles of exploration 

Because of its querying capability, a phrase net provides viewers 
with great flexibility when exploring a piece of text. Yet there are 
two main exploratory processes that seem natural when working with 
phrase nets: using the same regular expression to compare different 
texts and using different regular expressions to explore the same text. 

One example of applying the same regular expression to different 
texts comes from a Many Eyes user who utilized a phrase net to 
examine different books in the Bible (see Fig. 4). The pattern “X of 
Y” reveals stark differences between the Old and New Testaments. 
While the Old Testament clearly shows the centrality of “Israel”—
phrases such as “Children of Israel,” “King of Israel,” and “Land of 
Israel” loom large—the New Testament shifts in emphasis to “Son of 
God” and “Kingdom of God.”  

Fig 3. The Phrase Net user interface applied to James Joyce’s Portrait of the Artist as a Young Man. The user can select a predefined 

pattern from the list of patterns on the left or define a custom pattern in the box below. This list of patterns simultaneously serves as a 

legend, a list of presets and an interactive training mechanism for regular expressions. Here the user has selected “…X and Y…”, revealing 

two main clusters, one almost exclusively consisting of adjectives, the other of verbs and nouns. The highlighted clusters of terms have 

been aggregated by our edge compression algorithm. 



 

On the other hand, applying different expressions to the same text 
can reveal a series of interrelated conceptual networks. The phrase 
nets of Jane Austin’s novel Pride and Prejudice in Fig. 5 illustrate 
this. Matching “X and Y” shows a network of concepts and people. 
The main characters appear neatly organized in two clusters:  Jane, 
Elizabeth, Lydia, Kitty, Catherine and Mr. Bingley form a central 
cluster, whereas “mother,” “aunt,” and “uncle” keep some distance. 
Positive attributes such as “sense,” “disposition,” “humour,” 
“kindness” cluster together  while less flattering qualities such as 
“pride,” “conceit,” “vanity,” “folly,” and “ignorance” form a group 
of their own. Perhaps most interesting, to those familiar with the 
novel, is that “Darcy” does not appear in the network—in a certain 
sense he is the most solitary major character. 

If we analyze the same text with the pattern “X at Y” we obtain 
an entirely different network that reveals the set of locations 
inhabited by the characters in the novel and the events that take place 
at those locations. In a sense, the user can direct exploration towards 
a particular dimension of the text by intelligently choosing the 
pattern to match for.  

Figure 1 shows the result of another targeted pattern. Here we 
have analyzed the whole bible using the pattern “X begat Y”, a 
specific formulation from the King James Bible indicating a parent - 
child relationship. The resulting graph illustrates the lengthy 
genealogies that are recorded by many different books in the bible. 
The network also uncovers a number of defining aspects of these 
lineages, such as the importance of Abraham. 

4.2 Regular expressions and matching 

The patterns we have shown so far are of the form “X <connector> 
Y”, where the connector is either a separate word or a phrase. 
However, regular expressions also allow us to specify patterns that 
match for specific pre- and postfixes to X and Y. Previously, the 
authors worked with a humanities scholar to analyze a set of 7,000 
British novel titles between 1740 and 1850  [15] —in fact, much of 
the motivation behind building phrase net comes from this 
collaboration. This scholar was interested in how the use of simple 
syntactic constructions such as “X of the Y” reflected changes in 
literary style over the centuries.  

Fig 5. Matching different patterns on the same text. Here we analyzed Jane Austen’s Pride and Prejudice with “X and Y” and “X at Y” 

respectively. The left image shows relationships between the main characters amongst others, while the right image shows relationships 

between locations.  

Fig 4. Matching the same pattern on different texts. Here we used the pattern “X of Y” to compare the old and new testaments. Israel takes a 

central place in the Old Testament, while God acts as the main pattern receiver in the New Testament. 



Indeed, simple patterns can reveal a great deal. For instance, a 
pattern such as “X’s Y” might function as a proxy for understanding 
power relations. A phrase net of the book titles showing “X’s Y” 
highlights possession and power in interesting ways (Fig. 6). The 
graph reveals two main focal points: ‘woman’ and ‘daughter.’ 
Despite the seeming similarities in the connections between these 
clusters, the difference in color indicates that they are quite opposite 
in their relationship to the rest of the graph. Whereas daughters are 
“possessed” by others — king’s daughter, farmer’s daughter, 
soldier’s daughter — women “possess” things: woman’s story, 
woman’s life, woman’s love. Interestingly, even though daughters are 
other people’s possession, women do not possess people, instead, 
they are related to abstract ideas such as love, revenge, and story.   

The graph also reveals another unexpected pair of female clusters 
around ‘bride’ and ‘wife’ (Fig. 6). While ‘wife’ is connected to 
respectable people—e.g. officer, ambassador, banker—‘bride’ is 
associated with more nefarious figures such as pirate, sailor and 
bandit. Although one could argue that these patterns could have been 
found by a simple textual search for `‘s` (while conveniently 
ignoring the large number of false hits from common contractions 
like it’s), a phrase net immediately shows all the matches in context.  

