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Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progres-

sive, and neurodegenerative disease, it causes cognitive and memory deficits. However,

the biological mechanisms underlying the disease are not thoroughly understood. In recent

years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural mag-

netic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph

theory based network analysis have provided a new perspective on structural and func-

tional connectivity patterns of the human brain (i.e., the human connectome) in health

and disease. Using these powerful approaches, several recent studies of patients with

AD exhibited abnormal topological organization in both global and regional properties of

neuronal networks, indicating that AD not only affects specific brain regions, but also

alters the structural and functional associations between distinct brain regions. Specifi-

cally, disruptive organization in the whole-brain networks in AD is involved in the loss of

small-world characters and the re-organization of hub distributions. These aberrant neu-

ronal connectivity patterns were associated with cognitive deficits in patients with AD,

even with genetic factors in healthy aging. These studies provide empirical evidence to

support the existence of an aberrant connectome of AD. In this review we will summarize

recent advances discovered in large-scale brain network studies of AD, mainly focusing on

graph theoretical analysis of brain connectivity abnormalities. These studies provide novel

insights into the pathophysiological mechanisms of AD and could be helpful in developing

imaging biomarkers for disease diagnosis and monitoring.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of demen-

tia, comprising 50–70% of all dementia cases (Kukull and Bowen,

2002). Currently, 35.6 million people suffer from AD globally and

the number is predicted to rise to 115.4 million by 20501. As an

incurable, progressive, and neurodegenerative disease, it causes

memory loss and other cognitive deficits.

In recent years, modern magnetic resonance imaging [MRI;

e.g., structural MRI (sMRI), functional MRI (fMRI), and diffu-

sion MRI] and neurophysiological (e.g., electroencephalograph

and magnetoencephalograph, usually referred as EEG/MEG) tech-

niques have provided an efficient, feasible, and non-invasive way

to investigate the biological mechanisms of AD in vivo. A large

quantity of studies have found focal structural and functional

abnormalities of the brains of patients with AD, including dis-

turbed functional activation and reduced gray matter volume or

thickness in regions of the brain including the posterior cingulate,

the medial temporal lobe, the hippocampus, and the parahip-

pocampal gyrus (Rombouts et al., 2000; Frisoni et al., 2002;

Busatto et al., 2003; Sperling et al., 2003). Recent studies have

suggested that AD is not only associated with regional distur-

bance of brain structure and function but also with abnormal-

ities in the connections between different regions. De Lacoste

and White (1993) suggested that neurofibrillary tangles and

1http://www.alz.co.uk/

neuritic plaques (the two principle neuropathological biomarkers

of AD) are usually distributed in the regions where corticocor-

tical connections begin or end. Disruptive alterations in white

matter tracts have been observed in AD and involve the cin-

gulum, the uncinate fasciculus, the splenium, and the genu of

the corpus callosum (Rose et al., 2000; Bozzali et al., 2002; Nag-

gara et al., 2006; Xie et al., 2006; Fellgiebel et al., 2008; Ukmar

et al., 2008; Kiuchi et al., 2009). Abnormal functional connectiv-

ities have also been found, including abnormal interhemispheric

and intrahemispheric (frontoparietal, frontotemporal, and tem-

poroparietal) connections (Wada et al., 1998a,b; Berendse et al.,

2000; Grady et al., 2001; Greicius et al., 2004; Pijnenburg et al.,

2004; Koenig et al., 2005; Celone et al., 2006; Stam et al., 2006;

Wang et al., 2007). All of these studies proposed that AD is a

syndrome of disconnection in neuronal networks (for reviews,

see Delbeuck et al., 2003; He et al., 2009a; Filippi and Agosta,

2011).

Despite the number of studies of AD-related alterations in

structural and functional connections between brain regions, there

is increasing evidence that AD is also characterized by large-

scale brain system disruptions. Sporns et al. (2005) proposed the

notion of the “connectome” to describe the detailed structural

and functional connectivity pattern of the human brain. Since

then, many studies have utilized multi-modal neuroimaging and

neurophysiological techniques as well as advanced graph theo-

retical approaches to investigate the human brain connectome in

health and disease. These studies have discovered many important
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topological characteristics of the brain system such as efficient

small-worldness and distributed network hubs in the medial

frontal and parietal regions (for reviews, see Bullmore and Sporns,

2009; He and Evans, 2010; Stam, 2010; Sporns, 2011). Such

topology-based approaches have also been used to study the

neuronal systems of patients with AD and have revealed a dis-

ruption of the typical organizational pattern of brain networks,

including shifts in small-world topology and redistribution of

hub regions (Stam et al., 2007a, 2009; He et al., 2008; Supekar

et al., 2008; De Haan et al., 2009; Lo et al., 2010; Sanz-Arigita

et al., 2010; Yao et al., 2010). Moreover, these methods have also

been used to study topological organization of brain networks in

the apolipoprotein E epsilon 4 allele (APOE-4) carriers (APOE-

4 is a major genetic determinant for AD; Brown et al., 2011).

These findings have provided new insights into the understand-

ing of the biological mechanism of AD and could lead to the use

of a network based imaging biomarker for disease diagnosis and

monitoring.

In this review, we will summarize recent advances on graph

theory based network analysis of the brain connectome in AD.

First, we will briefly introduce several basic concepts of graph-

based network analysis and human connectomics. Then we will

review recent studies of graph theoretical analysis of AD brain net-

works derived from different imaging modalities including sMRI,

diffusion MRI, EEG/MEG, and fMRI. Next we will have a short

discussion regarding the effects of genetics on brain connectome

in AD. Finally, we will propose further considerations for future

studies of AD connectomics.

GRAPH THEORY AND HUMAN CONNECTOMICS

GRAPH THEORY

Generally speaking, a graph G (or a network) consists of N nodes

linked by K edges. Depending on whether the edges have a direc-

tion or not, the graphs can be classified into directed or undirected.

