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ABSTRACT
We investigate the practical implementation of Taylor’s three-dimensional gravitational po-
tential reconstruction method using weak gravitational lensing, together with the requisite
reconstruction of the lensing potential. This methodology calculates the 3D gravitational po-
tential given a knowledge of shear estimates and redshifts for a set of galaxies. We analytically
estimate the noise expected in the reconstructed gravitational field taking into account the
uncertainties associated with a finite survey, photometric redshift uncertainty, redshift-space
distortions and multiple scattering events. In order to implement this approach for future data
analysis, we simulate the lensing distortion fields due to various mass distributions. We cre-
ate catalogues of galaxies sampling this distortion in three dimensions, with realistic spatial
distribution and intrinsic ellipticity for both ground-based and space-based surveys. Using the
resulting catalogues of galaxy position and shear, we demonstrate that it is possible to recon-
struct the lensing and gravitational potentials with our method. For example, we demonstrate
that a typical ground-based shear survey with redshift limit z = 1 and photometric redshifts
with error �z = 0.05 is directly able to measure the 3D gravitational potential for mass con-
centrations �1014 M� between 0.1 � z � 0.5, and can statistically measure the potential at
much lower mass limits. The intrinsic ellipticity of objects is found to be a serious source of
noise for the gravitational potential, which can be overcome by Wiener filtering or examining
the potential statistically over many fields. We examine the use of the 3D lensing potential to
measure mass and position of clusters in 3D, and to detect clusters behind clusters.

Key words: gravitation – gravitational lensing – cosmology: observations – dark matter –
large-scale structure of Universe.

1 I N T RO D U C T I O N

Gravitational lensing affords us a direct method to probe the distri-
bution of matter in the Universe, irrespective of its state or nature.
This deflection of light by the gravitational potential of matter along
its path can be observed as a local alteration of number counts of
background galaxies (magnification), or a distortion of their shape
(shear). It is the latter phenomenon which we will concern ourselves
with here; we will further restrict ourselves to the case where this
distortion is weak (�10 per cent change in the ellipticity of the ob-
ject). Despite the weakness of the effect, and the intrinsic, nearly
randomly orientated ellipticity of background galaxies, we can mea-
sure the weak shear by averaging the ellipticity or shear estimates
of very many galaxies.

It has long been recognized that weak gravitational lensing is a
valuable tool for examining the two-dimensional projected matter
distribution, and can consequently provide important information
regarding large-scale structure (see e.g. Bartelmann & Schneider
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2001; Bernardeau, van Waerbeke & Mellier 1997; Jain & Seljak
1997; Kaiser 1998). In particular, the sensitivity of lensing to all
the matter present, including the dominant dark matter, ensures that
the weak lensing effect is an excellent probe for determining the
quantity and distribution of matter.

Weak lensing studies for a wide range of galaxy clusters have
been carried out, allowing precision measurements of masses and
mass distributions of the clusters (see e.g. Tyson, Valdes & Wenk
1990; Kaiser & Squires 1993; Bonnet, Mellier & Fort 1994; Squires
et al. 1996; Hoekstra et al. 1998; Luppino & Kaiser 1997; Gray
et al. 2002). Moving to larger scales, the shear due to large-scale
structure has been accurately measured by several groups (see e.g.
van Waerbeke et al. 2001; Hoekstra et al. 2002; Bacon et al. 2003;
Refregier, Rhodes & Groth 2002; Brown et al. 2003).

Redshift information has already been used in weak lensing stud-
ies, e.g. to determine the median redshifts of the lens and background
populations; most analyses then project the lensing information into
a 2-dimensional projected mass distribution. Wittman et al. (2001);
Wittman, Margoniner & Tyson (2002) demonstrate the utility of
using 3D shear information by inferring the redshift of a cluster
using shear and photometric redshift information for the galaxies
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1308 D. Bacon and A. N. Taylor

in their sample. The importance of including redshift information
to remove intrinsic galaxy alignments from shear studies has also
been discussed (Heymans & Heavens 2003; King & Schneider 2002,
2003). Lens tomography has been studied as a valuable means of in-
troducing redshift information into shear power spectra (e.g. Seljak
1998; Hu 1999, 2002; Huterer 2002; King & Schneider 2003), but
only recently has the full reconstruction of the 3D dark matter dis-
tribution from lensing been considered (Taylor 2002; Hu & Keeton
2002).

In this paper, we seek to discuss a practical implementation for
reconstruction of the 3D lensing and gravitational potentials from
weak lensing measurements and redshift information (whether pho-
tometric or spectroscopic). We will use the reconstruction proce-
dure of Taylor (2002), which allows us to calculate the entire 3D
gravitational potential if we have a knowledge of shear estimates
and redshifts for a set of galaxies. This procedure is explained in
Section 2.

In Section 3 we discuss sources of uncertainty for our reconstruc-
tion, examining analytically the effect of shot noise due to galaxy
ellipticity, the effects induced by a finite survey, photometric red-
shift errors, redshift-space distortions and multiple scatterings of
light rays.

We aim to test the reconstruction method using simulations of
realistic weak lensing data. In practice, for a particular volume of
space containing a mass distribution, the data which would result
from a real survey would be a set of galaxy ellipticities (in the weak
lensing regime, these will be dominated by intrinsic ellipticity with
a small gravitational lensing perturbation) and redshifts. The ellip-
ticities will typically be defined by the galaxies’ quadrupole mo-
ments (e.g. Kaiser, Squires & Broadhurst 1995; Rhodes, Refregier
& Groth 2000) or estimated from a decomposition of galaxy shape
into eigenfunctions (Refregier & Bacon 2003; Bernstein & Jarvis
2002). In order to provide a realistic catalogue of these data, we
simulate mass distributions, calculate the expected lensing distor-
tion in 3D, and create a set of galaxies probing this distortion with
a realistic redshift distribution and intrinsic ellipticity. We describe
this procedure in detail in Section 4.1.

Given such a catalogue, we attempt to reconstruct the lensing po-
tential and gravitational potential (Section 4.2). We use a generalized
3D Kaiser–Squires (Kaiser & Squires 1993) inversion together with
Taylor’s (2002) formalism to obtain the 3D gravitational potential
distribution.

In Section 5 we demonstrate the effectiveness of our implemen-
tation in reconstructing lensing and gravitational potentials. We ex-
amine the level of noise in our simulations in Section 6, including
the Poisson noise associated with having only a finite number of
galaxies probing the lensing distribution, and the noise from galax-
ies’ intrinsic ellipticities. We go on to examine the uncertainties
caused by photometric or spectroscopic redshift errors.

In Section 7 we study the utility of reconstructing only the 3D
lensing potential without continuing to the gravitational potential;
this provides a useful method for detecting mass concentrations and
measuring their mass and 3D position. Finally, we summarize our
results in Section 8.

2 3 D G R AV I TAT I O NA L P OT E N T I A L
R E C O N S T RU C T I O N

In this section we will summarize the results of Taylor’s (2002) ap-
proach to reconstructing the 3D gravitational potential, using weak
lensing measurements together with redshifts for all galaxies in the
lensing catalogue.

We begin by noting that the Newtonian gravitational potential �

can be related to the density of matter ρ by Poisson’s equation,

∇2� = 4πGρmδa2 = 3

2
λ−2

H �ma−1δ, (1)

where we have introduced the cosmological scale factor a, the den-
sity contrast δ = (ρ − ρ̄)/ρ̄, the Hubble length λH = 1/H 0 ≈ 3000
h−1 Mpc, and the present-day mass-density parameter �m .

We can study the impact of this gravitational potential on image
distortion due to gravitational lensing, by introducing the lensing
potential φ. This is a measure of the distortion which is related to
the observable shear matrix by

γi j =
(

∂i∂ j − 1

2
δK

i j ∂
2

)
φ, (2)

where ∂i ≡ r (δi j − r̂i r̂ j )∇ j = r (∇i − r̂i∂r ) is a dimensionless, trans-
verse differential operator, and ∂2 ≡∂i∂

i is the transverse Laplacian.
The indices (i , j) take the values (1, 2), and we have assumed a flat
sky.

The lensing potential is also observable via the lens convergence
field

κ = 1

2
∂2φ. (3)

The convergence field is related to the shear field by the differential
relation, first used by Kaiser & Squires (1993);

κ = ∂−2∂i∂ jγi j , (4)

where ∂−2 is the inverse 2D Laplacian operator on a flat sky, defined
by

∂−2 ≡ 1

2π

∫
d2θ ln |θ − θ′|. (5)

Note that transverse positions θ in this equation will be quoted in
units of radians, so that the lensing quantities are dimensionless.
However, such angular positions can be arbitrarily scaled, leading
to simple scalings on the lensing quantities which we will quote
later.

A useful quantity for tracing noise and systematics in gravitational
lensing is the divergence-free field, β, defined by

β = ∂−2εn
i ∂ j∂nγi j , (6)

where

εn
i =

(
0 −1
1 0

)
.

If γ i j is generated purely by the lensing potential, β vanishes.
However, if there are non-potential sources, due to noise, system-
atics or intrinsic alignments, then β will be non-zero. In addition,
β terms can arise from finite fields, due to mode-mixing of shear
fields (e.g. Bunn et al. 2002). We discuss this further in Section 3.2.

We can relate the lensing potential and the gravitational poten-
tial by

φ(r ) = 2

∫ r

0

dr ′
(

r − r ′

rr ′

)
�(r ′), (7)

in a spatially flat universe, with comoving distance r. This equation
assumes the Born approximation, in which the path of integration
is unperturbed by the lens.

Note that the lensing potential is really a 3D quantity, although
usually it is regarded as a 2D variable in the absence of redshift infor-
mation. In this case the usual practice is to average over the redshift
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Mapping the 3D dark matter potential 1309

distribution of the source galaxies (e.g. Bartelmann & Schneider
2001). It is in this 2D approximation that the depth information is
lost in lensing.

Given that φ(r ) is really a 3D variable, we can readily, and exactly,
invert equation (7) and recover the full 3D Newtonian potential
(Taylor 2002);

�(r ) = 1

2
∂r r 2∂rφ(r ) (8)

where ∂r = r̂ ·∇ is the radial derivative. Any lensing field from real
data will contain significant noise, and will thus require smoothing
if we are to perform this differentiation. Interestingly, it turns out
that the lensing potential obeys a second-order differential equation,
which is r 2 times the radial part of the 3D Laplacian. This appears
to be just a coincidence given that the lensing kernel in equation (7)
is solely due to the geometric properties of the lens.

