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This paper presents a new map representing the structure of all of science, based on journal
articles, including both the natural and social sciences. Similar to cartographic maps of our world,
the map of science provides a bird’s eye view of today’s scientific landscape. It can be used to
visually identify major areas of science, their size, similarity, and interconnectedness. In order to
be useful, the map needs to be accurate on a local and on a global scale. While our recent work has
focused on the former aspect,1 this paper summarizes results on how to achieve structural
accuracy.

Eight alternative measures of journal similarity were applied to a data set of 7,121 journals
covering over 1 million documents in the combined Science Citation and Social Science Citation
Indexes.  For each journal similarity measure we generated two-dimensional spatial layouts using
the force-directed graph layout tool, VxOrd. Next, mutual information values were calculated for
each graph at different clustering levels to give a measure of structural accuracy for each map. The
best co-citation and inter-citation maps according to local  and structural accuracy were selected
and are presented and characterized. These two maps are compared to establish robustness. The
inter-citation map is then used to examine linkages between disciplines. Biochemistry appears as
the most interdisciplinary discipline in science.

Introduction

About 40 years ago, Derek J. deSolla Price2 suggested studying science using the
scientific methods of science. Since then, research in bibliometrics and scientometrics

has developed techniques to analyze publication data sets. Most of the early work
focused on identifying networks or clusters of authors, papers, or references.3–5

Alternative methods based on co-word analysis were developed to identify semantic

themes.6 Advances in computing capabilities facilitate the analysis of large-scale
document data sets. Recent progress in visualization techniques has added the ability to
visualize knowledge domains.7 The map that we present here – a map of the backbone

of science at the journal level – is an extension of this stream of research.
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Our interest in mapping science stems from a desire to understand the inputs,

associations, flows, and outputs of the Science and Technology (S&T) enterprise in a

detailed manner that will help us guide that enterprise (or at least that portion of it

operating in our institutions) in more fruitful directions. A science map can be an ideal

tool for this task if constructed correctly. In the physical world, maps help us to

understand our environment – where we are, what is around us, and the relationships

between neighboring things. By knowing about our surroundings, we are given more

information by which to anticipate changes, especially those initiated in our immediate

vicinity. Maps also provide a physical (geographical) structure for comparisons of

metrics, such as census figures, vote tabulations, or average temperatures. Plus, maps

help us navigate the landscape.

Our interest in disciplinary maps (e.g. mapping journals instead of authors, papers or

text) stems from the desire to help the senior R&D manager understand their enterprise

and navigate their relevant environment. Most large research laboratories and

universities are organized along disciplinary departments. Disciplinary maps help the

managers and administrators in these organizations understand the organization’s

environment in terms that are familiar and useful to managers. Potential actions on these

maps (e.g. exploring new territory or reducing resources in existing territory) have a

direct relationship to decisions that these managers must make.

It is important that a science map be as accurate as possible when used in a decision-

making context within the S&T enterprise. Use of an inferior map can result in

misallocation of funding. We do not advocate the use of science maps alone as a basis

for funding decisions, but suggest that they should be used in concert with other well-

established processes such as peer review. To allow our maps to be used in the decision-

making process, we have embarked on a project to make them as accurate as possible.

By accuracy, we mean that journals within the same subdiscipline should be grouped

together, and groups of journals that cite each other should be proximate to each other

on the map. The first results from this effort, dealing with local accuracy, appeared

recently.1 By contrast, this paper focuses on structural accuracy and characterization of

the map defining the structure or backbone of science. The paper will proceed with a

review of related work, a discussion of the data, similarity measures, and processing and

analysis methods. We conclude with analytical results and a characterization of the

backbone of science as it exists today.

Related work

Most maps of science have been generated from rather small static data sets

(hundreds to thousands of nodes) and for rather limited knowledge domains. Very few

studies have undertaken a mapping of the whole of science. Early work on mapping

science focused on citation or co-citation linkages between papers. Pioneering examples
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include the historical map of research in DNA4 and the mapping of scientific networks.2

Garfield5 constructed a map of science based on co-citation linkages associated with

93,800 source documents and 867,600 referenced documents published in 1972. After

thresholding, this map clustered 1,832 papers (of the original 94k) into 51 clusters. ISI

continued studies in this area over the years, the most recent of which shows a map

representing the whole of science using the citation linkages of 36,720 documents

placed into 35 high level clusters.8 For a good historical review of the changes in how

science has been mapped over the years, see the recent work by Moya-Anegón and

associates.9

Journals are a unit of analysis that allows one to understand how science is

organized at an aggregated level.10 ISI has published the Journal Citation Reports (JCR)

for many years now, compiling citation counts between journal pairs that allow for

studies of the structure of science. Published journal-based maps have typically been

focused on single disciplines, and have used a Pearson correlation on co-citation counts

with multidimensional scaling (MDS).11–16 Other discipline-level studies not using the

Pearson/MDS technique include the use of relative inter-citation counts with MDS by

Leydesdorff,17,18 the use of a self-organizing map by Campanario,19 and the work by

Tijssen and van Leeuwen to include non-ISI journals in their maps using journal content

mapping.20

Several more recent works have mapped journals on a larger scale. Bassecoulard

and Zitt21 produced a hierarchical journal structure using data from the 1993 JCR.