Furthermore, the graph is classified as weighted or unweighted

based on whether the edges are weighted. Graphs (networks) can

be described by an adjacent matrix A(n, n) in which n is the num-

ber of nodes and the value of Aij refers to the edge linking node i

and node j.

There are many graph metrics that can be used to describe the

topological properties of a network, including cost/sparsity, clus-

tering coefficient (Cp), characteristic path length (Lp), normalized

clustering coefficient (γ), normalized characteristic path length

(λ), small-worldness (σ), global efficiency (Eg), local efficiency

(E loc), degree (k), nodal efficiency (Enodal), and betweenness cen-

trality (Bc; Table 1). In this review we will only focus on undirected

and unweighted networks. For a detailed description of network

metrics in directed or weighted networks, please see Boccaletti

et al. (2006) and Rubinov and Sporns (2010).

The cost/sparsity of a network is the ratio of K to the possible

maximum number of edges in the network K max, which equals

N (N − 1)/2. The Cp of node i is the cost/sparsity of the subgraph

Gi consisting of the nodes directly linked with i (the neighbors of

node i). The Cp of a network is the mean Cp across all the nodes.

The distance between node i and j (noted as dij), also known as

the shortest path length, refers to the minimum number of edges

that must be passed from i to j, and Lp is the arithmetic mean or

Table 1 | Network indices.

Index Definition Interpretation Meaning

Cost/sparsity Cost(G) = K /K max G: the network, or the graph to be studied The cost of constructing the network

K : the number of edges in the network

K max: the maximum possible number of edges in the

network

Degree (k ) The number of edges linked to a certain node The accessibility of a certain node

Clustering

coefficient (Cp)

C i
p = Cost(Gi )

Cp =
1

N

N∑

i=1

C i
p

Gi: the subgraph comprising of neighbors of node i and

the connections between them

A high Cp of indicates that the nodes tend

to form dense regional cliques, imply-

ing that the efficiency in local information

transfer and processing are high

C i
p: the clustering coefficient of node i, i.e., the cost of Gi

N : the number of nodes in graph G

Characteristic

path length (Lp)

Lp =
N(N − 1)

∑

1≤i �=j≤N

1

dij

dij: the minimal number of edges that must be passed

from node i to node j

A low Lp indicates high transfer speed

through the overall network, implying that

the network has a high global efficiencyLp: the arithmetic or harmonic mean of dij of all the node

pairs. Here the equation presents the harmonic mean

Global efficiency

(Eg)

Eg =
1

Lp
Eg: equals 1/Lp if Lp is the harmonic mean defined as

above

The overall information transfer efficiency

across the whole network

Local efficiency

(E loc)

Eloc =
1

N

N∑

i=1

Eg(Gi ) E loc: the mean of the global efficiencies of Gi across all

the nodes in the network

A higher E loc value reflects higher effi-

ciency of regional information processing

Betweenness

centrality [Bc(i )]

Bc(i) =
∑

j �=m �=i∈G

ejim

ejm

ejim: the number of shortest paths between node j and m

which pass through node i

A node with high betweenness plays a

critical role in the information processing

of the network because its abnormality

would widely affect the shortest paths

and thus influence the whole network

efficiency

ejm: the number of shortest paths between node j and m

Bc(i ): equals the sum of ejim/ejm across all the node pairs

except for those including i
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the harmonic mean of the shortest path lengths between all pairs

of nodes in G. The Cp and Lp of a network reveals the local and

global efficiency of information transfer and processing, respec-

tively. According to Cp and Lp, networks can be assigned to three

different categories: regular networks with high Cp and Lp, ran-

dom networks with low Cp and Lp, and small-world networks

with high Cp (≫ C rand
p , the mean Cp of a number of matched

random networks) and low Lp (∼ Lrand
p , the mean Lp of a number

of matched random networks; Watts and Strogatz, 1998). Small-

world is a common organizational structure of networks in lots

of fields such as airline networks, social networks, physiological

networks, and neuronal networks and has been proved to support

highly efficient segregated and integrated information processing

with low wiring costs (Watts and Strogatz, 1998). Three secondary

parameters, γ (Cp/C rand
p ), λ (Lp/Lrand

p ), and σ (γ/λ) can reveal the

network’s small-worldness (Watts and Strogatz, 1998; Humphries

et al., 2006). The efficiency of information processing in a graph

can be measured with Eg and E loc (Latora and Marchiori, 2001).

Eg equals the inverse of Lp if Lp is the harmonic mean of distances

over all pairs of nodes and E loc is the average of Eg(Gi) in which i

ranges from 1 to N.

While the metrics mentioned above contain information about

the organizational properties of the comprehensive network, sev-

eral nodal metrics such as k, Enodal, and Bc can be further used

to indicate the different roles of the nodes. The degree, k, refers

to the number of edges linking to a particular node and reveals

the accessibility of the node. Enodal of node i is the inverse of the

harmonic mean distance between i and all other nodes (Achard

and Bullmore, 2007). The definition of Bc is much more complex.

To get the Bc of a certain node i [i.e., Bc(i) in Table 1], we should

first select a pair of nodes, noted as m and n, calculate the num-

ber of shortest paths between them passing through i, divide that

number by the total number of shortest paths between m and n,

and then sum the ratios across all pairs of nodes in the network

(Freeman, 1977). Bc(i) measures the extent to which the node i is a

necessity of the shortest paths between any pair of nodes excluding

i in the network. Nodes with high k, Bc, or with short average path

length to other nodes (and thus with high Enodal) are considered

of high importance to the information processing efficiency of the

network and are called hubs. Because the hubs tend to have lots of

connections to other nodes or on the way of lots of shortest paths,

removal of hubs can cause significant changes in the organization

of the network.