In order to reconstruct the gravitational potential, it is necessary
to find the lensing potential from the shear. This can be achieved by
using the Kaiser-Squires (1993) relation, generalized to 3D:

φ̂(r ) = 2∂−4∂i∂ jγi j (r ), (9)

where φ̂ is an estimate of φ. As the variance of the shear field
is formally infinite (Kaiser & Squires 1993), this distribution is
usually binned and/or smoothed in the transverse direction before
calculating the lensing potential.

The above solution allows us to estimate the lensing potential only
up to an arbitrary function of the radial distance r (Taylor 2002):

φ̂(r ) = φ(r ) + ω(r ), (10)

where

ω(r ) = ψ(r ) + η(r )θx + µ(r )θy + ν(r )
(
θ 2

x + θ 2
y

)
. (11)

Here φ is the true lensing potential, and ω(r ) is a solution to(
∂i∂ j − 1

2
δK

i j ∂
2

)
ω = 0. (12)

This arbitrary radial behaviour is due to the fact that the shear only
defines the lensing potential up to a quadratic in angle for each slice
in depth. However, we must tame this behaviour if we wish to apply
equation (8) to find the gravitational potential.

These terms can be removed by taking moments of the measured
lens potential over the area of a survey. Defining

ωp,q (r ) = 1

A

∫
A

d2θω̂(r )
(
θ p

x + θq
y

)
, (13)

where A is the area of a survey. An estimate of the lensing potential
with zero mean, gradient and paraboloid contributions is

�φ = φ̂ − ω̂ (14)

where for a circular survey, with radius �,

ω̂ = 4ω0,0

(
1 − 3θ2

2�2

)
− 6ω2,2

�2

(
1 − 2θ2

�2

)
+ 2

�2

(
ω1,0θx + ω0,1θy

)
, (15)

and we have assumed the true potential averages to zero. Hence

�(r ) = 1

2
∂r r 2∂r [φ̂(r ) − ω̂(r )] (16)

is an unbiased estimate of the Newtonian gravitational potential,
WHILE

δ(r ) = λ2
Ha

3�m
∇2∂r r 2∂r (φ̂[r ) − ω̂(r )] (17)

is an unbiased estimate of the density field. With these sets of equa-
tions, the 3D lensing convergence, 3D lensing potential, 3D New-
tonian potential and 3D matter density fields can all be generated
from combined shear and redshift information.

3 T H E U N C E RTA I N T Y I N 3 D L E N S I N G

3.1 Shot-noise uncertainty in lensing fields

Having written down the basic equations for the 3D analysis of
gravitational lensing data, we now consider the various contributions
to the uncertainty in a reconstruction of these fields.

3.1.1 The convergence field

The covariance on a reconstructed, continuous convergence field
due to shot-noise is generally given by

〈κ(r )κ(r ′)〉SN = γ 2
rms

n(r )
δD(r − r ′), (18)

where γ rms is the intrinsic dispersion of galaxy shear estimates in
one component (i.e. γ 1 or γ 2) due to the non-circularity of galaxies,
and n(r ) is the observed space density of galaxies in a survey.

In the case of a discretized map this reduces to

〈κiκ j 〉SN = γ 2
rms

Npix
δK

i j , (19)

where, for a constant 3D number density of galaxies,

Npix = 3n̄θ2
pixr 2�r/R3 (20)

is the 3D pixel occupation number, n̄ is the 3D density of galaxies,
θ pix is the pixel size, �r is the width of the radial bins, r is the radial
distance and R is the chosen limiting distance for the survey. We
will compare this amplitude and behaviour with our simulations in
Section 6.

3.1.2 The lensing potential field

We now wish to describe the uncertainty expected for the lensing
potential field. We can write the covariance of the lensing potential
estimated from equation (3) as

〈φ(r )φ(r ′)〉SN = 4∂−2∂′−2〈κ(r )κ(r ′)〉SN. (21)

We describe the procedure used to evaluate this covariance in the
Appendix, and here only quote the resulting variance of the lensing
potential at the centre of the survey (θ = 0) as a function of survey
size, �, and radial position, r, in the flat-sky limit:

〈�φ2(θ = 0)〉SN = 5

24π

γ 2
rms

n(r )

�2

r 2
δD(r − r ′). (22)

Note that the uncertainty on the potential difference increases with
the survey area as a consequence of the 2D flat-sky lensing ‘force’
term, ln |θ − θ′|, increasing with distance. We will compare this
behaviour with our simulations in Section 6.

Finally we can cast this in a more convenient form for gravita-
tional lensing in the discrete case:

〈�φ2(0)〉SN = 7.6 × 10−16

(
n2

30/[1′]2

)−1 (
�

1◦

)2 (
R3

r 2�r

)
,

(23)

where we have assumed γ rms = 0.2, n2 = 1/3nR3 is the 2D total
surface density of galaxies and R is the nominal depth of the survey.
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1310 D. Bacon and A. N. Taylor

In general the uncertainty in the 3D lensing potential will also
depend on the pixel size as well as the total size of the survey. This
behaviour for the uncertainty on the lensing potential is now due to
the 2D flat-sky lensing ‘force’ term diverging at small separation.
Due to the complexity of analysing this effect analytically we shall
defer a more thorough treatment of studying pixelization effects
with our simulations to Section 6.

3.1.3 The Newtonian potential field

We also wish to calculate the uncertainty on the 3D Newtonian
potential. We can approach this, from equation (8), by differentiating
the lensing potential field leading in the far-field limit to

〈�(r )�(r ′)〉SN = 1

4
r 2r ′2∂2

r ∂
′2
r 〈φ(r )φ(r ′)〉SN. (24)

We again describe the detailed calculation of this quantity in the
Appendix, where we arrive at an expression for the variance on the
Newtonian potential:

〈�2(r )〉SN = 5

64π
√

2π

γ 2
rms

r 3
||n

(
r

r||

)4(
r||
R

)2

�2, (25)

where r || is the smoothing radius for a radial Gaussian smoothing
of the field. Hence we find that the shot-noise uncertainty is a strong
function of the radial smoothing, changing as the inverse fifth power
of the smoothing radius. We will again examine this behaviour in
our simulations in Section 6.

Finally, we can again cast this in a more convenient form for
lensing:

〈�2(r )〉SN = 1.1 × 10−16

(
n2

30/[1′]2

)−1(
�

1◦

)2(
r

r||

)4(
R

r||

)
.

(26)
Note that, as for the lensing potential, the error upon the gravitational
potential grows with survey or cell size.

The question of what survey area and radial smoothing to choose
leaves us with an optimization problem. From equation (25) it would
appear that we can reduce the shot-noise by reducing the survey area,
or increasing the radial smoothing. However the latter will reduce
the resolution of the survey, and correspondingly lower the intrinsic
signal, while the former will increase the noise effects induced by
a finite survey area. We shall investigate further the effects arising
from a finite survey in Section 3.2, and comment further on the
problem of survey optimization.

3.1.4 The density field

Finally, the shot-noise uncertainty in the reconstructed density field
can be constructed from equation (1);

〈δ(r )δ(r ′)〉 =
(

2λ2
Ha

3�m

)2

∇2∇′2〈�(r )�(r ′)〉. (27)

In the far-field approximation the Laplacian can be written ∇2 =
(∂2

r + R−2∂2). In general, equation (27) must be calculated numer-
ically, but for points along the centre of the survey the shot-noise
contribution to the variance of the density field can be calculated
analytically, reducing to

〈δ2(r )〉SN =
(

2

9π3

)1/2(
a

�m

)2
γ 2

rms

nr 3
||

(
λH

R

)4(
r 2

r||�R

)2

×
[

1 + 175

24

(
�R

r||

)4
]

. (28)

The two terms in this expression arise from terms where we only take
the transverse derivatives, which causes the shot noise to die away
with survey radius as �−2, and another term where only the radial
derivatives appear. This latter term, the second term in the square
brackets in equation (28), retains the �2 dependence of the potential
fields. The trade-off between these terms gives rise to a minimum
in the uncertainty in the density field as a function of survey size.
The derivation of this expression is sketched out in Appendix A3.

If we set a = 1/2, and γ rms = 0.2, and again define n2 = 1/3nR3

as the surface galaxy density, the variance of the density field can
be expressed in the form

〈δ2(r )〉SN = 2.9 × 10−8

(
�m

0.3

)−2 (
n2

[30/1arcmin]2

)−1

×
(

�

1◦

)−2 (
λH

r||

)4 (
r 4

r|| R3

)
×

{
1 + 6.8 × 10−7

[
(�/1◦)R

r||

]4
}

, (29)

To illustrate this we find that the variance in the reconstructed
density field for r || = 0.1, R = 1 and r = 1, where we express
distances here in redshift for a Euclidean universe, with n2 = 30
galaxies arcmin−2 and �m = 0.3 is given by

〈δ2(r )〉SN = 0.003

(
�

1◦

)−2
[

1 + 0.007

(
�

1◦

)4
]

, (30)

which has a minimum at � = 3.◦2 of 〈δ2〉1/2 = 0.02. Because we
expect the amplitude of density perturbations on these scales, λ ≈
100 h−1 Mpc, to be smaller than this, σ δ ≈ 0.01, we can expect that
filtering (e.g. Wiener filtering, see Section 3.3) will be required to
extract a large-scale map of the 3D density field, even at the scale
which minimizes noise.

3.2 Uncertainty and mode-mixing due to finite fields

3.2.1 Finite surveys

As well as shot-noise arising from the discrete sampling of the shear
field by the survey galaxies, there is an additional uncertainty in the
reconstruction of the density field for finite area surveys due to the
reconstruction process being non-local (via the inverse Laplacian).
The non-local behaviour of density reconstruction over a finite sur-
vey area also gives rise to a mixing of modes. Here we try to quan-
tify for the first time for lensing the effects of mode-mixing and
reconstruction noise arising from finite survey areas. The following
analysis will be applicable to either 3D or 2D lensing studies, as the
results will be true for either a series of redshift slices or an overall
two-dimensional projection.

We may calculate the effect of a finite shear sample by multiplying
the shear field by an arbitrary window function;

γ ′
i j (r ) = W (r )γi j (r ). (31)

The lens convergence field can be estimated via equation (4), but
because here there is only a finite field to integrate over, the effect
of the window function is to truncate the effects due to the distant
shear field and induce mode-mixing between κ and β.