Using a symmetrical Ochiai index on journal citation counts and hierarchical clustering

for roughly 2000 journals, they created a map with two levels of structure, comprising

32 disciplines and 141 specialties within those disciplines. Leydesdorff has used the

2001 JCR data to map 5,748 journals from the Science Citation Index (SCI)22 and 1,682

journals from the Social Science Citation Index (SSCI)23 in two separate studies. In

both studies Leydesdorff uses a Pearson correlation on citing counts as the edge weights

and the Pajek program for graph layout, progressively lowering thresholds to find

articulation points (i.e., single points of connection) between different network

components. These network components are his journal clusters. The only potential

drawback to this solution is that as thresholds are lowered, newly identified small

components (presumably two or three journals each) are dropped from the solution

space, so that the total number of journals comprising Leydesdorff’s clusters is

substantially less than the number in the original set. Some may actually consider this

an advantage since the clusters are pared down to only those journals that are most

central to their respective fields.

An alternative to using journals to map the structure of science has recently been

investigated by Moya-Anegón and associates9 to good effect. Using 26,062 documents

with a Spanish address from the year 2000 as a base set, they used co-cited ISI category

assignments to create category maps. Their highest level map shows the relative
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positions, sizes and relationships between 25 broad categories of science in Spain. It

would be interesting to see if the same relationships would hold for a map based on the

documents from all countries; however, this comparison was not made.

Our work builds on these previous efforts in that we map over 7,000 journals from

the SCI and SSCI in an integrated fashion, thus mapping the whole of science.

Process

The general process followed by most practitioners for creating knowledge domain

maps has been explained in detail elsewhere.7 This process can vary slightly depending

upon the specific research question, but typically contains the following steps: 1)

selection of an appropriate data source, 2) selection of a unit of analysis (e.g. paper,

journal, etc.) and extraction of the necessary data from the selected source, 3) choice of

an appropriate similarity measure and calculation of similarity values, 4) creation of a

data layout using a clustering or ordination algorithm, and 5) exploration of the map

based on the data layout as a means of answering the original research questions. Here,

we add another step after 4) – statistical validation – that allows us to choose the

similarity measure that produces the most accurate map.

Data

Given our goal to map the local and global structure of all of science, the best

sources are the databases provided by the Institute of Scientific Information (ISI).

Although the SCI and SSCI are known to lack many national and regional journals,

cover mostly English language journals, and do not cover the conference and workshop

proceedings predominant in some fields (e.g., Computer Science), they still provide the

best basis for attempting to map science in existence today. This is due to ISI’s broad

coverage and inclusion of high-quality citation data. As for the unit of analysis, journals

are a natural choice because journal sets are associated with disciplines (the unit of

analysis of importance to R&D managers). In terms of similarity measures, we are

interested in using measures based on journal inter-citation and co-citation frequencies.

While the Journal Citation Reports (JCR) published by ISI provide inter-citation

frequencies, they do not contain journal co-citation frequencies. ISI journal categories

could also be used to determine the similarity of journals. However, we decided to use

the ISI category assignments as a basis for comparing different citation-based similarity

measures.

It can be argued as to whether ISI provides the best available journal categorization.

Yet, it has been constructed manually using both journal subject content and citation

information,24,25 and thus represents a human judgment that can be considered as a

high-quality, if outdated and imperfect, standard of comparison. Our maps and analysis
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based on citation patterns, presented later in this paper, show that the ISI categories do

not reflect current groupings in many cases. However, there are many more cases where

correspondence between journal clusters and ISI categories is very good.

Based on these considerations, we obtained the complete set of 1.058 million

records from 7,349 separate journals from the combined SCI and SSCI files for the year

2000. Of the 7,349 journals, analysis was limited to the 7,121 journals that appeared as

both citing and cited journals. There were a total of 23.08 million references from the

1.058 million records, of which roughly 30% could not be assigned (on the cited side)

to any of the 7,121 journals, leaving a total of 16.24 million references between pairs of

the 7,121 journals. Journal inter-citation frequencies were directly counted from the

citing and cited journal information in these 16.24 million reference pairs. The resulting

journal-journal inter-citation frequency matrix was extremely sparse (98.6% of the

matrix has zeros). Journal co-citation frequencies were also directly calculated from the

16.24 million reference pairs using co-occurrence of citing papers, and subsequent

summing of co-citation counts by journal pairs. While there was a great deal more co-

citation frequency information, the journal-journal co-citation frequency matrix was

also sparse (93.6% of the matrix has zeros).