HUMAN CONNECTOMICS

Human connectomics is an emerging scientific concept that is

used to represent the comprehensive descriptions of structural

and functional connectivity patterns of the human brain (Sporns

et al., 2005). The human connectome can be constructed on dif-

ferent scales: the microscale, the mesoscale, and the macroscale.

The main difference between the three scales is the definition of

the network node. A single neuron represents the node when using

the microscale. For the mesoscale the nodes are a group of neurons

and for the macroscale the nodes are anatomically separate brain

regions (Sporns et al., 2005). The edges are then determined by

analyzing multi-modal imaging data, for example by measuring

the properties of white matter tracts derived from diffusion MRI

images, the correlations of time courses from EEG/MEG/fMRI

data and the association of brain morphometry obtained from

sMRI. Currently, it is hard to obtain microscale and mesoscale

network data on the human brain in vivo. To date, existing studies

mainly focused on undirected and unweighted macroscale matri-

ces. All the networks mentioned in this review are undirected

and unweighted brain networks if not noted specifically. Once the

brain networks are constructed using neuroimaging data, a thresh-

old is usually used to transform the initial connectivity matrix into

a binary adjacent matrix. Either the correlation coefficient or the

cost/sparsity can be used to set the threshold. The flowchart of

brain network construction is shown in Figure 1.

On the basis of the connectome analysis, many studies have

demonstrated that healthy human brain networks derived from

different modalities are small-world networks with high Cp and

short Lp (for reviews, see Reijneveld et al., 2007; Stam and Rei-

jneveld, 2007; Bullmore and Sporns, 2009; He and Evans, 2010;

Sporns, 2011). Considering the traits of a small-world network, it

can be inferred that the human brain has evolved into the optimal

architecture that maximizes the local and global information pro-

cessing efficiency in the human brain while lowering the wiring

cost. Existing studies also have demonstrated coincident areas as

hubs in human brain networks such as the precuneus, the posterior

cingulate cortex, the dorsal superior frontal gyrus, the precentral

gyrus, and the middle and superior occipital gyri (Achard et al.,

2006; He et al., 2007; Hagmann et al., 2008; Buckner et al., 2009;

Gong et al., 2009; Tomasi and Volkow, 2010). In addition, signif-

icant genetic effects on the brain connectome of healthy people

have been demonstrated by two recent studies on twins. Using

FIGURE 1 | General process of whole-brain network construction.

1, Extract time course from EEG/MEG records or fMRI images. 2, Calculate

morphological metrics such as cortical thickness (the picture showed in

Figure 1) and gray matter volume. 3, Define white matter fiber bundles

using tractography. 4, Extract regional information from the original voxel- or

vertex-based MRI data according to templates. 5, For EEG/MEG, fMRI, and

sMRI, the connectivity matrix usually refers to the correlation matrix; for

diffusion MRI, it can be a matrix consisting of numbers of fibers regions or

the connectivity strength. 6, Generate the whole-brain network using

further modification of the connectivity matrix, for example by using

thresholds.
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resting-state fMRI, Fornito et al. (2011) illustrated that in func-

tional brain network, 60% of the variation of the cost–efficiency,

which is an index measuring the difference between the net-

work cost and efficiency, was attributed to additive genetic effects.

Using sMRI, Schmitt et al. (2008) demonstrated that genetically

mediated neuroanatomic network derived from cortical thickness

correlations follows a small-world architecture, suggesting that

genetic factors are involved in the correlative patterning of the

human cortex in this manner.

BRAIN CONNECTOMICS IN AD

STRUCTURAL CONNECTOMICS IN AD

Using sMRI and diffusion tensor imaging (DTI), several studies

have demonstrated abnormal topological properties in the struc-

tural brain networks of patients with AD. In this section, we will

review the existing studies of AD structural connectomics.

Gray matter networks

Gray matter morphometric information (gray matter density,

gray matter volume, and cortical thickness) revealed by sMRI

provides a promising way to explore human brain anatomy. Coor-

dinate variations of brain morphometry measurements between

functionally- or anatomically-connected areas have been found in

recent sMRI studies, in the visual areas (Andrews et al., 1997) and

in the frontotemporal (Bullmore et al., 1998; Lerch et al., 2006),

frontoparietal (Wright et al., 1999), and symmetrical interhemi-

spheric regions (Mechelli et al., 2005; He et al., 2007; Zielinski

et al., 2010). Human brain structural networks can be established

from sMRI images based on gray matter volume or cortical thick-

ness correlations between different areas. He et al. (2007) used

graph theoretical network analysis (GRETNA) to examine the

macroscale cortical thickness correlation network of 124 normal

adults and described it as small-world. Networks based on gray

matter volume correlations also revealed a similar topology (Bas-

sett et al., 2008). Gray matter-based network analysis technique

has gained more and more attention in the AD research field.

He et al. (2008) was the first group to use sMRI and graph the-

ory tools to investigate structural brain networks in AD patients.

Their study included 97 healthy older adults and 92 AD patients.

The cortical thickness coordination networks at large-scale were

constructed for both groups. The networks consisted of 54 nodes

each, referring to 54 regions from the automated non-linear image

matching and anatomical labeling (ANIMAL) template. GRETNA,

as used in their previous study (He et al., 2007), was then applied

to the two structural networks. They found that the AD group had

decreased interregional correlations of cortical thickness between

the bilateral postcentral gyri and between the bilateral superior

parietal lobes. Increased correlations were also discovered within

regions such as the medial prefrontal cortex, the cingulate regions,

the supramarginal gyrus, the superior temporal gyrus, and the

inferior temporal gyrus. These regions were mostly located in

the so-called default mode network (DMN), which is a neuronal

network closely related to episodic memory,comprising of the pos-

terior cingulate cortex/precuneus, the lateral temporal and parietal

cortex, the hippocampus, and the medial frontal cortex regions

(Raichle et al., 2001). While the networks derived from both groups

demonstrated small-world characteristics, significant differences

in network parameters were observed over binary networks using

a wide range of sparsity thresholds (Figures 2A,B). The brain net-

works in AD showed increased Cp and Lp compared with those of

healthy adults, indicating a less optimal topological structure. They

also found decreased betweenness centrality in the right superior

temporal gyrus and the bilateral angular gyri. Increases were also

found in the left lingual gyrus, the left lateral occipitotemporal

gyrus, and the right cingulate gyrus in the network of patients

with AD (Figure 2C). All of these regions were identified as hubs

in either the health network or in the AD network by this study.