If we expand the shear in Fourier modes on the flat sky, the ob-
served shear is a convolution of the intrinsic shear and the window
function. For convenience we shall use continuous transforms, al-
though for a finite sky a discrete Fourier transform with suitable

C© 2003 RAS, MNRAS 344, 1307–1326

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/344/4/1307/970766 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Mapping the 3D dark matter potential 1311

boundary conditions is more practical. A scalar quantity f (θ, r )
can be expanded in a 2D Fourier series by

f (θ, r ) =
∫

d2�

(2π)2
f (�, r )ei�.θ. (32)

Decomposing the observed shear matrix given by equation (31) into
the Fourier decomposed κ(�) and β(�) fields using equations (4)
and (6), and Fourier transforming again we find the relationships
between the reconstructed and true κ- and β-modes are

κ ′(�) =
∫

d2�′

(2π)2
W (� − �′)[κ(�′) cos 2ϕ − β(�′) sin 2ϕ],

β ′(�) =
∫

d2�′

(2π)2
W (� − �′)[β(�′) cos 2ϕ + κ(�′) sin 2ϕ],

(33)

where cos ϕ = �̂ · �̂′
. Hence we see that a finite survey will give

rise to a spurious β-field. Here we have suppressed the radial de-
pendence for clarity, so these equations are directly applicable to
reconstruction of the convergence field in 2D lensing.

If we assume negligible intrinsic β fields then the real-space con-
vergence is given by

κ ′(θ) =
∫

d2�

(2π)2
κ(�)W̃ �(θ)e−�2θ2

s /2, (34)

where

W̃ �(θ) =
∫

d2�′

(2π)2
W (� − �′) cos 2ϕei�′ .θ (35)

is the total effect of the finite survey area, and we have assumed the
shear field is Gaussian smoothed on a scale θ s.

3.2.2 Variance of the convergence field

The variance measured in the finite-survey convergence field on a
smoothing scale of θ s is given by

〈κ ′2(θ)〉 =
∫

d2�

(2π)2
Cκκ

� |W̃ �(θ)|2e�2θ2
s , (36)

where

〈X (�)Y (�)〉 = (2π)2C XY
� δD(� − �′) (37)

for the isotropic fields X (θ) and Y (θ).
If we approximate the window function by a Gaussian of radius

� with Fourier transform

W (�) = 2π�2 exp(−�2/2�2), (38)

we can evaluate W̃ �(θ) at θ = 0, yielding

W̃ �(0) = 1 + 2
(

e−�2�2/2 − 1
)

�2�2
. (39)

We plot this window function, giving the contribution of conver-
gence modes to the observed convergence, in Fig. 1. The general
effect of the window function is to act as a high-pass filter. At
� ∼ 1/� all the convergence modes are destroyed, while at large ��

the window function tends to unity as all the modes on scales below
the scale of the survey contribute to the variance. Interestingly at
low �� this function goes negative, indicating that modes larger
than the survey area are heavily distorted.

For the Gaussian window function, no β-modes are generated at
the centre of the field due to the symmetry of the window. Hence
the β-modes that are generated by the finite window are distributed
non-locally over the survey area.

Figure 1. The finite-field lensing window function, W̃ �(0), for a Gaussian
window of radius �, calculated at the centre of the survey as a function of
��.

Figure 2. Variance of reconstructed convergence field, κ ′, Gaussian
smoothed on a scale θs = 0.◦05, measured at centre of Gaussian survey,
as a function of survey radius, � (solid line). The variance in the recon-
structed convergence due to shear structure beyond the survey boundary is
also shown (dotted line).

Fig. 2 shows the variance of the observed convergence field, κ ′,
on a smoothing scale of θs = 0.◦05, measured at the centre of a
Gaussian survey as a function of the survey radius, � (solid line). We
have assumed a convergence power spectrum, Cκκ

� , for a flat LCDM
universe with �m = 0.3, �� = 0.7 and used the Peacock–Dodds
transformation (Peacock & Dodds 1996) to map to the non-linear
regime. Below a survey radius of � = 0.◦1, missing modes due to
the finite window and mode-mixing result in a drop in the measured
variance.

3.2.3 Uncertainty in the reconstructed convergence

In addition to estimating the variance in the reconstructed conver-
gence field 〈κ ′(θ)〉obs measured from within a finite survey, we can
also predict the uncertainty 〈κ ′(θ)〉miss due to missing structure in the
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1312 D. Bacon and A. N. Taylor

Figure 3. The effect of a finite window on the lensing potential difference
�φ for a Gaussian window of radius �. The dotted line is the sampling
variance including mode-mixing from the interior of a finite survey, while the
solid line is variance due to missing modes exterior to the survey. Oscillations
are real and due to the window function. The thick dark-grey line is the shot-
noise estimate for a survey with n2 = 30 galaxies arcmin−2.

shear field beyond the survey area. As the total variance measured
within the survey and the missing modes from beyond the survey
must yield the total variance of the convergence field 〈κ ′(θ)〉total, the
uncertainty in a reconstruction due to missing structure is

〈κ ′(θ)〉miss = 〈κ(θ)〉total − 〈κ ′(θ)〉obs. (40)

This uncertainty is plotted in Fig. 2 (dotted line). For small survey
radii, the variance in the reconstruction uncertainty is just the total
variance of the convergence field, as the reconstruction uncertainty
is dominated by missing structure beyond the survey boundary. As
the survey radius approaches � = 0.◦1, this effect begins to decrease,
and beyond 1◦ the survey is large enough to include all the relevant
structure.

3.2.4 Variance of the differential lensing potential

We can also calculate the variance of the differential lensing poten-
tial field at the centre of a circular survey

〈|�φ(0)|2〉 = 4

∫
d2�

(2π)2
�′−4Cκκ

� |W̃ �(0)|2
[

1 − 2J1(��)

(��)

]2

, (41)

where J 1(x) is a Bessel function. The term in the square brackets
subtracts off the mean field estimated over the survey area. We
plot this variance as a function of survey size, �, in Fig. 3 (dotted
line). We again assume a convergence power spectrum, Cκκ

� , for
a flat LCDM universe, and assumed the background galaxies are
at z = 1.

For small surveys the fluctuations expected in �φ are greatly
reduced, but on large scales the expected variation on �φ be-
comes large; �φ ≈ 10−5. This is due to the �−4 weighting factor in
equation (41) which makes the �φ field sensitive to very large-scale
structures. This is just a reflection of the long-range nature of the 2D
lensing potential field, but means that the peak variance is on large
angular scales. For smaller surveys these differential variations are
suppressed as the survey becomes smaller than the structure causing
them.

We conclude from this that the lensing potential field requires a
large survey for a complete sampling of modes. For a LCDM model
we find that the potential modes are only fully sampled for surveys
above 10◦. On the other hand, when wishing to reconstruct cluster-
scale mass concentrations, it is helpful to restrict a reconstruction to
a cell-size of ∼1 deg2 as this will cut out the large φ fluctuations due
to larger-scale structures (cf. the good signal-to-noise ratio obtained
in this fashion for cluster reconstructions in Sections 5 and 6).

3.2.5 Uncertainty in the differential lensing potential

As well as the intrinsic variance of the differential 2D lensing poten-
tial which we measure in a field, 〈|�φ(0)|2〉obs, we can also calculate
the uncertainty in lensing potential due to missing modes from be-
yond the survey scale, 〈|�φ(0)|2〉miss:

〈|�φ(0)|2〉miss = 〈|�φ(0)|2〉total − 〈|�φ(0)|2〉obs. (42)

This is also plotted in Fig. 3 (solid line). For small survey radii we
again see that the uncertainty in the reconstruction is dominated
by the missing shear structures beyond the survey boundary. In
this case most of this missing structure is on larger scales. As we
reach a survey radius of around 10◦ the survey begins to include
this important large-scale shear structure, and the reconstruction
uncertainty drops.

Also plotted on Fig. 3 is the shot-noise contribution to the un-
certainty on a reconstruction from equation (23), assuming n2 =
30 galaxies arcmin−2 (thick solid line), typical for a ground-based
survey. We see that shot noise is larger than the expected rms φ fluc-
tuations arising from large-scale structure for very small surveys
(� < 1◦). On larger scales the shot noise is lower than the expected
signal, allowing mapping of large-scale structure with good signal-
to-noise ratio on these scales.

We note that the incompleteness contribution dominates over the
shot-noise contribution for small surveys, while the shot-noise con-
tribution dominates for large surveys. The two contributions are
around the same magnitude at around � = 15◦ when 〈�φ2〉 ≈ 2 ×
10−11.

3.3 Wiener filtering lensing fields

As we shall see, realistic galaxy ellipticities create a shot-noise con-
tribution to the gravitational potential reconstruction which far ex-
ceeds the expected gravitational potential amplitude from a cluster.
This suggests one of two approaches to reconstructing gravitational
potentials in practice: we can either examine the potential statisti-
cally from many objects of interest (e.g. stacking the signal from
many groups or clusters); or we can filter the signal to overcome
the large noise contribution. A valuable approach which we will use
later involves Wiener filtering the gravitational potential (cf. Hu &
Keeton 2002).

In order to apply this filtering, we construct the vector P con-
taining our gravitational potential measurements along a particular
line of sight. We also calculate N, a matrix containing the noise
covariance of the gravitational potential radially along this line of
sight; this can be measured directly from many � reconstructions
of a zero φ field with appropriate noise. Finally we require a ma-
trix S, representing the expected covariance of the real gravitational
potential signal along the line of sight. We use a multiple of the
unit matrix for S, with amplitude chosen to equal the square of the
expected gravitational potential amplitude, e.g. for clusters. Then
we can apply a Wiener filtering

R = S(N + S)−1 P (43)
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Mapping the 3D dark matter potential 1313

where R is our desired filtered gravitational potential. This filter uses
our knowledge of the noise amplitude and covariance, together with
the expected signal amplitude, to significantly reduce the impact of
the noise. We will test the practicality of this approach in Sections 5
and 6.

3.4 Photometric redshift errors

In the above analysis, we assume that the distances to galaxies have
been estimated from redshifts, measured either spectroscopically
or photometrically. However, these redshifts include contributions
from local velocities as well as the velocity of the overall Hubble
flow. Thus the redshifts will cause a somewhat biased scatter in our
distance measurements, as the local velocities are generated from
gravitational instability due to the local Newtonian potential, and
therefore correlate with our mass estimates. We must assess the
level of error associated with this effect.