We note that most previous studies of the relationship between journals have used

data from the JCR. The JCR were not used here because, while they do contain inter-

citation frequencies, co-citation frequencies based on paper-level co-occurrences of

references cannot be derived from anything but the original reference lists. The inter-

citation frequencies used here are very similar to the 2000 JCR numbers. Any

differences are small and are due to differences between ISI’s link-finding algorithms

and our own. Hence our results can be partially compared with previous studies by

other authors.

This dataset is identical to that used in our recent study of local accuracy.1

For the purpose of map validation we also retrieved the ISI journal category

assignments. For the combined SCI and SSCI, there were a total of 205 unique

categories. Including multiple assignments, the 7,121 journals were assigned to a total

of 11,308 categories, or an average of 1.59 categories per journal.

Similarity measures

We created eight maps based on different measures of journal-journal relatedness.

Five are based on journal inter-citation frequencies and three are based on co-citation

frequencies.

The five inter-citation measures include one unnormalized measure, raw frequency

(IC-Raw); and four normalized measures, Cosine (IC-Cosine), Jaccard (IC-Jaccard),

Pearson’s r (IC-Pearson), and the recently introduced average relatedness factor of

Pudovkin and Garfield25 (IC-RFavg). Of the four normalized measures, only the
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Pearson is vector-based. We note that a Cosine, as strictly formulated, is also a vector

measure.26 However, we have chosen to use a very simple index version of a cosine-

type (meaning normalized by square roots of row sums) measure as our IC-Cosine. Our

previous experience has shown it to work very well.1 This measure should thus not be

thought of as a simplified version of the vector cosine, but rather as a very simple index

measure analogous in form to a cosine. We note that the IC-Jaccard measure differs

from our IC-Cosine only in the normalization. The IC-RFavg is another index measure.

Equations for all five measures are given below and further discussion of their

differences and relative effects is given in Klavans & Boyack.1
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In each of the equations Ci,j is the number of times journal i (file year 2000) cites

journal j (all years), Ni is the number of papers published in journal i in current year

(in this case the 2000 file year), and n is the number of journals. For all five inter-

citation similarity measures, we limited the calculation to those journal pairs for which

RAWi,j > 0. This is obvious for those measures with Ci,j or RAWi,j in their numerator, in

that the calculated similarity will be zero for RAWi,j = 0. However, this is not the case

for the Pearson, which often has a non-zero result when RAWi,j = 0. Note also that for
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our calculation of the Pearson correlations, we treat the diagonal as missing, a policy

that is followed by most authors.

The three co-citation measures include one unnormalized measure, raw frequency

(CC-Raw); the vector-based Pearson’s r (CC-Pearson), and a new normalized frequency

measure1 that we call K50 (CC-K50). This new measure, K50, is simply a cosine-type

value minus an expected cosine value. Ei,j is the expected value of Fi,j, and varies with

the row sum, Sj, thus K50 is asymmetric and Eij ≠ Eji . Subtraction of an expected value

component tends to accentuate ‘higher than expected’ relationships between two small

journals or between a small and a large journal, and discounts ‘lower than expected’

relationships between large journals. We thus expect the K50 measure to do a better job

than other measures of accurately placing small journals, and to reduce the influence of

large and multidisciplinary journals on the overall map structure.
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In all three co-citation measures Fi,j is the frequency of co-occurrences of journal i

and journal j in reference documents (from the combined reference lists of the file year

2000 data), and n is the number of journals. For these measures, we limited the

calculation to those journal pairs for which Fi,j > 0.
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Map layout

There are a number of different techniques used for dimension reduction that result

in a map layout. The most commonly used reduction algorithm is multidimensional

scaling; however, its use has typically been limited to data sets on the order of tens or

hundreds of items. Factor analysis is another method for generating measures of

relatedness. In a mapping context, it is most often used to show factor memberships on

maps created using either MDS or pathfinder network scaling, rather than as the sole

basis for a map. Yet, factor values can be used directly for plotting positions. For

instance, Leydesdorff23 directly plotted factor values (based on citation counts) to

distinguish between pairs of his 18 factors describing the SSCI journal set.