In addition, they discovered that the AD network was more vul-

nerable to targeted attack, that is, the absence of hub regions had

a greater influence on the AD network.

Another recent study explored changes in the topological prop-

erties of the structural brain network in patients with AD and mild

cognitive impairment (MCI; Yao et al., 2010). MCI is considered

an intermediate stage between normal aging and AD, and peo-

ple with MCI are at high risk developing AD. The dataset for this

study was acquired from the Alzheimer’s Disease Neuroimaging

Initiative2,3 and included 98 normal controls, 113 subjects with

MCI, and 91 AD patients. In this work, Yao and colleagues con-

structed a 90 by 90 gray matter volume correlation network for

each of the three groups using an automated anatomical labeling

(AAL) template with multiple sparsity thresholds ranging from

15 to 30%. Permutation testing revealed a significant increase in

Cp over a wide range of thresholds and a larger Lp on higher

thresholds in the AD networks compared with the healthy net-

works, implying a weakening of small-worldness. This result was

consistent with previous study based on cortical thickness cor-

relation networks (He et al., 2008). The Cp and Lp values of

MCI network were intermediate between AD group and nor-

mal control group but no significant changes were found. They

further identified the middle temporal gyrus, temporal pole, lin-

gual gyrus, orbital frontal gyrus, and superior parietal gyrus as

hub regions in the network of the normal control group, and

the orbital frontal gyrus, inferior frontal gyrus, cingulate, and

medial orbital frontal gyrus in the AD group. The hubs of MCI

network largely overlapped with AD network. The alteration

in hub regions revealed the disturbed large-scale brain connec-

tome integration in AD. Regions including the parahippocam-

pal gyrus, temporal pole, fusiform, cingulate, superior parietal

region, and orbital frontal gyrus showed significant changes in

the interregional correlations between the normal control and AD

groups.

In summary, these sMRI-based studies have consistently

demonstrated that patients with AD had aberrant morphologi-

cal organization in gray matter structural networks. Specifically,

the patients were found to have higher Cp and Lp in the brain

structural networks, suggesting a tendency from the optimal small-

world organization toward a regular-like connectivity pattern

in the AD brain connectome. However, it needs to note that

the biological mechanisms underlying topological alterations of

morphological networks in AD remain largely unclear, although

2http://adni.loni.ucla.edu/
3http://adni-info.org
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FIGURE 2 | Comparison of structural connectome between patients

with AD and healthy controls (He et al., 2008). Significant differences

(p < 0.05) in Cp and Lp between patients with AD and healthy controls

with different sparsity thresholds are shown in (A,B) with arrows. The

gray lines represent mean values and 95% confidence intervals of

between-group differences obtained by permutation tests, while red

dots show the real value of the differences. (C) Shows hub regions with

significantly different betweenness in the AD group compared with the

healthy control group. Red regions have significantly increased

betweenness in the AD group and cyan regions have decreased values

of betweenness. The small letters a through f represented the right

angular gyrus, the left angular gyrus, the right superior temporal gyrus,

the left lateral occipitotemporal gyrus, the right lingual gyrus, and the left

cingulate gyrus, respectively.

several previous studies have suggested that these morphological

correlations among regions might be associated with the mutually

tropic effects, environment-related plasticity, and genetic effects

(Mechelli et al., 2005; He et al., 2007).

White matter networks

Different from sMRI, diffusion MRI captures the movement of

water molecule in brain tissues, revealing the orientation of white

matter fiber bundles by deterministic (Mori et al., 1999) or prob-

abilistic (Behrens et al., 2003) tractography. Studies using the

DTI technique have found faithful white matter fiber bundles

known as real anatomical connections (Catani et al., 2002; Wakana

et al., 2004). Relating to the AD research, DTI-based studies have

reported widespread disruptions of white matter integrity in the

corpus callosum, the superior longitudinal fasciculus, and cingu-

lum (Rose et al., 2000; Bozzali et al., 2002; Naggara et al., 2006; Xie

et al., 2006; Fellgiebel et al., 2008; Ukmar et al., 2008; Kiuchi et al.,

2009).

Studies on the brain’s white matter are extremely important

for the human connectome because white matter tracts connect

functionally related regions and therefore might underlie func-

tional states of the brain. Several recent studies have utilized

DTI to construct human whole-brain white matter networks and

demonstrated small-world topological properties (Hagmann et al.,

2007; Iturria-Medina et al., 2008; Gong et al., 2009). Several hub

regions have also been identified in the white matter structural

networks in healthy adults, including the precuneus, the medial

frontal cortex, the middle occipital gyrus, and the cingulate gyrus

(Hagmann et al., 2008; Gong et al., 2009).

Lo et al. (2010) published the first research on the AD net-

work based on the DTI technique. They used a dataset of 25

AD patients and 30 age- and gender-matched normal controls.