We first consider the effect of a random distance error, which is
significant for photometric redshifts. We assume the source posi-
tions are perturbed by r → r + ε(r )r̂ , where ε(r ) is a random field
with zero mean and correlations 〈ε(r )ε(r ′)〉= σ 2

εδD(r − r ′). Ex-
panding the lensing potential we find that the observed Newtonian
potential field becomes

φ′(r ) = φ(r ) + ε∂rφ(r ). (44)

This contributes to the first-order uncertainty in the Newtonian
potential

�� = σε

{
∂r� − 2

r

[
� − 1

r

∫ r

0

dr ′�(r ′)

]}
. (45)

At large distances from the observer the terms in the square brackets
vanish, and the leading contribution to the uncertainty in distance
comes from the gradient of the Newtonian potential. As σ ε is, for
appropriate redshift surveys, small in comparison with the redshift
depth probed, and as ∂r� will be small in a smoothed survey, this
effect should not be dominant in recovering the gravitational poten-
tial. To confirm this, we will examine the effect of redshift errors on
our simulations in Section 6.1.

3.5 Redshift-space distortions

We must now consider the effect of velocity distortions, which may
be significant for the more accurate spectroscopic redshifts. In linear
theory, the velocity field is related to perturbations in the mass-
density field by

v = −H f (�m)∇∇−2δ (46)

where f (�m) = d ln δ/d ln a ≈ �0.6
m is the growth index of density

perturbations (e.g. Peebles 1980). The position of galaxies are then
shifted into redshift space by

r → s = r + u(r )r̂ (47)

where s is the redshifted position and u(r ) = r̂ · v(r ) is the radial
component of the velocity field. The distorted redshift-space lensing
potential is then

φs(s) = φ(r ) −
(

2aλ2
H f

3�m

)
∂r�∂rφ(r ). (48)

In this case the systematic distortion of the Newtonian potential is
second-order:

�� = −
(

2aλ2
H

3�0.4
m

)[
κ∂3

r � + 2�∂2
r � + (∂r�)2

]
. (49)

The magnitude of this effect on the reconstructed density field is
�δ ≈ f δ2, and so ONLY contributes to second order.

3.6 Multiple scatterings

A further concern is the fact that a fraction of light rays will be
multiply scattered as they travel from source to observer. How will
this affect our assumption that the shear field can be derived from a
lensing potential?

The scattering of light rays can be written as

δθ ′
i = Di j (θ)δθ j (50)

where Dij is the lens distortion matrix, defined for a single scattering
by

Di j = δK
i j + ∂i∂ jφ = (1 − κ)δK

i j + γi j . (51)

The distortion matrix for n multiple scatterings is then just the prod-
uct of distortion matrices,

Dn
i j = D(1)k1

i D(2)k2
k1

· · · D(n)
kn j (52)

where D(i) is the effect of scattering off the ith structure along the
light path.

For the case of double scattering we can then define an effective
convergence, shear and a rotation,

κeff = κ1 + κ2 − 2κ1κ2 − Trγ k
1iγ2k j

γ eff
i j = γ1i j + γ2i j − κ1γ2i j − κ2γ1i j + γ k

1(iγ2 j)k − [
Trγ k

1iγ
j

2k

]
δK

i j

ωi j = γ k
1[iγ2k j]. (53)

Thus, even for a double scattering, the presence of a rotational com-
ponent to the distortion matrix shows that the distortion can no
longer be strictly constructed from a potential. However, in the case
of weak lensing at the 10 per cent level, we see that the rotational
components will on average be around 0.1 per cent. However, we
can expect this to break down in the strong lensing regime, very
close to massive cluster centres. Therefore it is worth considering
how common projections may be in lensing.

If we assume that the cluster spatial distribution is random, the
probability of finding one or more clusters at random along a given
line of sight of volume V = 4π f R3/3 is

P(N � 1) = 1 − e−λ ≈ λ ≈ Nc f, (54)

where Nc is the number of clusters in the whole sky volume and
f is the angular fraction of the sky covered by our line of sight.

We are interested in the case where we observe a cluster at a
particular position, and wish to know whether there is a further
cluster behind this. This probability is simply given by the previous
equation, so we find

P(2nd cluster) ≈ 6.8

(
Nc

105

)(
θcl

10′

)2

per cent, (55)

where θ cl is the angular size of a typical cluster. This calculation is
highly approximate, but allows us to see that finding clusters behind
clusters can occur with non-negligible probability. This will cause
no difficulties for our method, except in the strong lensing regime
very close to the centre of the clusters. Indeed, our method is a
useful means of measuring several mass concentrations along the
same line of sight.
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1314 D. Bacon and A. N. Taylor

4 S I M U L AT I N G 3 D L E N S I N G

In order to investigate the practical application of the reconstruction
formalism, we have conducted a series of simulations representing a
realistic space volume for a lensing survey, including galaxies with
an appropriate spatial distribution and intrinsic ellipticity and gravi-
tational lenses of appropriate size and mass. The shear and magnifi-
cation for objects behind the lenses can be calculated (retaining the
full information regarding 3D variation of these quantities), and the
shapes of the objects can be altered accordingly. With this flexible
simulation package in place we can attempt to reconstruct the grav-
itational potential causing the lensing, using knowledge of only the
galaxy ellipticities, their redshifts and equations (8) and (9). Here
we describe in detail the form of these simulations.

Immediately we are faced with a question as to which of the
fields described so far (γ , κ , φ, �, δ) we should use for three-
dimensional analysis. In reality, the most appropriate field to use
depends upon the application intended. For detection and measure-
ment of mass concentrations along the line of sight (Section 7), the
fields κ and φ are the most useful, as they have the best signal-
to-noise ratio [�7σ in each case in (9 arcmin2, �z = 0.05) pix-
els, for field radius 0.◦5; see Section 6] and are transversely local
representations of the mass present. For a direct mapping of the
gravitational field, � is most appropriate for mapping particular
concentrations such as groups and clusters, as it has much less noise
than the δ field on <1◦ scales (cf. equation 28). Indeed, as the noise
in the δ field grows quadratically with survey size (equation 30),
as does the noise in the � field, it may be that � is most useful
at large survey areas as well, depending on the required applica-
tion. In this paper we concentrate on reconstructions of cluster size
mass concentrations, and will therefore make use of the φ and �

fields.

4.1 Constructing the shear field

We construct a three-dimensional grid, typically with a total of 1003

points. This represents the cone in which we will attempt to recon-
struct the gravitational potential, i.e. the x and y directions represent
an angular range on the sky, while the perpendicular χ direction
represents radial comoving distance. Typically we will use this to
model angular scales in x and y of 1◦ while probing in the χ direc-
tion down to an effective redshift of 1. We will quote coordinates
in r = (x , y, χ ) ranging from 0 to 1. This does not imply that the
χ coordinate represents redshift, however; throughout this paper, χ
represents a comoving distance measure, such that χ = 1 at z =
1. Nevertheless, our conclusions are qualitatively similar if redshift
rather than comoving distance is used.

This choice of coordinates significantly simplifies our analysis: in
a flat universe, the comoving transverse separation of unperturbed
light ray paths converging at an observer is proportional to the co-
moving radial distance along the light path (see e.g. Bartelmann &
Schneider 2000, section 6.1). Thus unperturbed rays will simply
move along our χ coordinate with fixed (x , y). Also, in order to
lay down e.g. a constant three-dimensional comoving number den-
sity of objects, we simply allocate a constant number density in our
coordinates; no correction is necessary for a varying physical num-
ber density. Finally, the unitless transverse derivatives required in
equation (2) are simply ∂x and ∂y in our coordinate system.

We fix in this grid the positions of lenses which we will wish
to recover. We assign to each lens a mass and three perpendicular
scalelengths for the size of its gravitational potential. In the follow-
ing section we will be concerned with typical galaxy cluster lenses,

in which case we assign masses in the range 0.5–5 × 1014 M�
and radii of 0.5–2 Mpc. We will position these clusters between
χ = 0.25 and χ = 0.5 while probing lensed galaxies down to
χ = 1, mimicking lensing studies of massive clusters (e.g.
Tyson et al. 1990; Kaiser & Squires 1993; Bonnet et al. 1994; Squires
et al. 1996; Hoekstra et al. 1998; Luppino & Kaiser 1997; Gray
et al. 2002).

Given these masses and scalelengths, we can calculate the grav-
itational potential over the entire three-dimensional grid. We have
used Navarro, Frenk & White (1996; hereafter NFW) profiles for
the density,

ρ(r ) = q/|r − r c|(1 + |r − r c|)2, (56)

where q is a measure of the mass, and r c are the coordinates of
the centre of the mass profile. Using Gauss’s law and a further
integration and renormalization, we find the resulting gravitational
potential for a mass concentration

�(r ) = −q1rs

|r | log

(
1 + |r − r c|

rs

)
, (57)

with q1 as a measure of mass and rs the NFW scale parameter. The
total gravitational potential in the simulated volume of space is taken
to be the sum of the individual lens contributions.

Fig. 4 shows an example of our constructed gravitational poten-
tial, for two NFW profile clusters, placed at χ = 0.25 and χ = 0.4;
the view is of a 1 grid-unit slice at x = 0.◦5. The apparent distor-
tion of the clusters is due to the scales chosen; we are examining a
large distance scale radially (∼3000 Mpc), with much smaller dis-
tance scales transversely (∼10 Mpc). We will wish to reconstruct
this gravitational potential for all (x , y, χ ) from shear information
only.

The masses of the clusters in this example were chosen to mimic
the shear properties of clusters in Gray et al. (2002), with mass
m = 8 × 1013 M� within a radius of 2 arcmin. Note that in or-
der to calculate φ and � we convert the x, y coordinates from de-
grees to radians, leading to the same φ and � normalizations as in
Section 3.

From the gravitational potential shown in Fig. 4, we calculate the
lensing potential φ given by equation (7). This is a necessary step
towards calculating the shear, which is all we will use for potential
reconstruction. For each point in (x, y) we set φ(x , y, 0) = 0 and
then use the discrete version of equation (7),

φ(x, y, χ ) = −2
χ∑

w=1

χ − w

χw
�(x, y, w)�w, (58)

where we must first use this equation to calculate φ(x , y, 0.01)
then φ(x , y, 0.02), etc. In this fashion, we can calculate the lensing
potential for all points on our three-dimensional grid.