The powerful matching capabilities of regular expressions can be 
useful in many other ways. We can for example try to find verb-noun 
patterns by matching for (\w+ing) (\w+), resulting in potential 
matches as walking home, funding schools or helping others. As a 
final example, the cryptic regular expression \s(([a-z])\w*)\s+(\2\w*) 
looks for adjacent non-empty word pairs that start with the same 
letter—that is, it finds alliterative phrases. Fig. 7 shows this pattern 
applied to the poem Leaves of Grass by Walt Whitman, immediately 
revealing the authors preference for alliterations starting with the 
letter ‘s’. 

4.3 An example of extended analysis 

Our last example shows how free-form informal text analysis tools 
are used in practice, based on a blog post by historian Jo Guldi. 
Guldi wanted to understand how different scientific theories became 
either praised or discredited during the eighteenth- and nineteenth 
centuries. Using a personalized search engine, a collection of 
Wikipedia articles related to the notion of “pseudoscience” and the 
text visualizations offered by Many Eyes, she was able to start 
investigating the boundaries of ideas, scientific authority, and 
established knowledge. At the same time she duly documents both 
process and results on her blog  [9]. Guldi amassed a database of 
Wikipedia articles ranging from Popper’s definition of 
pseudoscience to clearly discredited theories like phrenology or flat-
earth theory to controversial subjects from the borderlands of 
western institutional knowledge (e.g. acupuncture). She fed this 
collection of texts to Many Eyes and proceeded to create a series of 
phrase nets and word trees.  

Her first question was: who was involved in the debate about 
competing scientific ideas? To investigate this, she created a phrase 
net using “X’s Y”, which revealed some of the most prominent 
names in question. To learn where such discourse fights occurred, 
Guldi made a phrase net of “X at Y”, revealing places such as 
Stanford, Oxford, Harvard and Irvine 

In addition, she investigated claims about pseudoscience by 
creating a word tree  [20] and searching for phrases such as claims 
that…, the earth was…: realizing that “the resulting set is a fairly 
good list of discredited early-modern to modern- theories about the 
nature of the globe: the theory that the earth is flat, the myth of the 
hollow earth, and so on.”  

After having created about a dozen text visualizations on Many 
Eyes, Guldi concludes that such tools are important in helping guide 
the wandering historical eye through endless reams of text: 

Fig 6. Phrase nets from a collection of titles of 18
th
 and 19

th
 century 

novels. The text was analyzed with the “X’s Y” pattern. The top 

phrase net shows the top 50 terms. The bottom detail image 

shows a close-up view of part of the network of the top 100 terms. 

Both nets give hints on the roles of women. 

Fig 7. Analyzing Walt Whitman’s Leaves of Grass for 

alliterations, using a more complex regular expression. Notice 

the preference for alliterations starting with ‘s’. 



 

 
I spend a lot of my time reading endless pamphlet and newspaper 

wars, trying to figure out who the sides are in the railway debates and what 

they care about. While I don't think that I'll ever be freed from reading, 

algorithms like these promise to give me some of the keywords that can offer 

me a short cut direct to some of the major controversies in question. The 

paragraphs on railroads that accuses others of “interest” reference which 

place-names, for instance? […] 

A machine that can predict who the controversialists were and where 

the places they argued about were located would save the historical 

researcher untold time. 

 

Although we cannot draw any definitive conclusions from this single 
case, it illustrates some of the needs of and challenges confronting 
modern day humanities scholars. Although many of their databases 
are in digital form, they do not have the tools to quickly explore this 
data at a higher level of abstraction. Any tool that can create a 
projection of the text that highlights one particular aspect can be an 
invaluable asset. 

5 CONCLUSION 

We have introduced the phrase net, a new technique for mapping 
unstructured text. The phrase net technique consists of two steps. 
First is a pattern matching phase, in which linkages are defined 
between words based on user-defined templates. The second phase 
involves laying out and rendering the graph. The layout phase 
includes a new, general clustering procedure that reduces the 
complexity of the graph while retaining its information content. 
Finally, we provided examples of spontaneous usage on the public 
Many Eyes site, along with some of our own scenarios, in which the 
phrase net provides a lens onto interesting aspects of a text.  

There are several natural avenues for future work. First, one 

might plug many other possible matching template methods into the 

basic phrase net technique. One might also allow the user to filter 

words in ways other than by simple word frequency, combining 

semantic and syntactic information. It is easy to imagine scenarios 

where a user might want a net consisting only of people, or only of 

nouns that are related to emotions. Similarly, one might match only 

patterns that occurred in particular sentences, such as those spoken 

by a particular character in a novel. It might also be possible to plug 

in semantic classification services such as openCalais  [16] to identify 

central actors in our document. Finally, applying phrase nets to 

languages other than English may lead to new challenges. 
Many additional possibilities for interaction remain. One might 

combine the phrase net with other visualization techniques. Often 
users wish to drill down into a text, and one could imagine selecting 
a given edge of the graph to bring up a word tree showing all the 
following or preceding passages to the template match. A last, 
promising area for future research would be to allow users to easily 
compare different texts using a phrase net. For example, one might 
ask if different novelistic genres have distinctive networks, either in 
word usage or overall topology. Or one might wish to see how 
document collections change over time, e.g., comparing phrase nets 
of news stories from day to day. 