They performed fiber tracking via the fiber assignment by con-

tinuous tracking algorithm (Mori et al., 1999). The fiber number

between two cortical regions multiplied by the mean fractional

anisotropy of the fiber bundles was calculated as the weight of

edge. After constructing an undirected weighted network for each

participant according to the AAL template, they calculated the

Cp, Lp, γ, λ, σ, Eg, E loc, and Enodal to investigate the topolog-

ical differences between the normal control group and the AD

group. It turned out that both normal and AD networks showed

prominent small-worldness. No significant differences were found

for the values of Cp, γ, and σ between the two groups. However

the AD group did have larger Lp and λ values. The increased Lp

was in accordance with previous structural connectomics stud-

ies of AD (He et al., 2008; Yao et al., 2010). As to the efficiency
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measurements, Eg was significantly reduced in AD network, while

E loc was not significantly different. These differences revealed a

less optimal organization of the brain network in patients with

AD. The researchers further identified nodes with high Enodal val-

ues as hubs and compared the Enodal of the hubs in AD with those

of normal controls. They found that AD-related Enodal reduction

was limited to several prefrontal areas including the medial supe-

rior frontal gyrus, the middle frontal gyrus, the orbital part of

the inferior frontal gyrus, and the temporal pole of the middle

temporal gyrus in the temporal lobe (Figure 3). The researchers

correlated the network properties with the cognitive performance

of the patients with AD and found significant correlations between

some of the network metrics and memory test scores.

FUNCTIONAL CONNECTOMICS IN AD

Modern functional neuroimaging (e.g., fMRI) and neurophysio-

logical techniques (e.g., EEG/MEG) can non-invasively measure

human brain activities and provides valuable information about

human brain networks. In this section we will summarize recent

advances in AD functional connectomics.

EEG/MEG networks

EEG/MEG records the electric and magnetic field changes caused

by the neuronal activities during a task or during the resting-

state. These neurophysiological techniques also provide powerful

approaches with high temporal resolution to investigate human

brain function in health and disease. Functional brain connec-

tome analysis based on EEG/MEG data have uncovered small-

world topology in healthy people (Stam, 2004; Bassett et al., 2006;

Micheloyannis et al., 2006; Ferri et al., 2007; Smit et al., 2008).

The techniques have also been applied studies of AD and have

demonstrated abnormal functional connectivity, both in inter-

hemispheric and intrahemispheric connections (Berendse et al.,

2000; Knott et al., 2000; Adler et al., 2003; Pijnenburg et al., 2004;

Koenig et al., 2005; Stam et al., 2006).

Stam et al. (2007a) used EEG to conduct brain network analysis

on 15 patients with AD and 13 control subjects with only subjective

memory complains. They computed synchronization likelihood in

the beta band (13–30 Hz) between any pairs of 21 nodes and con-

structed a binary brain network for each participant. Their study

showed that the AD group had significant increases in Lp both

under synchronization likelihood thresholds and sparsity thresh-

olds, implying impaired large-scale brain functional integration.

However, they barely found significant changes in Cp below either

type of the thresholds. This might imply that the local connectivity

of the brain network in AD was relatively spared. Further analy-

sis revealed significant negative Pearson’s correlations between Lp

and the mini mental state examination (MMSE) score. The results

demonstrated the altered brain functional connectivity pattern

associated with AD.

In a later work, Stam et al. (2009) used resting-state MEG data

to investigate the human brain connectomics in AD. The study

included 18 healthy people and 18 patients with AD. They pro-

duced a 149-node weighted brain network based on the phase

lag index (PLI, see Stam et al., 2007b). The AD group showed

significant mean PLI reduction in the beta band and the lower

alpha band (8–10 Hz). Significant decreases were also observed

in the left frontoparietal, the frontotemporal, the parietooccipital,

and the temporooccipital PLIs in the lower alpha band, and in the

interhemispheric frontal and right frontoparietal PLIs in the beta

band. The findings supported AD as a disconnection syndrome.

Statistical analysis on small-world indices revealed significantly

higher Lp and lower Cp, γ, and λ in the brain networks of the

lower alpha band of patients with AD, leaving no discovery in the

beta band. The alteration of small-world indices showed that the

AD brain network exhibited a random-like pattern. Putting all

the participants together, the MMSE score was positively corre-

lated with mean PLI in the beta band and γ in the lower alpha

band.

De Haan et al. (2009) conducted another EEG study of AD

and frontotemporal dementia. They acquired resting-state EEG

records from 20 patients with AD and 23 healthy people with

only subjective cognitive complaints. Binary synchronization like-

lihood brain networks were constructed with synchronization

likelihood thresholds and sparsity thresholds. In the beta band, σ

was significantly decreased in AD networks while small-worldness

was demonstrated both in healthy and AD networks across all

band frequencies. Cp and γ decreased in the AD group in the

lower alpha and beta bands. The λ value of AD networks also

decreased in the lower alpha and gamma (30–45 Hz) bands. These

results implied a disturbance in the balance of localized and inte-

grated information processing and a random-oriented shift of

the AD brain networks. The degree correlation, which refers to

the mean Pearson correlation coefficient of the degree between

each pair of directly linked nodes, was decreased in AD in the

lower and upper (10–13 Hz) alpha bands. Taken together, all of

these findings supported the conclusion that AD is a disconnec-

tion syndrome. The researchers also found that λ was positively

correlated with MMSE score in AD patients in the lower alpha

band.

More recently, Ahmadlou et al. (2010) studied EEG networks in

AD using a visibility graph method (Lacasa et al., 2008). The basic

idea of visibility graph is to transform time series into a network

whose structure is related to the self-similarity and complexity

of the time series. The complexity in the visibility graph of AD

patients was significantly decreased in the alpha and delta bands

compared with the normal elderly group. They further derived

classifiers based on the discriminative complexity measurements

and yielded an average accuracy of 97.75% at best. This study

demonstrated the possibility of using graph metrics as biomarkers

for the diagnosis of AD.

In summary, the EEG/MEG network analysis demonstrated

abnormal brain connectome from a functional perspective. All

the networks presented a random-like reconstruction in patients

with AD, characterized by lower Cp/γ or shorter Lp. The alpha and

beta bands showed the highest consistency in detecting AD-related

changes in network metrics. A previous study combining EEG and

fMRI (Laufs et al., 2003) indicated that the power of the alpha band

(8–12 Hz) was correlated with spontaneous neuronal activities of

attention-related brain regions, and the power of part of the beta

band (17–23 Hz) was correlated with activities in DMN regions.