Fig. 5 shows the lensing potential calculated as above for the
example introduced in Fig. 4. Note that the axes on this 3D plot are
(y, χ , φ); we are observing how the lensing signal grows with depth.
The figure shows the generic behaviour for all lensing; the lensing
potential due to distortion from a massive object becomes stronger
with increasing depth, but asymptotes to a finite value at large χ .

We are now in a position to calculate the three-dimensional grav-
itational shear field arising from the gravitational potential. We cal-
culate the shear components γ 1 and γ 2 from our three-dimensional
φ field by first approximating

∂xxφ(x) � [φ(x + �x, y, χ ) + φ(x − �x, y, χ )

− 2φ(x, y, χ )]/(�x)2. (59)
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Mapping the 3D dark matter potential 1315

Figure 4. Example of gravitational potential. Here we simulate the grav-
itational potential for two NFW clusters at r = (0.5, 0.5, 0.25) and (0.5,
0.7, 0.4); the upper panel is a 3D representation of (y, χ , �) resulting from
an x slice at x = 0.◦5; the lower panel displays the � values for (y, χ ) in
grey-scale.

An entirely similar approximation is made for ∂yyφ(x), while we
approximate

∂xyφ(x) � 1

4
[φ(x + �x, y + �x, χ ) + φ(x − �x, y − �x, χ )

− φ(x − �x, y + �x, χ )

− φ(x + �x, y − �x, χ )]/(�x)2. (60)

Then, following from equation (2), we can write the shear com-
ponents as

γ1(x) = −1

2
[∂xxφ(x) − ∂yyφ(x)] (61)

γ2(x) = −∂xyφ(x) (62)

From these equations we can calculate shear values for all points on
our three-dimensional grid. An example of a calculated shear field
is shown in Fig. 6, corresponding to the gravitational potential of
Fig. 4; this is an (x, y) slice of the 3D shear field at χ = 0.75. Note
the clear signatures due to the two clusters. A slice further back in
χ would have a similar x, y pattern but a larger shear magnitude; a
slice in χ in front of the clusters would have no shear signal.

Figure 5. Lensing potential calculated for the gravitational potential of
Fig. 4. Note the increase in distortion expected with growing χ . In the upper
panel, the axes represent the (y, χ , φ) coordinates; in the lower panel the φ

values for (y, χ ) are shown in grey-scale.

Figure 6. Slice of the 3D shear field corresponding to the gravitational
potential of Fig. 4. This is an (x , y) slice at χ = 0.75. The largest γ value
plotted is 0.27.
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1316 D. Bacon and A. N. Taylor

We have therefore calculated the gravitational shear which would
exist for an object at any grid point; now we must place objects at
some of these grid positions, with an appropriate distribution in
space. We normalize the total number of objects to those expected
in surveys down to the required depth; for a ground-based survey
probing to a limiting redshift zr = 1, we expect a number density n �
30 usable galaxies arcmin−2 (e.g. Bacon et al. 2003). Alternatively,
we can project the number densities expected for deep, space-based
surveys down to zr = 1 (n � 100; see Massey et al. 2002).

The selected total number density is used to find the probability
of an object existing at a given grid point in the following fashion.
We treat each (x, y) sheet as a slice of a comoving pyramid (not a
box), in order to take into account the fact that the survey has an
angular extent. In some of the simulations we will assume that the
three-dimensional number density is constant, while in others we
will adopt dN/dχ ∝ χ2 exp(−aχ2); the distribution will be stated
in each case.

In the case of varying N (χ ), the number of galaxies N expected
per grid point can be found using

N (x, y, χ ) = dN

dχ

�χ

(�)2
(63)

where � is the transverse survey length (usually 1◦ in our simula-
tions), �χ is the radial grid increment, and N tot = n�, where � is
the solid angle extent of the survey. For each χ , we then generate
N (χ )�2 random coordinates in x and y, and increment the number
of objects at the nearest grid point for each coordinate pair.

For each object, a random Gaussian-distributed shear value is
chosen to simulate the effect of intrinsic ellipticity, and is added in
quadrature to the gravitational shear value. For typical ground-based
surveys the scatter in shear estimators due to the intrinsic ellipticity
can be well modelled by Gaussians in γ 1 and γ 2 with standard
deviation 0.3 in each component (e.g. Bacon et al. 2003). For space-
based survey simulations, we use the smaller standard deviation of
0.2 in each shear component (see e.g. Rhodes, Refregier & Groth
2001).

We now have a set of galaxies sampling the 3D shear field at a
finite set of points in space, with an additional shot-noise contribu-
tion from their intrinsic shapes. We must now attempt to estimate
the underlying purely gravitational 3D shear field, and from that
to calculate the 3D lensing potential φ from equation (9), and the
corresponding 3D gravitational potential � from equation (8).

4.2 Reconstructing the potential

We can overcome the shot noise from galaxy ellipticities by a com-
bination of binning many galaxies’ shears in a cell, and smoothing
the shear field. In the specific examples given below, we find it con-
venient to initially rebin our galaxy grid to pixels with 3 arcmin
diameter in the transverse direction and �χ = 0.05 in the radial di-
rection; further smoothing can be carried out as necessary later. We
calculate the averaged shear field for the rebinned grid; this averaged
shear will then be the basis of our potential reconstruction.

We can conveniently find the φ field corresponding to this γ field
using Fourier tranforms of these two fields. Following Kaiser &
Squires (1993), we find from equation (9) an optimal estimate of
the lensing potential,

φ(k) = 2
(

k2
x − k2

y

)
γ1(k) + 4kx kyγ2(k)

k2
x + k2

y

, (64)

where φ(k) etc. are Fourier-transformed quantities. This equation
is valid if the transverse differential operators of equation (9) are

dimensionless; this is satisfied by our model, where the x and y
directions represent angles rather than physical distances.

In this fashion we calculateφ(k) using fast Fourier transforms, and
hence find φ. Because noisy low-k modes can introduce rather large
variability in φ with χ (see Section 2), we further add a constant
at the edge of our (real-space) field to ensure that the mean of φ

around the edge of the field is zero. This is equivalent to a mean
correction for the constant and quadratic terms in equation (11); we
find that this is an adequate correction, as the linear and quadratic
contibutions are found to be small in practice. See Section 3.1.2, 3.2
and 6.1 for a discussion of the level of error this causes. We can then
smooth the φ field in the χ direction to reduce the noise amplitude,
convolving the φ field with a radial Gaussian. We can choose the
width of this kernel in each circumstance as a compromise between
reducing noise and retaining spatial resolution.

We then calculate the gravitational potential � using
equation (8). As in equations (59) and (60), we use local differences
in φ in the χ direction to approximate the derivatives. If necessary,
we can smooth or filter � itself to further reduce noise levels.

5 S I M U L AT I O N R E S U LT S

We have described above our means of simulating mass distributions
and corresponding shears, followed by our method for reconstruct-
ing the lensing potential and gravitational potential given a finite
number of noisy estimators of the shear. Here we describe our find-
ings for this reconstruction.

5.1 Perfect reconstruction

First we examine the accuracy of our method when the shear field
is perfectly known everywhere. Fig. 7 shows the reconstruction of
the lensing potential when we simply input into our reconstruction
the full shear field shown in Fig. 6; we do not smooth the shear
field in this case. We regain the lensing potential successfully; this
is quantified in Fig. 7(c), where we show the difference between the
reconstructed and original φ fields, for a slice through the recon-
struction. This error introduced by our numerical implementation
is <3 per cent of the lensing signal everywhere behind the clusters
within 0.◦15 of the cluster centres. The one exception is the core
pixel line behind each cluster, where the error is 6.6 and 9.7 per cent
of the lensing potential for the left and right cluster, respectively.
This is expected, due to the cusp within this pixel, which the binned
shear cannot accurately follow. We see that our procedure for re-
constructing the lensing potential is very successful in the absence
of noise.

We proceed to use our reconstructed lensing potential to find
the 3D gravitational potential, still using the full shear field (i.e.
still without sampling by a finite number of objects, or adding shot
noise due to galaxy ellipticities). Our result is shown in Fig. 8,
which displays the reconstructed � and the difference between input
and reconstructed fields. Again it can be seen that, with perfect
knowledge of the shear field, a good reconstruction is achieved with
our method. For the cluster at χ = 0.25, the error is <0.4 per cent
of the signal within a radius of 0.◦2 of the cluster, except for the core
pixel where the error is 11.5 per cent. For the cluster at χ = 0.5,
the error is <5 per cent of the signal within a radius of 0.◦1 of the
cluster, except for the core pixel where the error is 17.6 per cent.
This is again due to the cusp at the cluster centre, which cannot be
followed well by our averaged shear field. Nevertheless, it is clear
that our method is successful in reconstructing cluster gravitational
potentials in the absence of noise.
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Mapping the 3D dark matter potential 1317

Figure 7. Top and middle panels: reconstructed lensing potential using
the full shear field of Fig. 6, in a 1003 grid. This is a (y, χ ) plane at x =
0.◦5. Bottom panel: difference between input and recovered lensing potential
fields.

5.2 Reconstruction with noise

Having demonstrated that the inversions of the shear field to obtain
lensing and gravitational potentials are viable in the absence of
noise, we now wish to add the two primary sources of noise present

Figure 8. Top panel: reconstructed gravitational potential using the full
shear field of Fig. 6, in a 1003 grid. This is a (y, χ ) plane at x = 0.◦5. Bottom
panel: difference between input and recovered gravitational potential fields.

in lensing experiments: Poisson noise due to only sampling the field
at a finite set of galaxy positions, and additional noise due to the
non-zero ellipticities of the galaxies. We use appropriate number
densities for plausible ground-based experiments (30 arcmin−2) and
space-based experiments (100 arcmin−2), and use equation (63) to
place an appropriate number of objects at each redshift slice. We
continue to use the gravitational potential of Fig. 4.

We incorporate the effect of the intrinsic ellipticities of the galax-
ies as described in Section 4 (i.e. adding a Gaussian-distributed
random shear value to the gravitational shear, with a standard devi-
ation of 0.2 per shear component for space-based applications and
0.3 for ground-based applications).

Given this noisy shear field, we carry out our reconstruction as
described in Section 4, with a Gaussian smoothing of the φ field in
the χ direction with a 1σ width of 0.1 in redshift (not applied for
calculating Wiener-filtered �).