We are most interested in algorithms that are capable of generating a map of science

based on papers rather than journals. Paper-level maps are aimed at a different user

group (e.g., individual researchers interested in navigating the domain of research

communities). Paper-level maps require matrices that are dramatically larger (a

disciplinary map based on journals is on the order of a 10,000 square matrix; a paper

map using a full ISI file year is on the order of a million square matrix). Paper-level

maps are also far more difficult to validate. However, validating a set of algorithms at

the smaller scale (e.g. journal-level maps) gives us confidence that the same algorithms

are a reasonable starting point for the larger scale (e.g. paper-level maps). Layout

routines capable of handling these large data sets include Pajek,27 which has recently

been used on data sets with several thousand journals by Leydesdorff,22,23 and which is

advertised to scale to millions of nodes; self-organizing maps,28 which can scale, with

various processing tricks, to millions of nodes,29 and the bioinformatics algorithm

LGL,30 capable of dealing with hundreds of thousands of nodes, which uses an iterative

layout as well as data types and algorithms from the Boost Graph Library.31

We chose to use VxOrd,32 a force-directed graph layout algorithm, over the other

algorithms mentioned, for several reasons. VxOrd improves on a traditional force-

directed approach by employing barrier jumping to avoid trapping of clusters in local

minima, and a density grid to model repulsive forces. Because of the repulsive grid,

computation times are order O(N) rather than O(N
2
), allowing VxOrd to be used on

graphs with millions of nodes. VxOrd also applies edge cutting criteria, which leads to

graph layouts exhibiting both local (orientation within groups) and global (group-to-

group) structure. The combination of the initial node and edge structure and cutting

criteria thus determine the number, size, shape, and position of natural groupings of

nodes. These groupings of nodes are often not circular in shape, but can be elongated or

semi-continuous (and look like ridges in a landscape type visualization). VxOrd has

been used in a variety of published studies33-36 ranging into the tens of thousands of

nodes, and in as yet unpublished studies of over a million nodes.
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We used the VxOrd routine with each of the eight similarity matrices to generate

eight graphs, or maps of science. It is important to note that we did not use the full

similarity matrices to generate these maps. In previous work, we discovered that more

accurate layouts could be generated if we used only the largest 15 similarities per

journal.1 Thus, we culled the similarity files to include only the top 15 similarity pairs

per journal, and these were used to create the maps. The eight different maps are shown

in Figure 1.

Figure 1. Maps of science generated from eight different journal-journal similarity measures.

Dots represent journals. Lines represent the edges remaining at the end of the VxOrd runs.

Similarity measures corresponding to the various map panels are listed in the middle right panel.
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Analytical results

Validation of clusters

Validation of science maps is a difficult task. In the past, the primary method for

validating such maps has been to compare them with the qualitative judgments made by

experts, and has been done only for single-discipline-scale maps (see the background

section of Klavans & Boyack1 for more discussion). The issue is much more

problematic at the scale of the whole of science. Human evaluation appears to be

impossible, as the days in which one scientist was a leading expert in all areas of

science have passed. Patch-working smaller validated areas of science into a map of ‘all

of science’ might work. However, human judgment is highly subjective and combining

tens or hundreds of individually validated maps might turn out to be task with a too

high computational complexity to be accomplished.

A more pragmatic approach is to use the ISI journal classifications to evaluate the

validity of the journal similarity measures and the corresponding maps. The ISI journal

classification system, while it does have its critics, is based on expert judgment and is

widely used. In principle, users would expect that pairs of journals with high similarity

should be in the same ISI category. Journals in the same cluster of a journal mapping

should have the same ISI category assignments. These assumptions are used to validate

and compare the eight different similarity measures and corresponding graph layouts or

maps.

In our previous work with the current data set, and the same eight similarity

measures and maps from Figure 1, we investigated local accuracy and the effects on

accuracy of reducing dimensionality with VxOrd1 using the ISI category assignments as

a reference basis. We found that, counterintuitively, use of VxOrd algorithm to convert

similarities to map positions actually increased local accuracy. We also found that four

of the inter-citation measures had roughly comparable local accuracy at 95% journal

coverage, and recommended the IC-Cosine measure as the best overall measure.  In this

work we focus on structural accuracy or the validity of the global structure of the

solution space. To make quantitative comparisons of our eight maps of science, we

implement a mutual information method recently used to distinguish between gene

clustering algorithms.37 This mutual information method requires a reference basis, for

which we use the ISI journal category assignments.

To employ the method of Gibbons and Roth37 we need to do a clustering of each of

the maps. VxOrd gives (x,y) coordinate positions for each node, but does not assign

cluster numbers to the nodes. Thus, k-means clustering was applied to each of the maps

in Figure 1. Other clustering methods (e.g. linkage or density-based clustering) could

have been used. However, given that the reason for validation was to establish the
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relative validity of the different similarity measures and resulting maps, we chose the

easy, accessible, and relatively fast k-means algorithm for this part of the study.

The method for computing how similar each ordination was to the ISI categories is

as follows:

1. The k-means routine in MATLAB was run with the (x,y) locations from each

map as input. Given that k-means is stochastic (different runs will produce

different cluster assignments), k-means clustering was run three times for each

ordination for 100, 125, 150, 175, 200, 225, and 250 clusters. We used a

maximum of 250 clusters to bound the 205 categories used by ISI. It is not

known a priori how many clusters were best for each similarity metric. Thus,

we varied the number of clusters to provide a reasonable range over which to

compare results.