Thus, we speculate that the alterations of network indices in the

alpha and beta bands might reflect the underlying mechanism of

functional deficits observed in patients with AD.
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FIGURE 3 | Brain regions with significant differences (p < 0.05,

FDR corrected) in E nodal in the AD networks (Lo et al., 2010). The

regions included the medial part of the superior frontal gyrus

(SFGmed.F and SFGmed.R), the right dorsolateral part of the superior

frontal gyrus (SFGdor.R), the right middle frontal gyrus (MFG.R), the

right orbital part of the inferior frontal gyrus (ORBinf.R), the orbital and

the medial orbital part of the superior frontal gyrus (ORBsup.R and

ORBsupmed.R), the orbital part of the middle frontal gyrus

(ORBmid.R), and the right temporal pole of the middle temporal gyrus

(TPOmid.R). The connection strengths between nodes were

represented by the edge widths, removing the effects of age and

gender.

Functional MRI networks

Functional MRI captures blood–oxygen level dependent signal

and indirectly describe the brain activity. fMRI has a relatively

low temporal resolution (∼2 s) but a high special resolution

(∼2 mm). Using resting-state fMRI (R-fMRI; Biswal et al., 1995),

Salvador et al. (2005) first performed the graph theoretical analy-

sis of the functional networks of the human brain. They con-

structed a 90-node undirected binary network for each partici-

pant. Graph theoretical analysis showed that the healthy human

brain connectome is a small-world network with hierarchical

organization. Later studies found similar topological structure

in the human brain, studied the efficiency of the connectome

(Achard and Bullmore, 2007) and identified several hub regions

such as the precuneus, the middle temporal gyrus, the middle

frontal gyrus, and the medial superior frontal gyrus (Achard

et al., 2006; Buckner et al., 2009; He et al., 2009b; Zuo et al.,

2011; for a review, see Wang et al., 2010). These findings made

the understanding of brain network topology more clear and

detailed.

Studies of AD based on R-fMRI data have found altered brain

functional connectivity in patients with AD (Wang et al., 2006;

Allen et al., 2007). Some task-based fMRI studies also found aber-

rant brain activity in the DMN of patients with AD during simple

motor tasks (Greicius et al., 2004) and tasks of associative mem-

ory (Celone et al., 2006). Buckner et al. (2009) found a correlation

between the locations of hub regions of fMRI brain networks in

healthy adults and the sites of Aβ deposition in the brains of

patients with AD. These regions included the inferior/superior

parietal lobule, the medial superior frontal cortex, the medial pre-

frontal cortex, and the posterior cingulate/precuneus (Figure 4),

implying that the hubs are preferentially affected in the progress

of AD.

Supekar et al. (2008) published the first R-fMRI study of the

functional brain connectome in AD using the topological network

analysis method. The researchers recruited 21 patients with AD

and 18 healthy volunteers matched for age, gender, and education.

R-fMRI brain networks were established using wavelet correlation.

The researchers computed small-world metrics of the 90-node net-

works based on the AAL template and found that both γ and σ of

the functional networks were significantly lower in the AD group,

indicating that the functional network in AD lost small-worldness.

Further investigation showed that using γ as a biomarker to diag-

nose AD would yield 72% sensitivity and 78% specificity at best,

suggesting that the topological network indices could serve as bio-

markers of AD. Nodal Cp values were significantly decreased in

the hippocampus bilaterally, demonstrating that intrinsic brain

functional organization was disrupted. The researchers also found

decreased intratemporal connections and weakened connectivity

strength (i.e., correlation coefficients) between the thalamus and

the frontal, temporal, and occipital lobes. Conversely, the con-

nections within the frontal lobe were enhanced. The analysis was

repeated on a second fMRI dataset acquired from the same sub-

jects and produced similar results, suggesting that this analysis

technique is reproducible.

In a more recent study, Sanz-Arigita et al. (2010) compared

18 patients with mild AD to 21 healthy controls to explore the

loss of small-worldness in AD brain networks. According to the

AAL template, a region-based synchronization likelihood matrix

was established for each subject and then binarized by a series

of thresholds ranged from 0.01 to 0.05 with increments of 0.01.

Cp and Lp, along with γ and λ were calculated as the indices of

small-worldness. The Cp of patients with AD did not show sig-

nificant differences from the healthy control group, but the Lp

was significantly decreased in the AD group across a wide range
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FIGURE 4 |The spatial distribution of functional brain hubs in normal

controls (the two columns on the left) and Aβ deposition in AD (the two

columns on the right; Buckner et al., 2009). The left color bar shows the Z

score of degree. The right color bar reveals the extent of Aβ deposition.

of thresholds, implying a trend toward random networks. They

found significant synchronization differences between the AD and

control groups. Similar to the findings of Supekar et al. (2008),

these changes included increases in the functional connectivity

within the frontal cortices, between the frontal cortices and the

corpus striatum and between the frontal cortices and the thalamus,

as revealed by synchronization likelihood and decreases between

the temporal lobe, the parietal cortex and the occipital cortex. The

long-distance connectivity loss supported the conclusion that AD

is a disconnection syndrome, while the strengthened connections

suggested that a compensatory mechanism might be responsible

for reserving cognitive functions.

Other than the whole-brain network analysis studies, several

graph theoretical DMN studies based on fMRI have been con-

ducted. Ciftci (2011) utilized the minimum spanning tree (the sub-

graph of a network with the minimum cost while connecting all the

nodes) to investigate the alteration of DMN connectivity during

AD. Their study included 14 young subjects, 14 healthy elderly sub-

jects, and 13 subjects with AD. Significantly lower connection den-

sity was observed in the AD and elderly groups compared with the

younger group, although the minimum spanning tree of the three

groups all presented a similar chain-like structure. Cluster analysis

on the three spanning trees revealed much more fragmented func-

tioning organization in AD, which was most notable in the hip-

pocampus/parahippocampus and the precuneus/posterior cingu-

late complex. They also found a decreased correlation coefficient

between the hippocampus/parahippocampus and the inferior

temporal gyrus and between the precuneus/posterior cingulate

gyrus and the angular gyrus. Another study by Miao et al. (2011)

used independent component analysis to identify DMN in 12 nor-

mal young adults, 16 older adult controls, and 15 patients with AD.