We will now discuss the reconstructions obtained for ground-
based and space-based data. In the discussion below, we will often
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1318 D. Bacon and A. N. Taylor

describe measurement significance in terms of ν(x) = I (x)/σ (x),
with I (x) as the amplitude of the lensing potential or gravitational
potential at a particular point x, and σ (x) the noise level in the
vicinity of this point.

5.2.1 Lensing potential for space-based experiment

The resulting lensing potential reconstruction for our space-based
experiment is shown in the top panel of Fig. 9. (In this and later
figures, we plot the results for our 203 grid, but display a resampled
grid calculated by padding the Fourier transform of the grid with
high-k modes set to zero.) We find that we obtain a reasonable
reconstruction of the lensing potential, with ν � 6.9 per pixel in
the background (χ > 0.75) for the nearer cluster, with ν � 4.2 for
the χ = 0.4 cluster, within 0.◦1 radius of the cluster centres. We
could increase this signal by rebinning or smoothing, at the cost of
reducing spatial resolution. We could also find an overall signal-to-
noise ratio for each cluster by finding a means of averaging all of
the lensing signal arising behind a cluster; we will discuss this in
Section 7. Note the large noise peaks in the foreground (χ < 0.2)
of the reconstruction, due to the small number of objects available
in this volume.

The lower panel of Fig. 9 shows the difference between the input
and recovered lensing potential. Pleasingly, we observe no evidence
of residuals associated with misconstruction of the lensing potential.
The noise levels are as expected from equation (23), as discussed in
Section 6 below.

5.2.2 Gravitational potential for space-based experiment

On the other hand, we find that the full 3D reconstruction of the grav-
itational potential for typical cluster masses is difficult even from
space unless we include filtering (see Section 6.1). For example, a
measurement of the gravitational potential for a set of 25 clusters
with mass m = 8 × 1013 within 2 arcmin added together at χ =
0.25, having smoothed φ in the radial direction with a top hat with
�χ = 0.25, produces a gravitational potential amplitude for the cen-
tral pixel of the cluster which is only 3.1 times larger than the rms
noise. However, the noise amplitude for larger χ grows rapidly (cf.
Section 6.1), making 3D measurement of a resolved cluster potential
difficult without filtering.

In order to improve on this, we can use the Wiener filtering de-
scribed in Section 3. We create a vector P containing our measured
gravitational potential along each line in the χ direction, and mea-
sure the covariance of the � noise along this line of sight from 100
zero-φ reconstructions of �, recording this in a matrix N. We set
the signal covariance matrix S = (3 × 10−7)21 where 1 is the unit
matrix, in order to select for a signal expected for a small cluster
mass (cf. Fig. 8). We then apply equation (43) to our gravitational
potential vector for each line of sight.

Fig. 10 shows the gravitational potential measurements for our
notional space-based survey after Wiener filtering (this is again a
reconstruction for the single field shown in Fig. 8; after Wiener
filtering we no longer need to stack many fields to obtain a sig-
nal). We measure the χ = 0.25 cluster with ν = 4.2 at the peak
(trough) pixel of its gravitational potential well, with ν = 2.1 at the
gravitational potential trough of the χ = 0.4 cluster. We also find
a substantial noise peak in the foreground at χ = 0.1. While the
recovery of the cluster gravitational potentials therefore constitutes
a challenging measurement, we are indeed able to reconstruct useful
information in the gravitational potential field itself. (The detection

Figure 9. Top panel: reconstructed lensing potential �φ using finite number
of galaxies with realistic ellipticities; n = 100 arcmin−2, γ rms = 0.2 per shear
component, as expected for a notional space-based survey. Crosses show the
positions of the cluster centres. Bottom panel: difference between input and
recovered lensing potential fields.

significance of these clusters is much higher than the measurement
ν at a given point in the cluster; see Section 7 for an approach to
the detection significance.) Note the reduced absolute amplitude of
the gravitational potential in Fig. 8; this is due to the scaling in
equation (43).

5.2.3 Gravitational potential for ground-based experiment

From the ground, we find that we can again reconstruct the lensing
potential, with ν � 2.3 for 0.75 < χ < 1.0 given a cell size of 0.05 in
χ . As before, we could improve the signal-to-noise ratio by reducing
our spatial resolution. However, reconstruction of the gravitational
potential itself (with Wiener filtering) is more challenging than from
space: Fig. 11 demonstrates that we recover the χ = 0.25 cluster with
ν = 1.9 at its centre pixel, but have a less significant measurement of
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Mapping the 3D dark matter potential 1319

Figure 10. Reconstructed gravitational potential for our space-based ex-
periment, using galaxy properties as in Fig. 9, after Wiener filtering. Note
the detections of clusters at (y, χ ) = (0.5, 0.2) and (0.7, 0.4) with ν = 4.2
and 2.1 respectively (crosses show trough minima).

Figure 11. Reconstructed gravitational potential for a notional ground-
based survey, after Wiener filtering; n = 30 arcmin−2, γ rms = 0.3 per shear
component. The clusters are measured with ν = 1.9 and ν = 1.4.

the second cluster amplitude with ν = 1.4 at its centre. The second
cluster has the expected position in (x, y), but is offset to χ = 0.3;
this degree of offset, �χ = 0.1, is found to be typical for ground-
based attempts at measuring the 3D gravitational potential, due to
the high � noise level making Wiener filtering somewhat inaccurate
in the χ direction. As with our space-based experiment, we also find
a substantial noise peak in the foreground at χ = 0.1.

6 P RO S P E C T S F O R M A P P I N G

The results above are encouraging for the mapping of the 3D lensing
fields. This includes the gravitational potential; we can use Wiener
filtering to detect individual mass concentrations, or can stack the
noisy potential field from many clusters in order to obtain infor-

Figure 12. Noise variance for 1 pixel (0.◦05, 0.05 in χ ) as a function of χ

for the 3D convergence field κ . The thin solid line represents the measured
noise level for our fiducial space-based experiment, while the dashed line
represents measured noise from our ground-based experiment. The dotted
line shows the expected signal from a cluster at χ = 0.2. The thick solid
line shows the noise expected from theory for the ground-based survey, from
equation (18); we see that there is close agreement between simulations and
theory.

mation on the typical gravitational profile of mass concentrations.
Here we will examine the prospects for mapping with the various
3D fields we have discussed so far, paying close attention to the
noise contributions to each field.

6.1 Noise amplitudes

In order to demonstrate the feasibility of our reconstructions, we
examine the noise from convergence, lensing potential and gravi-
tational potential maps measured in our simulations as a function
of χ . Fig. 12 shows the rms noise amplitude for κ as a function of
redshift; Fig. 13 shows the corresponding uncertainty in φ, while
Fig. 14 shows the uncertainty in �. In each case, we show the
measured noise amplitude for space-based and ground-based ex-
periments, measured as a function of χ , along with the expected
potential amplitude from a m = 1014 M� cluster. Here we have
used the averaging scales described above, i.e. we have calculated
the noisy κ and φ fields on a grid with total width 1◦, with grid
spacing of 0.◦05 and 0.05c/H 0 in χ . It is simple to derive noise
amplitudes for other survey configurations from equations (22) and
(25).

We see from from the theoretical curves on Fig. 12 that the noise
amplitude measured for the convergence field is in good agreement
with that calculated in Section 2. Similarly, we see that the measured
noise amplitude for φ in Fig. 13 agrees well with the predicted
theoretical curve. Lastly, we see in Fig. 14 that the uncertainty in
gravitational potential is in agreement with our theoretical model.

These results show that our mean correction for the constant
and quadratic terms in equation (11) is an adequate approach.
However, we find that the more detailed correction based on mo-
ments, as in equation (15), reduces the error on φ by a fur-
ther (19 ± 10) per cent for both ground-based and space-based
experiments.

Note that, for the convergence and lensing potential, the noise
amplitude is such that ν � 6 measurement of these fields from a
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1320 D. Bacon and A. N. Taylor

Figure 13. Noise variance for 1 pixel (0.◦05, 0.05 in χ ) as a function of χ

for the lensing potential in a 1 deg2 square survey. The solid line represents
the measured noise level for our fiducial space-based experiment, while the
dashed line represents measured noise from our ground-based experiment.
The dash-dotted line shows the effect of redistributing the galaxies according
to equation (63) for our space-based experiment. The dotted line shows the
expected signal from a cluster at χ = 0.2. The thick solid line shows the
noise expected from theory for the ground-based survey, from equation (23);
we again find good agreement between simulations and theory.

typical χ = 0.2 cluster is possible in (0.◦05, 0.05 in redshift) bins in
a space-based experiment, if we examine the background potential
at χ > 0.5 in the centre of the cluster. For a ground-based experi-
ment, the signal-to-noise ratio in these bins is �3. Thus as we saw
above, it is possible to map the properties of clusters in terms of the
lensing potential from space or ground. Note the effect in Fig. 13
of redistributing the galaxy distribution according to equation (63);
the amplitudes of the noise are comparable, with a slight decrease
in noise at low redshift and a corresponding increase at high redshift
for the galaxy distribution of equation (63).

On the other hand, the gravitational potential without Wiener
filtering is only measured at ν = 0.38 in equivalent bins around
χ = 0.2 for space-based experiments, and has a signal-to-noise
ratio of only �0.12 for ground-based measurements. Because the
noise reduces as

√
N where N is the number of stacked fields, we

would have to stack ∼40 fields in order to resolve the gravitational
potential at the ν = 2.5 level, for a space-based experiment without
Wiener filtering. Increasing the size of bins is not an option in this
case, as we will lose spatial resolution for examining the profile of
the cluster.

However, Wiener filtering allows us to recover cluster masses
successfully, as shown in the bottom panel of Fig. 14. Here we
see that, for a cluster mass of 1014 M� at χ = 0.25, we obtain
ν = 2.1 measurements from the ground- and ν = 3.3 measurements
from space. Note the differing noise and signal levels expected after
Wiener filtering for ground and space-based experiments; this is due
to the differing weightings in equation (43) given different input
noise levels.