2. Calculation of a quality metric from the cluster assignments was done following

the method of Gibbons and Roth.37 Here, a contingency matrix of clusters vs.

labels (i.e., the ISI category assignments for each journal) was calculated for

each k-means clustering solution. Mutual information values (MI) were

calculated as:

MI(X,Y) = H(X) + H(Y) – H(X,Y)  ,

where H is defined by Shannon’s formula for entropy:

H = - ∑ Pi log2 Pi  ,

and the Pi’s are the probabilities of each [cluster, category] combination. In our case, X

is the known category assignments (one journal to potentially multiple categories) from

ISI, and Y is the calculated cluster assignments from k-means. A Z-score was then

calculated from the mutual information values as:

Z = (MIreal – MIrandom)/ Srandom  ,

where the random values MIrandom and Srandom (standard deviation of MIrandom) were

computed from 5000 randomly assigned [cluster, category] distributions. Since MIrandom

and Srandom vary with the number of clusters, these values were calculated for the

different numbers of clusters and applied appropriately. Uniform cluster sizes were

assumed for the random value calculations. A Z-score of zero indicates a random

distribution. Higher Z-scores indicate a further distance from random assignment.

This method is quite similar to the probabilistic entropy method used by

Leydesdorff38,39 in that our MI(X,Y) is equivalent to Leydesdorff’s H0, and in both

cases the values are used as metrics for clustering. Leydesdorff uses small information

sets (order of tens to hundreds), and calculates the grouping with the maximum H0 by

recursively looking at all possible groupings. In theory, that technique could be used

here to generate a most accurate clustering, but it would be computationally very
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expensive, and would not give us a 2-D “map” of science. Given our need for a 2-D

map, we calculate mutual information and Z-scores for fixed group sizes (the k-means

outputs) for a larger information set, and compare Z-scores over a range of group sizes.

Figure 2. Z-scores for the maps generated from each of eight similarity measures.

Z is a measure of distance from randomness, where a score of zero indicates a random distribution

Average Z-scores for each map at each clustering level are given in Figure 2. The

CC-Raw map clearly performs the worst. The Z-scores for all other measures are near

or above a value of 350, indicating that all of these measures give maps that are far from

random. The IC-Pearson map gives the highest Z-score over nearly the entire range of

cluster solutions. It is only at the higher end, from 200 through 250 clusters, that the IC-

Jaccard map has a Z-score comparable to that of the IC-Pearson. If both maps based on

raw counts (i.e., CC-Raw and IC-Raw) are excluded, for 175 through 250 clusters, the

other six maps have Z-scores within 3.8% of each other. Hence, based on Z-scores it is

likely that any of the six would be a suitable choice as the basis for an accurate map of

science.

In order to choose the best map to characterize further, we combine the Z-score

results above with results from our previous study,1 and with a qualitative description of

how well the clustering would enable visual presentation for management purposes. The

combined results are listed in Table 1.
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Table 1. Summary of validation results for maps based on eight similarity measures.

Measure Local accuracy @

95% coverage1

Scalability1 Z-score

for 200 clusters

Clustering

(qualitative)

IC-Raw 60.1% High 360.0 Too few, loose

IC-Cosine 80.2% High 381.3 Good balance

IC-Jaccard 79.5% High 387.1 Good balance

IC-Pearson 71.7% Low 386.5 Too tight

IC-RFavg 80.2% High 373.3 Good balance

CC-Raw 25.6% High 294.9 Too few, loose

CC-

Pearson

65.3% Low 377.0 Too tight

CC-K50 71.4% High 376.6 Good balance

The results can be split into two categories: those for inter-citation-based maps, and

those for co-citation-based maps. Inter-citation-based maps can only be used to map

science within the boundaries of the ISI journal list, while co-citation-based maps can

include journals, conferences, books, etc., outside the ISI citing journal list. Many

institutions (including Sandia) have a significant portion of their publication output in

non-journal publications or journals not covered by ISI, and may thus wish to base a

map of science on more than just the ISI list of journals. An example from information

science illustrates the value of a co-citation based map. The publication ANNU REV

INFORM SCI appears in most information science maps done to date, but does not

appear in our year 2000 maps. Due to a change in indexing year protocol, from volume

34 in 1999 to volume 35 in 2001, ANNU REV INFORM SCI is not listed in the 2000

year citing data, despite the fact that it has been published and indexed continually. A

co-citation-based map with journal titles expanded beyond the citing list would have

included this very important information science publication.