The researchers further constructed directed brain networks using

Granger causality modeling and examined the proportion of edges

connected with hubs compared to all edges. They found the pro-

portion to be significantly decreased in patients with AD, implying

impaired directed DMN connectivity in AD. Utilizing this ratio as

a diagnostic tool for AD yielded a specificity of 81.25% and a

sensitivity of 80.00%.

In summary, the AD brain connectome studies based on fMRI

data demonstrated disrupted network connectivity pattern in

patients with AD. The lower Cp, Lp, γ, or λ revealed a random-

toward transition of brain connectome in the disease, which were

consistent with EEG/MEG studies (Stam et al., 2007a, 2009; De

Haan et al., 2009). These less optimized reconfigurations of func-

tional brain network supported the theory that AD is a disconnec-

tion syndrome and might imply the functional basis of cognitive

deficits.

The studies of structural and functional brain connectomics

in AD have illustrated that the brain network configuration in

patients with AD was significantly altered compared with normal

controls. However, it needs to note that the alterations of topologi-

cal metrics in the brain networks such as Cp and Lp showed distinct

patterns in different modalities (see Table 2 for detail informa-

tion). These discrepancies could be attributed to different imaging

modality, network size, and population size applied in these stud-

ies (Table 2). In spite of these differences, we noticed that all of

the studies pointed to a less optimized connectivity pattern in AD

brain networks. Correlation analysis also revealed that cognitive

performances of patients with AD were correlated to topological

network indices. As to the nodal properties, the existing studies

found aberrant changes in Bc and connectivity strength involving

DMN regions. These regions were closely associated with episodic

memory and showed significant gray matter atrophy and abnor-

mal functional activities in AD (Rombouts et al., 2000; Frisoni

et al., 2002; Busatto et al., 2003; Sperling et al., 2003; Buckner et al.,

2005). Although the biological mechanism underlying disrupted

Frontiers in Psychiatry | Neuropsychiatric Imaging and Stimulation January 2012 | Volume 2 | Article 77 | 8

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


Xie and He Brain connectomics in AD

Table 2 | Alzheimer’s disease-related alterations of topological properties.

Study Modality Connectivity method Network type Matrix size Main findings

Cp Lp γ λ E g E loc

He et al. (2008) sMRI Partial correlation of cortical thickness Binary 54 + + / / / /

Yao et al. (2010) sMRI Pearson correlation of gray matter volume Binary 90 + + / / / /

Lo et al. (2010) DTI Deterministic fiber tracking Weighted 78 NS + NS + − NS

Stam et al. (2007a) EEG Synchronization likelihood Binary 21 NS + NS + / /

Stam et al. (2009) MEG Phase lag index Weighted 149 − + − − / /

De Haan et al. (2009) EEG Synchronization likelihood Binary 21 / / − − / /

Supekar et al. (2008) fMRI Wavelet correlation Binary 90 / / − NS / /

Sanz-Arigita et al. (2010) fMRI Synchronization likelihood Binary 116/90 NS − / / / /

This table was modified from Table 5 in Lo et al. (2010).

+, AD > NC; −, AD < NC; NS, none significance.

topological properties in AD brain networks still remains unclear,

we speculate that the disruption could be attributed to the neuron

loss, amyloid deposition, or metabolic abnormalities.

AD CONNECTOME AND GENETICS

Researchers have demonstrated that numerous genes have been

associated with late-onset AD, including amyloid precursor pro-

tein, presenilin 1, presenilin 2, and APOE (for reviews, see

Bookheimer and Burggren, 2009; Bekris et al., 2010). Of these

genes, APOE is one of the major genetic risk factors for develop-

ing AD. Studies on normal people have revealed APOE-4 effects on

the brain structure and function but controversy exists. For exam-

ple, some studies reported smaller gray matter volume or thinner

cortex in APOE-4 carriers in the hippocampus (Tohgi et al., 1997;

Den Heijer et al., 2002; Honea et al., 2009) and the entorhinal

cortex (Shaw et al., 2007; Burggren et al., 2008), yet others found

no such differences (Reiman et al., 1998; Jak et al., 2007; Cher-

buin et al., 2008). As to the studies of brain function, decreased

activities were reported in the APOE-4 carriers in regions such as

the medial prefrontal cortex, the hippocampus, and the posterior

cingulate (Reiman et al., 1996; Small et al., 2000; Persson et al.,

2008; Pihlajamaki and Sperling, 2009; Adamson et al., 2011), but

enhanced activities were also found in these regions (Bookheimer

et al., 2000; Wishart et al., 2006; Han et al., 2007; Filippini et al.,

2009). Notably, APOE was also found to modulate disease phe-

notype. For example, several studies have demonstrated greater

gray matter atrophy in the hippocampus and entorhinal cortex in

APOE-4 carriers with AD as compared to APOE-4 non-carriers

with AD (Lehtovirta et al., 1996; Geroldi et al., 1999; Bigler et al.,

2000; Hashimoto et al., 2001; Wolk and Dickerson, 2010), while

evidences for non-significant volume differences in hippocampus

were also reported (Jack et al., 1998; Drzezga et al., 2009). The

discrepancies of the results could be attributable to the sample size

and the demographic differences of subjects.