6.2 Dependence on transverse and radial pixel sizes

The effect of increasing the angular pixel scale in a survey is of
interest, as this might be thought to increase the signal-to-noise
ratio. However, Fig. 15 shows how an increase in pixel size for a

χ

σ(
Φ

)
σ(

Φ
)

χ

Figure 14. Noise variance for 1 pixel (0.◦05, 0.05 in χ ) as a function of
χ for the gravitational potential. The solid line represents measured noise
level for our fiducial space-based experiment, while the dashed line rep-
resents measured noise from our ground-based experiment. Top: standard
gravitational potential reconstruction. The dotted line shows the expected
signal from a cluster at χ = 0.2. The thick solid line shows the noise ex-
pected from theory for the space-based survey, from equation (25); we again
find good agreement between theory and simulation. Bottom: Wiener filtered
reconstruction. The spikes show the measured Wiener-filtered amplitude of
a 1014 M� cluster at χ = 0.2 and χ = 0.4 for ground-based (dotted) and
space-based (solid) noise levels.

fixed survey size reduces the lensing potential noise variance. We
note that the effect is small until a pixel size ∼ 0.25�survey is used;
at this point, the pixel size will usually be far too large to be of
use to us, as we will typically be interested in spatially resolving
objects with the lensing potential. The cause of the decrease in noise
as pixel size increases is partially the ln r force law involved in the
analysis in Section 3.1.2, and partially the increased bin size leading
to averaging out of the small-scale noise.

Fig. 16 shows the effect of increasing the radial bin size for the
gravitational potential reconstruction. We see a reduction of the
noise level in agreement with equation (25), i.e. σ (�) ∝ (�χ )−5/2.
Thus if we are unconcerned with radial resolution, we can increase
our signal-to-noise ratio for gravitational potential by increasing
�χ ; however, we will often be attempting to locate a mass concen-
tration in the radial direction, so this procedure should be used with
caution.
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Mapping the 3D dark matter potential 1321

Figure 15. Noise variance for the lensing potential at χ = 1 as a function
of angular pixel size, for our space-based experiment, with a 1 deg2 square
survey.

Figure 16. Noise variance for the gravitational potential as a function of
pixel size in the radial direction, for our space-based experiment (at χ =
0.4, 1 deg2 survey, angular pixel diameter 3 arcmin). The dotted line is the
expected dependence from equation (25).

6.3 Redshift errors

In the above simulations, we have demonstrated that the Pois-
son noise of sampling from a finite set of galaxies, together with
the noise due to galaxy ellipticities, represent serious sources
of uncertainty for our reconstruction, which must be overcome
by averaging the signal within sufficiently large pixels or filter-
ing the signal. However, there remains the further source of er-
ror due to redshift measurement uncertainty, which we examine
here with our simulations (see Sections 3.4 and 3.5 for analytical
discussion).

We can examine redshift errors with our simulations by allow-
ing an uncertainty in the redshift of each galaxy, in the following
fashion. For each galaxy, a χ value is drawn uniformly within the
χ slice in question; an uncertainty is introduced in this χ coordi-
nate, by drawing from a Gaussian random variable with 1σ width
�χ = 0.1 (pessimistically, for photometric redshifts; cf. Brown
et al. 2003 with �z = 0.05 in 0 < z < 0.8). If the new χ coordinate

Figure 17. Top panel: reconstructed lensing potential using the full
shear field of Fig. 6, while including radial comoving distance uncer-
tainty �χ = 0.1. This is the usual (y, χ ) plane at x = 0.5. Bot-
tom panel: difference between input and recovered lensing potential
fields.

(resulting from adding this random offset to the original χ position)
is moved to a new shell, the galaxy (with its shear calculated for
the slice which it intially belonged to) is moved to the neighbouring
slice.

Figs 17 and 18 show the result of this process when the shear
is fully known everywhere; note that even with this large red-
shift uncertainty, the change in the lensing potential reconstruc-
tion is small (�10 per cent at redshifts near the cluster redshift,
and less elsewhere). Note also that this smearing effect leads
to slightly higher lensing potentials in front of the cluster, and
slightly slower rise in the potential behind the cluster. Thus, for
lensing potential reconstructions, this effect will not dominate the
noise. However, Fig. 18 shows that the result of such an un-
certainty will be a smearing of the cluster gravitational poten-
tial with smearing width ��χ ; understandably, we cannot re-
construct the potential with a resolution greater than our redshift
resolution.
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1322 D. Bacon and A. N. Taylor

Figure 18. Reconstructed gravitational potential using the full shear field
of Fig. 6, including redshift uncertainty �χ = 0.1.

7 3 D I N F O R M AT I O N F RO M
T H E L E N S I N G P OT E N T I A L

It will be noted from our simulations that recovery of the gravita-
tional potential is more difficult than an adequate reconstruction of
the lensing potential. It is easy to see why this should be so; the
gravitational potential requires double differentiation of the already
noisy lensing potential field. Therefore we are interested in both the
lensing and gravitational potentials; while the lensing potential is
more easily accessible, and itself contains useful topological infor-
mation about the mass field, the gravitational potential is the more
fundamental quantity.

A particular example of what is achievable by studying the φ field
is the characterization of the 3D matter distribution on cluster scales.
Treating a cluster as a mass delta function in the χ direction (cf. Hu &
Keeton 2002), it is clear from equation (7) that the expected lensing
potential in a flat universe due to a cluster at radial position rs will
be

φ(χ ) =
{

0 r � rs

2ρdV
r − rs

rrs
r > rs

(65)

where ρ dV is the mass content of the source pixel.
We can use a superposition of such cluster contributions to fit a

given φ field, and thus discover significant clusters behind clusters,
for example (cf. Hu & Keeton 2002). We can also directly measure
constraints on mass and position of clusters without using the red-
shift of the cluster members themselves (e.g. Wittman et al. 2001,
2002).

7.1 Single cluster χ2 fitting

In order to demonstrate these applications, we first simulate a clus-
ter at χ = 0.25 with mass 8 × 1013 M� within a 2 arcmin radius
using the simulation recipe described in Section 3, including real-
istic galaxy distribution and ellipticity (using our space-based pa-
rameters, n = 100, σ γ = 0.2 per component). After measuring the
resulting φ field as in Section 4, we applied a χ 2 fitting procedure
for the mass m and position χ of the cluster. This was achieved by
setting up a 2D NFW profile at radial position χ , normalized to mass
m; the expected 3D φ-field for this profile was calculated according

χ

Figure 19. 1 and 2σ χ2 fit constraints on χ and m for 1 cluster along a
line of sight, m = 8 × 1013 M�, with noise appropriate for our space-based
experiment. Here we are fitting the simulated 3D φ field with the φ field
from a 2D NFW profile with parameters (χ , m).

χ

Figure 20. Best-fitting model for φ field along line of sight through centre of
a cluster with m = 8 × 1014 M�, with noise appropriate for our space-based
experiment.

to equation (65). χ 2 for the data with respect to this profile was
calculated for an array of m and χ values, with step size 2.5 × 1011

M� in m and 0.005 in χ . Note that the x , y position and radius of
our NFW test profile were fixed to the actual position and radius
of the cluster in this experiment; in a practical scenario one would
apply a χ2 fit for these parameters as well, or infer them from the
galaxy positions of cluster members.

Fig. 19 shows the resulting constraints on mass and radial po-
sition; we find a highly significant detection of the cluster at the
�χ2 = 186 level, thus we can certainly use this 3D approach to
detect at least one cluster along the line of sight. We obtain accurate
measurements of the mass [m = (8.07 ± 0.83) × 1013 M� within
2-arcmin radius] and position (χ = 0.24 ± 0.016), which makes this
approach promising for examining clusters in 3D. Fig. 20 demon-
strates a best-fitting φ field for this form of simulation, with mass
multiplied by 10 for illustrative purposes.

7.2 χ2 fitting for two clusters along the line of sight

We can examine the possibility of detecting clusters behind clusters
by simulating an 8 × 1013 M� cluster (2-arcmin radius) at χ = 0.6
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Mapping the 3D dark matter potential 1323

χ

χ

Figure 21. 1 and 2σ χ2 fit constraints on m1 and m2 for two clusters along
the line of sight, with noise appropriate for our space-based experiment,
having marginalized over the positions of the two clusters.

Figure 22. 1 and 2σ χ2 fit constraints on χ1 and χ2 for two clusters along
the line of sight, with noise appropriate for our space-based experiment,
having marginalized over the masses of the two clusters.

behind another 8 × 1013 M� cluster at χ = 0.25, and applying a
χ 2 fit for two masses and positions using the method above.

Figs 21 and 22 show the constraints we obtain on mass and po-
sition of the two clusters from the simulation, having marginalized
over the four-dimensional χ 2 distribution to find a subset of parame-
ters. We see that, for this example, two configurations of clusters are
possible as follows. (i) Two clusters very near each other in redshift;
this is essentially the discovery of a one-cluster solution. (ii) One
cluster at χ = 0.25 with another of similar mass at χ = 0.6; this is
the solution corresponding to our input scenario. In the latter case,
we obtain greater accuracy in measuring the mass for the nearer
cluster. This can be understood from Fig. 23 (displaying masses
10 times larger for illustrative purposes): much of the background φ

amplitude is due to the first cluster, so the mass and position of this
cluster is well-constrained; on the other hand, the φ contribution of
the second cluster has less distance in which to rise, so the mass
and position estimates of this cluster are more affected by the noise
amplitude.

If this double solution were present when the fitting procedure
was applied to real data, we could easily use our sample redshifts
to confirm one scenario by looking for increased number-counts
at the claimed cluster redshifts. By confirming the redshift of the
cluster in this fashion, we can obtain better estimates of the mass,

Figure 23. 1, 2 and 3σ χ2 fit constraints on m1 and m2 for two clusters along
the line of sight, with noise appropriate for our space-based experiment, after
including redshift measurements of cluster positions.

Figure 24. Best-fitting model for φ field along line of sight through centre
of two clusters, m = 8 × 1014 M�, at χ = 0.25 and 0.5. The dotted line
represents the φ field arising from the χ = 0.25 cluster alone.

together with a more conclusive statement as to whether there are
mass concentrations in the background. This is demonstrated in
Fig. 24. Here we have again simulated a cluster behind a cluster; we
have now allowed the clusters to have known redshifts in our χ2 fit.
In this case we find that a two-cluster fit is substantially better than
a one-cluster fit (i.e. m2 = 0) at the 2σ level. We find best values for
the masses of the clusters to be m1 = (8.46+0.31

−0.35) × 1013 M� and
m2 = (6.63+3.92

−3.79) × 1013 M� (cf. input m1,2 = 8 × 1013 M�) within
2-arcmin radii. If we only constrain χ 1, we find a best-fitting value
for the background position of χ 2 = 0.6 ± 0.05 (cf. input χ = 0.6);
thus if we have found a low-redshift cluster, we can check if there
are significant clusters behind it.