For a co-citation-based map, the CC-K50 measure is a clear winner for several

reasons. Although the Z-score for the CC-K50 is nearly identical to that of the CC-

Pearson, the K50 measure is scalable to much larger numbers of nodes, while the

Pearson is a full N
2
 calculation, and cannot easily scale much higher than the 7000

nodes used here. The CC-K50 map is a visually well-balanced map with a good

distribution of cluster sizes and positions (see Figures 1 and 3). By contrast, the CC-

Pearson map appears very stringy; clusters are very dense with less visual

differentiation between disciplines, and thus not as suitable for presentation. The CC-

K50 map also has a higher degree of local accuracy.1
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Figure 3. Map of science generated using the CC-K50 similarity measure. The map is comprised of 7,121

journals from year 2000. Large font size labels identify major areas of science. Small labels denote the

disciplinary topics of nearby large clusters of journals

If a co-citation-based map is not needed, then we revert to an inter-citation-based

map, three of which slightly outperform the CC-K50 map in terms of Z-score. Of these

three, IC-Cosine, IC-Jaccard, and IC-Pearson, we choose to further characterize the IC-

Jaccard as our best map due to its slightly higher Z-score, realizing that the Cosine map

is in a virtual dead heat statistically, and the Pearson map only somewhat less in local

accuracy.
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Figure 4. Map of science generated using the IC-Jaccard similarity measure. The map is comprised of 7,121

journals from year 2000. Large font size labels identify major areas of science. Small labels denote the

disciplinary topics of nearby large clusters of journals

The global structure of science

Detailed versions of the best co-citation (CC-K50) and inter-citation (IC-Jaccard)

maps are shown in Figures 3 and 4 respectively. For both cases the maps were explored

interactively using VxInsight33 and were labeled by hand using short terms to describe

the disciplines that dominate clusters of journals within the maps. Seven larger labels

designate higher-level major fields within the sciences.
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The order of major fields in Figure 3 follows an intuitive pattern as one moves

clockwise around the map: Mathematics, Physics, Chemistry, Earth Sciences (including

Biological, Plant, and Animal Sciences), Medicine, Psychology, and Social Sciences.

This is nearly identical to the pattern shown by the category map recently published by

Moya-Anegón and associates (Ref. 9: see Figure 2). In their case, Earth Sciences and

Medicine are at roughly the same radial position with Medicine on the outside. The fine

structure of the map is also revealing. Engineering disciplines are near Physics and

Chemistry. Interfacial disciplines appear to be reasonably placed. For example, Public

Health lies between Medicine and Psychology, Economics is at the interface between

Social Sciences and Mathematics, Applied Math lies between Mathematics and Physics,

Physical Chemistry is between Physics and Chemistry, and two areas of Biochemistry

lie between Earth Sciences and Chemistry and Medicine. In general, the more insular

fields lie toward the outside of the map, and those with more interdisciplinary linkages

are toward the center.

The inter-citation-based (IC-Jaccard) map of Figure 4 depicts very similar

phenomena. The pattern shown by the seven major fields is the same as for the co-

citation-based map. However, there are modest differences between the two maps as

well. For example, Geological Sciences are outside of Chemistry on the IC-Jaccard

map, while they are inside of Chemistry on the CC-K50 map. Information and Library

Sciences (LIS) and Entomology are at the outside edges (top and bottom, respectively)

of the IC-Jaccard map, while they are both midway between the edge and center of the

CC-K50 map. Differences such as these between the maps at the discipline level are

likely due to fine-scaled differences between the co-citation and inter-citation patterns.

Yet, the overall consistency between the co-citation and inter-citation-based maps of

science suggests the general structure described here is robust.

The maps in Figures 3 and 4 show the structure of science in a very general way,

simply through relative positioning of disciplines and fields. However, true structure

and dependency are best shown through linkages. Figure 5 shows the IC-Jaccard map at

the disciplinary level. Clusters of journals from the map in Figure 4 were identified by

hand by one of the authors, resulting in a total of 212 clusters covering 7,000 of the

7,121 journals. Groups of two or three journals not near a major cluster are not

accounted for. Cluster positions in the disciplinary map of Figure 5 are the average

positions of the constituent journals for each cluster.

The IC-Jaccard disciplinary map of science shows many facets of the structure of

science. First, the size of each journal cluster represents the number of journals in the

cluster, and thus the relative size of disciplines. This could be determined from Figure 4
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as well, but not as easily or precisely. Second, the independence or insularity of each

discipline has been calculated and color coded in the map. Here, independence is

calculated using the equation

∑
=

j
ji,

ji,
ji, C

C
F   ,

where Ci,j is the number of times cluster i (file year 2000) cites cluster j (all years).

Thus, independence, or Fi,i, is simply a self-citation fraction at the cluster level.

One of the artifacts of many graph layout routines, including VxOrd, is that highly

linked nodes will remain near the center of the graph, while sparsely linked nodes will

tend to move to the outer edges of the graph. This phenomenon can also be true for

subgraphs within the full graph. In general, we would thus expect the more independent

disciplines to appear near the outer edges of the map, and those that are less

independent, or more interdisciplinary, to be nearer the center. Figure 5, plotted with

Pajek,27 shows that this is indeed the case. Few of the darkest clusters are near the

center of the graph. Independence also varies by major field. Most of the disciplines

within the Social Sciences have high independence; disciplines in Physics, Chemistry,

and Earth Sciences are less independent than those in the Social Sciences, and those in

Medicine are even less independent. Disciplines within Psychology are more

independent than those in Medicine, but less independent than those in the Social

Sciences.