In addition to the contribution of the technique itself, we believe 
the design of the tool itself provides useful principles for text 
visualizations. One is the notion of multiple viewpoints. A novel is 
much like a high-dimensional numeric data set: there is unlikely to 
be a single perfect view. Instead, as with high-dimensional data, the 
best way to visualize it may be to use multiple views. Instead of 
choosing different projections one may want to choose different 
types of relationships in the text to highlight. The phrase net provides 
this control by allowing the user to specify the matching templates. 
A second theme in the design of the phrase net is the careful tuning 
of the display to allow for legibility of the text: In addition to careful 
typographic choices, we have modified the graph layout method to 
maximize readability. We believe both these themes—multiple 

viewpoints, and special tuning of existing geometric techniques—are 
likely to continue in future text visualization work. 

ACKNOWLEDGEMENTS 

The authors would like to thank Franco Moretti and Jonathan 
Feinberg for insightful discussions and inspiration, as well as other 
members of our research group and the anonymous reviewers for 
their useful comments on an earlier version of this paper. 

REFERENCES 

[1] P. Cho, News Story Maps, http://typotopo.com/projects.php?id 

=mappingnews,  retrieved March 28, 2009. 

[2] J. Clark, Neoformix Blog, http://neoformix.com/, retrieved March 28, 

2009. 

[3] C. Collins, DocuBurst: Document Content Visualization Using 

Language Structure. In Proceedings of IEEE Symposium on Information 

Visualization, Poster Compendium, IEEE CS Press, 2006. 

[4] P. DeCamp et al., Gist Icons: Seeing Meaning in Large Bodies of 

Literature. Proceedings of IEEE Symposium on Information 

Visualization, Poster Compendium, IEEE CS Press, 2005. 

[5] W.B. Paley, TextArc: Showing Word Frequency and Distribution in 

Text. In Proceedings of IEEE Symposium on Information Visualization, 

Poster Compendium, IEEE CS Press, 2002. 

[6] J. Feinberg, Wordle, http://www.wordle.net/, retrieved March 28, 2009. 

[7] C. Fellbaum (eds), WordNet : An Electronic Lexical Database, The 

MIT Press, 1998. 

[8] E. Gansner, Y. Koren and S. North, Graph Drawing by Stress 

Majorization, Proc. 12th Int.Symp. Graph Drawing (GD’04), LNCS 

3383, pages 239–250, 2004. 

[9] J. Guldi, Inscape Blog, http://landscape.blogspot.com/, retrieved March 

28, 2009. 

[10] S. Havre et al., ThemeRiver: visualizing thematic changes in large 

document collections, IEEE Transactions on Visualization and 

Computer Graphics, Vol. 8, No. 1, pp 9 – 20, 2002. 
[11] M. Hearst, Automatic Acquisition of Hyponyms from Large Text 

Corpora. Proc. of the Fourteenth International Conference on 

Computational Linguistics, 1992. 

[12] X. Huang and W. Lai, Force-Transfer: A New Approach to Removing 

Overlapping Nodes, in Graph Layout, in ‘25th Australian Computer 

Science Conference’, pp 249-358, 2003. 

[13] D. Klein and C.D. Manning. Fast Exact Inference with a Factored 

Model for Natural Language Parsing. In Advances in Neural 

Information Processing Systems 15 (NIPS 2002), pp. 3-10, 2003. 

[14] L. Leydesdorff, The university-industry knowledge relationship: 

Analyzing patents and the science base of technologies, Journal of the 

American Society for Information Science and Technology, Vol. 55 No. 

11, pp 991 – 1001, 2004. 

[15] F. Moretti, Graphs, Maps, Trees: Abstract Models for a Literary 

History, Verso Publishing, 2005. 

[16] OpenCalais, http://www.opencalais.com/, retrieved March 28, 2009. 

[17] P. Sarkar et al., A Latent Space Approach to Dynamic Embedding of 

Co-occurrence Data, Proceedings of the Eleventh International 

Conference on Artificial Intelligence and Statistics AISTATS-07, 2007. 

[18] S.C. Shapiro, A net structure for semantic information storage, 

deduction and retrieval, Proc. IJCAI-71, pp 512-523, 1971. 

[19] F.B. Viégas, M. Wattenberg, F. van Ham, J. Kriss and M. McKeon, 

Many Eyes: A Site for Visualization at Internet Scale, IEEE 

Transactions on Visualization and Computer Graphics, Vol. 13, No. 6, 

pp 1121 – 1128, 2007. 

[20] M. Wattenberg and F.B. Viégas, The Word Tree, an Interactive Visual 

Concordance, IEEE Transactions on Visualization and Computer 

Graphics, Vol. 14, No. 6. pp 1221-1228, 2008. 

[21] J.J. van Wijk. The Value of Visualization. In Proceedings of the IEEE 

Conference on Visualization 2005, pp. 79-86, 2005. 