We could increase the number of clusters in our χ2 fit, in order to
seek for >2 clusters along the line of sight. However, in this case we
will begin to fit the noise rather than real structures; this will be seen
as too good a fit in our χ2 (i.e. �χ 2 �

√
2(x/�x)(y/�y)(χ/�χ )).

This restricts our ability to construct accurate 3D maps using this
method; however, we can at least map up to the first few signif-
icant mass concentrations in the χ direction, and cosmological
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1324 D. Bacon and A. N. Taylor

information could be gained by determining the statistical prop-
erties of the distance to the first or first few mass concentrations.

One can envisage, therefore, a procedure consisting of (i) initial
detection of mass concentrations using the 3D distortion field alone,
followed by (ii) improved mass and background structure estimates
by assigning accurate redshifts from the visible matter associated
with the detected foreground mass concentrations.

8 C O N C L U S I O N S

In this paper, we have developed and tested a practical method for
3D reconstruction of the gravitational potential via weak lensing
measurements, together with the more easily obtained lensing po-
tential. This methodology is based on the reconstruction equations
of Kaiser & Squires (1993) and Taylor (2002), by which these lo-
cal 3D potentials can be calculated given knowledge of the lensing
shear field in 3D. This can be obtained by using shear estimators for
galaxies with known redshifts.

We have presented analytical forms for the shot-noise uncertainty
in the convergence, lensing potential, gravitational potential and
density field, noting that these fields become progressively more
noisy for realistic survey sizes. We have also calculated the effects
of only having finite sky-coverage for a survey and estimated the
variance measured on such a survey, and the additional uncertainty
in the reconstruction due to structure beyond the survey boundary. In
particular we have found that the contribution to the reconstruction
uncertainty in the differential lensing potential, �φ, is dominated
by large-scale structures.

We have also shown that further sources of error, including photo-
metric redshift errors, redshift-space distortions, and multiple scat-
terings of light rays, will not be dominant in our reconstruction
process.

In order to simulate the measurement of a 3D gravitational field,
we have calculated the expected lensing potential due to a given
mass field upon a 3D grid. From this we have calculated the shear
expected upon a galaxy image for a galaxy positioned anywhere in
the 3D grid. We have produced a catalogue of galaxies positioned in
accordance with a realistic redshift distribution and given each an
appropriate shear plus a random intrinsic ellipticity; this final galaxy
shear catalogue was the information given to our reconstruction
software.

We have made reconstructions of the lensing and gravitational
fields, by smoothing the noisy shear data, calculating the lensing
potential according to Kaiser & Squires (1993) and using Taylor’s
equation (8) to find the gravitational potential.

We have found that the method works well in reconstructing the
full lensing and gravitational potentials in the absence of noise.
However, the addition of Poisson sampling of the field at a finite
set of galaxy positions, together with the noise due to the intrinsic
ellipticity of objects, produces significant sources of error. We find
that we obtain lensing potential maps with ν � 6 in [3 arcmin,
3 arcmin, 0.05] bins in angle and redshift for a cluster of mass
8 × 1013 M�. Unfortunately, corresponding gravitational potential
maps have only ν � 0.5 in pixels of this size. However, applying
Wiener filtering to this gravitational potential, we can obtain ν �
3 measurements of gravitational potential of clusters of mass 8 ×
1013 M�.

This provides excellent prospects for obtaining cosmologically
significant information directly from the measured gravitational po-
tential field. For surveys with a redshift limit z = 1, mass concen-
trations �1014 M� can be directly mapped between 0.1 � z � 0.5,

while statistical mapping can be used to examine the gravitational
potential fluctuations on smaller mass scales.

We have examined the effect of redshift uncertainties upon our
simulations, and find that these contribute a much smaller error than
the dominant intrinsic ellipticity noise term.

Finally we have emphasized that, even on scales where a gravita-
tional potential measurement is uncertain, the 3D measurement of
the φ field is valuable, and can give us useful information about the
statistics and topology of the mass field. In particular, we can obtain
accurate measurements of the mass and position of clusters along
the line of sight, and significantly detect the presence of clusters
behind clusters.

The methodology described here for engaging in 3D gravitational
mapping has numerous applications. We can obtain direct measure-
ments of mass distributions in 3D, which can act as an important
cosmological probe via the mass function or cluster number counts.
We can directly measure cross-correlation functions between mass
and light in three dimensions. Also, for possible ‘dark’ mass concen-
trations (e.g. Erben et al. 2000), this 3D mapping procedure allows
us to measure both mass and radial position for such objects, which
is quite impossible via conventional redshift methods.
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A P P E N D I X A : C A L C U L AT I N G
U N C E RTA I N T I E S O N T H E 3 D F I E L D S

Here we describe the details of our analysis for calculating uncer-
tainties on the lensing and gravitational potentials, and the density
contrast.

A1 The lensing potential field

In Section 3.1.2 we state the covariance of the 3D lensing potential,

〈φ(r )φ(r ′)〉SN = 4∂−2∂′−2〈κ(r )κ(r ′)〉SN. (A1)

We can calculate this covariance over the observed area, assuming
a flat sky, obtaining

〈φ(r )φ(r ′)〉SN = γ 2
rms

π2n(r )r 2

∫
A

d2θ ′′

× ln |θ − θ′′| ln |θ′ − θ′′|δD(r − r ′) (A2)

where the integral is taken over the survey area, A. The discrete case
is an obvious change to a summation over bins. To find a estimate
of the true potential field, with zero mean, gradient and paraboloid
contributions, �φ, we must first subtract an estimate of the radial
function ω̂(r ), equation (16). In this appendix we will be concerned
with only calculating the noise properties of the field at the center
of a survey, θ = 0, in the limit ν � ψ . This latter approximation is
found to be justified by numerical simulations (Section 6), and ν =
0 exactly if we have magnification information. In this case we only
correct for the ω = ψ term and our estimate from a finite survey of
area A is

ω̂(r ) = 1

A

∫
A

d2θφ(θ). (A3)

Hence we find the covariance 〈�φ(r )�φ(r ′)〉SN is equivalent to
equation (A2) after transforming the kernel

ln |θ − θ′| → ln |θ − θ′| − 1

A

∫
A

d2θ ln |θ − θ′|. (A4)

In the simple case of a circular survey with radius R we find

1

A

∫
A

d2θ ′ ln |θ − θ′| = 1

2
[(θ/R)2 − 1 + ln R2]. (A5)

Note here we have assumed infinite resolution for the survey, or
infinitely small pixels.

The uncertainty in the 3D lensing potential difference is then
given by

〈�φ2(r )〉SN = γ 2
rms

π2n(r )

�2(θ)

r 2
δD(r − r ′), (A6)

where

�2(θ) =
∫

A

d2θ ′
[

ln |θ − θ′| − 1

A

∫
A

d2θ ln |θ − θ′|
]2

, (A7)

which in general has to be evaluated numerically. In the special case
of θ = 0 and a circular aperture with angular radius �, this can be
evaluated analytically, giving

〈�φ2(θ = 0)〉SN = 5

24π

γ 2
rms

n(r )

�2

r 2
δD(r − r ′), (A8)

where we have taken into account the conical geometry of the survey.
This is the result discussed in Section 3.1.2.

A2 The Newtonian potential field

In order to calculate the uncertainty on the 3D Newtonian poten-
tial, we must smooth the field; this is because we require a dou-
ble differentiation of the lensing potential, but only sample this
field at discrete points where there are galaxies. If we smooth in
the radial direction with an arbitrary smoothing kernel, w(r ), we
find the resulting covariance matrix of the Newtonian potential
for a constant galaxy number density, n, in the distant observer
approximation, is

〈�(r )�(r ′)〉SN = γ 2
rms

4π2n

�2(θ,θ′)
L3(r, r ′)

, (A9)

where

1

L3(r, r ′)
= r 2r ′2

R2

∫
dyw′′(r, y)w′′(r ′, y) (A10)

has units of inverse volume. Dashes on the window function de-
note derivatives with respect to distance. If the number density of
sources is not a constant, these formulae must be altered by the
substitution

1

nL3(r, r ′)
→ r 2r ′2

R2

∫
dyw′′(r, y)w′′(r ′, y)/n(y). (A11)

Again we can evaluate these expressions for the variance in a bin
when r ′ = r and assuming a Gaussian weighting function, w(r ) =
[
√

2πr||]−1exp(−r 2/2r 2
||), with smoothing radius r ||. In this case to

leading order, when r � r ||, and taking into account the conical
geometry of the survey, the uncertainty on the Newtonian potential
conveniently reduces to

〈�2(r )〉SN = 5

64π
√

2π

γ 2
rms

r 3
||n

(
r

r||

)4 (
r||
R

)2

�2. (A12)

This is the result discussed in Section 3.1.3.

A3 The density field

The uncertainty on the density field can be calculated directly
from

〈δ(r )δ(r ′)〉 =
(

2λ2
Ha

3�m

)2

∇2∇′2〈�(r )�(r ′)〉. (A13)

where ∇2 = (∂2
r + R−2∂2) in the far-field approximation, and

〈�(r )�(r ′)〉 is given by equation (A10). Expanding this
gives

〈δ(r )δ(r ′)〉 =
(

2λ2
Ha

3�m

)2
γ 2

rms

4π2n

(
∂2

r ∂
2
r ′ + R−4∂2∂′2) �2(θ,θ′)

L3(r, r ′)
,

(A14)

as the cross terms in r and θ are zero. Differentiating and letting
r ′ → r and θ′ → θ leaves us with a series of integrals to solve.
Integrating over a circular aperture of radius � with a Gaussian
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weighting function with width r these integrals are (A)∫
A

d2θ1 [� ln |θ − θ1|]2 =
∫

A

d2θ1
1

(θ − θ1)4
(A15)

= 5π

24
�2, (A16)∫

dr1

[
w′′(r − r1)

]2 = 3

2
√

2πr 5
||

(A17)∫
dr1

[
wiv(r − r1)

]2 = 105

2
√

2πr 9
||

(A18)

Substituting these in we arrive at the final expression

〈δ2(r )〉SN =
(

2

9π3

) 1
2
(

a

�m

)2
γ 2

rms

nr 3
‖

(
λH

R

)4 (
r 2

r‖�R

)2

×
[

1 + 175

24

(
�R

r‖

)4
]

. (A19)

as discussed in Section 3.1.4.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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