Dependency structure is shown in Figure 5 as the arrows between disciplines. Of the

13,502 individual Fi,j between the 212 disciplines that could be superimposed on the IC-

Jaccard disciplinary map, only the 311 where Fi,j > 0.075 are shown. Use of this

threshold value is arbitrary, but serves to show the major structural dependencies in

science. Arrow tips point to cited clusters, and arrows denote a diffusion of information

from cited clusters to citing clusters.

Biochemistry is clearly one of the hubs of science. It is the largest discipline, both in

terms of numbers of journals and numbers of citations. Its membership includes five

well-known multidisciplinary journals SCIENCE, NATURE, P NATL ACAD SCI USA,

CELL, and J BIOL CHEM, which undoubtedly account for part of the influence of this

discipline. Fully one-quarter of the other disciplines (52) spend more than 7.5% of their

citations on biochemistry. Citing disciplines come primarily from Medicine, Earth

Sciences, and Chemistry. Biochemistry is truly an interdisciplinary hub.
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Figure 5. Map of the backbone of science with 212 clusters comprising 7000 journals. Clusters are denoted by

circles that are labeled with their dominant ISI category names. Circle sizes (area) denote the number of

journals in each cluster. Circle color depicts the independence of each cluster, with darker colors depicting

greater independence. Dominant cluster-to-cluster citing patterns are indicated by arrows. Arrows show all

relationships where the citing cluster gives more than 7.5% of its total citations to the cited cluster, with

darker arrows indicating a greater fraction of citations given by the citing cluster. Some cluster positions have

been adjusted slightly to avoid covering labels for neighboring clusters. The gray box near the top shows

clusters detailed in Figure 6

Other hubs, identified as those disciplines with many arrows pointing to them, are

less interdisciplinary than Biochemistry. These are central to their own fields, with few

strong links to disciplines in other fields, and include General Medicine,

Ecology/Zoology, Social Psychology, Clinical Psychology, Organic Chemistry, and the
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dual General Physics+Applied Physics. However, it can be seen that those few strong

links to disciplines in other fields are what ties the whole of science together and gives

it its overall structure. Social Sciences are tied to Psychology through various

specialties in Psychology; Medicine is tied to Psychology directly and through

Neurology; Biochemistry links directly to Medicine and Chemistry; Chemistry is tied to

Physics through their interfacial disciplines Physical Chemistry and Materials Science;

and Physics is tied to Mathematics through Applied Math. The most tenuous link is

from Mathematics to the Social Sciences. Although not shown in Figure 5, once the

threshold is lowered, dependencies appear linking the two fields through Computer

Science and Education.

The local structure of science

As mentioned previously, we favor the use of VxOrd for graph layout in that it

results in maps with both global and local structure. One example of local structure is

shown in Figure 6, which zooms in on the two “Information & Library Science”

clusters at the top of Figure 5. The Finance cluster shown between the two LIS clusters

in Figure 5 is not included in Figure 6 since there were no direct linkages between its

journals and any of the journals in the two LIS clusters. Rather, the Finance cluster is

linked down to the History of Social Sciences cluster and to the larger Finance cluster

below it.

Features in Figure 6 are similar to those in the previous figure. Node size indicates

the number of papers published by a journal in the year 2000. Node color is based a

figure of impact, specifically the number of citations to the 1998–2000 issues of the

journal divided by the number of papers published in the 2000 issues of the journal.

Darker colors denote higher impact. Edges or lines between journals denote the strength

of the Jaccard coefficient between the two journals, with darker edges denoting a larger

similarity coefficient. Figure 6 shows the clear distinction between two main areas

within the LIS discipline. Although there are relationships between journals in the two

clusters, the dominant relationships (darkest edges) are within clusters. The journals in

the cluster at the upper left all focus on libraries and librarians and their work, while

those in the cluster at the lower right are all focused on advances in information science.

This latter group includes SCIENTOMETRICS, JASIST, and J DOCUMENTATION.

Journals in the upper half of the cluster at the right all deal with electronic information.
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Many other journals from ISI’s “Information & Library Science” category do not

cluster in either of the two clusters shown here. For example, MIS QUARTERLY,

INFORMATION & MANAGEMENT, INT J INFORM MANAGE, and several other

information management journals are found in the Computer Science cluster along with

journals on software systems. Although the word INFORMATION is found in the titles

of most of these journals, citation patterns suggest that they would be better classified

with software system journals in Computer Science.