There are also evidences indicating that APOE-4 alters the brain

connectivity in normal participants. For example, several stud-

ies magnified abnormal functional connectivity associated with

APOE-4 in DMN (Filippini et al., 2009; Fleisher et al., 2009;

Sheline et al., 2010; Machulda et al., 2011). DTI studies found

aberrant white matter tracts with descended fractional anisotropy

in APOE-4 carriers, including the posterior corpus callosum and

the medial temporal lobe (Persson et al., 2006) and the parahip-

pocampal white matter (Nierenberg et al., 2005; Honea et al.,

2009). So far, there’s only one study using graph theoretical analy-

sis to explore the APOE-4 effects on whole-brain networks. Brown

et al. (2011) utilized DTI tractography methods to investigate the

relationship between the age and the topology of human brain

structural network in normal elderly people. They found that only

in the APOE-4 group the cost, Cp and σ showed significant neg-

ative correlation with age, while only in the APOE-4 non-carriers

group Lp showed significant positive correlation with age. The

nodal Cp of APOE-4 carriers decreased more sharply along with

age in the right precuneus, the left orbitofrontal cortex, the left

supramarginal gyrus, and right inferior temporal gyrus. This study

demonstrated that APOE mediated the topological organization

of human brain structural connectome in aging. Further studies

would be important to combine different imaging modalities to

systematically explore how the APOE-4 and other genetic risk fac-

tors of AD affect the topology of human connectome in health

and AD.

FUTURE PERSPECTIVES

Despite the abundance of findings already obtained from the

method, graph theoretical analysis of the AD network is only in

its infancy and still has some problems. Future studies should take

in account a number of considerations, which will be discussed in

this section.

First, the existing works on AD brain networks are at the

macroscale. The interplay between macroscale network property

alterations associated with AD and the biological and patholog-

ical mechanisms of AD have not been studied thoroughly. AD

could cause neuron loss and white matter aberrance, which may be

account for the gray matter atrophy revealed by volume loss or cor-

tical thinning and the white matter fiber changes found in diffusion

studies. Also, one study demonstrated that Aβ deposition loca-

tions corresponded with hub regions of healthy brain networks

(Buckner et al., 2009). However, the relationship between these

pathological changes and network abnormalities still needs further

exploration. Empirical studies of AD pathology and neuroimaging

would be helpful in clarifying this issue.

www.frontiersin.org January 2012 | Volume 2 | Article 77 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


Xie and He Brain connectomics in AD

Second, multi-modal analysis represents one potential avenue

for future research on connectomics. Data from sMRI, diffusion

MRI, fMRI, and EEG/MEG all reveal meaningful information

about human brain connectome from different perspectives, the

combination of datasets from various modalities would thus give

us a full view of human connectome in health and disease. For

example, Villain et al. (2008) showed that the hippocampal atro-

phy in patients with AD was specifically related to cingulum bundle

atrophy, which is in turn highly correlated to hypometabolism

of the posterior cingulate cortex, suggesting the hypometabo-

lism might result from hippocampal atrophy via cingulum bundle

disruption.

Third, little is known about the dynamic progress of AD.

Most of the AD network studies focus on comparing indices to

those of normal controls and demonstrating significant differences

between the two groups. We have little knowledge of longitu-

dinal changes in brain connectomics. An R-fMRI study (Zhang

et al., 2010) compared the posterior cingulate cortex connectiv-

ity of healthy controls to those of patients with mild, moderate

ad severe AD. The researchers suggested that the patients with

AD had abnormal posterior cingulate cortex connectivity patterns

and that the disruption intensified with disease progression. This

study demonstrated the dynamic changes in brain connectivity in

AD, but the relationship between the network and the disease pro-

gression remains unclear. Continuous longitudinal observations

of AD development are needed to characterize the developmental

changes.

Fourth, further studies are necessary to determine whether the

abnormalities found in network studies are specific to AD. De

Haan et al. (2009) demonstrated that network property alterations

such as decreases in Cp and Lp were not observed in patients

with frontotemporal lobar degeneration and that degree corre-

lation decreased in AD but increased in frontotemporal lobar

degeneration. Still many more studies are needed to compare the

disruptions of brain connectivity patterns between AD and other

dementia, such as dementia with Lewy bodies.

Fifth, the reliability of network property changes as a biomarker

of AD needs to be examined, given that controversial results were

obtained from different studies mentioned in this review (Table 2).

Several studies on the reliability of network topological metrics

of healthy people have been done in MEG (Deuker et al., 2009),

fMRI (Telesford et al., 2010; Wang et al., 2011), and diffusion

MRI (Vaessen et al., 2010; Bassett et al., 2011), but little is known

about using these indices to diagnose AD. This is an important

issue in establishing a topological biomarker for diagnosing and

monitoring AD.

Finally, some individuals are at high risk of developing AD, such

as those with the APOE-4 genotype and patients with amnesia

MCI. Sorg et al. (2007) demonstrated that patients with amnesia

MCI have reduced connectivity in the DMN and the executive

attention network. In addition, Yao et al. (2010) discovered that

the brain networks of patients with amnesia MCI and the patients

with AD of both group demonstrated similar alterations compared

to healthy controls, while the differences between the network

topologies of the two patient groups were not significant. Some

progress has been made in this field, but further studies are needed

to clarify the AD-like topological alterations in people with AD risk

factors.

CONCLUSION

To summarize, brain connectome analysis of adults with AD has

provided an important methodology for studies of AD. All of the

studies mentioned above demonstrated that AD brain networks

are less optimally constructed and have decreased information

processing efficiency. These alterations in brain connectivity pat-

terns reveal the underlying brain structural and functional disrup-

tions that cause the cognitive deficits of AD. Thus, these studies

provide further support for the description of AD as a disconnec-

tion syndrome. The graph theory analysis methods have proved

to be powerful tools for exploring the structural and functional

architecture of the human brain and have provided new under-

standing of the biological mechanisms of AD and have uncovered

potential biomarkers of early diagnosis and disease progression.
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