Figure 6. Detailed view of journals comprising the two “Information & Library Science” clusters from the top

of the map in Figure 5. Journal size in number of papers published in 2000 is indicated by the size of each

circle. Circle color is based on a measure closely related to the impact factor, with darker color signifying

higher impact. Edges between journals show all of the top15 Jaccard relationships within the set of journals

shown, with darker edges signifying a larger Jaccard coefficient. Some journal positions have been adjusted

slightly to avoid covering labels for neighboring journals.
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The discipline map of Figure 5 also gives us a chance to examine some of the ISI

journal categories. A close comparison of the cluster labels on the map with the list of

ISI journal categories shows that some categories are represented many times, while

others are not represented at all. An example of the former case is that of the category

Mathematics, Applied, which appears four times on the map, twice as the dominant

category for a cluster (single label), once jointly with Engng, Mechanical, and once

jointly with Computer Science, Theory. All four clusters are near the edge of the map at

the top right. Examination of the journals comprising each cluster shows that of the two

pure Mathematics, Applied clusters, one deals with linear numerical methods, and the

other deals with non-linear numerical methods. The joint cluster with Engng,

Mechanical is focused on engineering applications such as computational mechanics

and finite element methods, and the joint cluster with Computer Science, Theory is

focused on applied algorithms, particularly in cryptology and discrete mathematics.

Interestingly, the CC-K50 map breaks the Mathematics, Applied journals into the same

four clusters. Thus, the use of more than one journal category for applied mathematics

journals could easily be justified by the current citation information.

There are several medium-sized ISI categories (35-80 journals) that do not appear as

labels in Figure 5, including Behavioral Sciences; Biochemical Research Methods;

Computer Science, Interdisciplinary Applications; Social Issues; and Social Sciences,

Interdisciplinary. For each of these categories, a query of the IC-Jaccard map in Figure

4 shows that the journals are spread out across many clusters. Queries to the CC-K50

map show the same behavior. This begs the question of whether these categories are

necessary, given that they appear not to be specific based on current citation patterns.

Journals within these listed categories could be classified with the other journals with

whom they cluster. Further investigation shows that only 32 of the 244 journals within

these categories are singly assigned to the category. The other 208 are assigned to

multiple categories. It is no wonder, therefore, that journals in these categories were

found spread throughout the map, and in fact attests to the robustness of the mapping

process and results.

Conclusions and implications

This paper presents a novel map of the global structure of all of science. The map

was generated from the combined SCI and SSCI files for the year 2000, includes 7,121

journals that appeared as both citing and cited journals, and shows the relation of these

journals based on their citation interlinkages.

Eight different similarity measures were calculated from the combined SCI/SSCI

data and the resulting journal-journal similarity matrices were mapped using VxOrd.

The eight maps were then compared based on two different accuracy measures, the

scalability of the similarity algorithm, and the readability of layouts (clustering). The
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two best measures were then used to generate maps of sciences that provide a global

view of the structure of science, and that can also be used to examine specific areas of

science in more detail. Detailed interpretations of the maps are given.

The disciplinary map presented here is designed to support decision-making, e.g.,

the allocation of resources among/between disciplines. However, it also promotes the

understanding and teaching of the general structure of science. Although it is a static

map, and thus does not reveal how disciplines are born, evolve, or die, it is the broadest

static map of science published to date, and thus constitutes another step forward in the

study of the structure and evolution of science by scientific means.

Ultimately, maps of science could be based on a much broader set of data (such as

scholarly journals, proceedings, patents, grants, and funding opportunities). Alternative

units of analysis (clusters of journals, papers, authors, funding sources and/or text)

could be generated to address different user needs. Instead of being static, dynamic

maps could be generated that show high activity, scientific frontiers, and

merging/splitting of scientific areas.

We believe that these global maps of science will enable researchers and

practitioners to search for and benefit from results and expertise across scientific

boundaries, counterbalancing the increasing fragmentation of science and the resulting

duplication of work. These maps of science could also serve as a common data

reference system for scholars from all disciplines – analogous to how geologists use the

earth itself to index and retrieve data, documents, and expertise, or to how astronomers

use astronomical coordinates. If such a reference system were to exist, all researchers

could have a bird’s eye view of the landscape of science, and could use this landscape

to navigate to areas of interest, to communicate results, and to announce discoveries.

This global view – as opposed to doing keyword based searches on the Web or in

digital libraries with very little information about the coverage of the queried database

or the quality of the result – would give many more people access to scientific results.

This, in turn, would lead to more informed citizens and a faster spread of results and

practices benefiting all of humanity.

Obviously, the generation of dynamic maps of all of science that merge date from

diverse, heterogeneous sources will require an infrastructure that can integrate multiple

data streams from the best scholarly databases in existence. The data streams need to be

processed and analyzed on the fly to arrive at real time visualizations of our collective

scholarly results and activities. While infrastructures that process terabytes of data are

common in biology and physics, they are not in existence in the social sciences.

However, all sciences would benefit from a global map of science such as that

described here, and we hope many more researchers will decide to contribute to their

design, validation, and implementation.
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