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Abstract

Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural
residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it
difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a
consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between
the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin
biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database
that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present
contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the
lignin microbial niches, and discuss the findings.
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Introduction

Lignin is one of the three main components in lignocellulosic
biomass and the most abundant terrestrial aromatic macromol-
ecule and is as such a potentially great source of renewable
aromatic compounds (Holladay et al. 2007). It is found in the
cell walls of lignocellulosic plants (Fig. 1), where it is
intertwined with the other two main polymers (cellulose and
hemicellulose), and confers structural strength, impermeabili-
ty, and water transport in the cell wall (Ayyachamy et al.
2013). The main characteristic traits of the lignin
macropolymer are its highly amorphous structure—caused
by the high heterogeneity of its aromatic building blocks (in
turn directly depending on the plant species) (Gellerstedt and
Henriksson 2008; Lewis and Yamamoto 1990; Vanholme
et al. 2010)—and its severe recalcitrance to chemical and

microbial depolymerization (Ruiz-Dueñas and Martínez
2009). Various types of lignin streams (here called technical

lignins) are produced in high amounts in the pulp and paper
industry and are today primarily used to generate process
steam and electricity by incineration (Li and Takkellapati
2018; Naqvi et al. 2012). These lignin streams are therefore
a largely untapped resource for sustainable production of plat-
form chemicals and have the potential to become a key feed-
stock in a future expanded biorefinery concepts (Beckham
et al. 2016).

Microbial lignin degradation in nature has been studied for
decades, with the scientific literature stretching back to at least
the 1960s and studies on, e.g., Pseudomonas putida (Ornston
and Stanier 1966). Due to the high diversity of the lignin
heteropolymer, the microbial modes of lignin catabolism are
also diverse (Bugg et al. 2011b; Durante-Rodríguez et al.
2018; Fuchs et al. 2011). Lignin degraders are typically bac-
teria and fungi: among the former, the species mostly belong
to the Actinobacteria and Proteobacteria phyla (Bugg et al.
2011b; Tian et al. 2014); as for the fungi, the common de-
graders are of the white rot fungi, filamentous fungi, and yeast
taxa (Durham et al. 1984; Guillén et al. 2005; Martins et al.
2015). Furthermore, the lignin recalcitrance often prevents
one single species from fully degrading the lignin polymer,
and instead a symbiosis where rot-type fungi and bacteria are
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working together is needed to achieve a complete degradation
(Cragg et al. 2015; de Boer et al. 2005), thus generating a
specific niche (Fig. 1) that selects for a small set of microbial
genera.

On the applied side, chemical depolymerization of natural
or technical lignins is required to establish a biotechnological
value chain frommono- or oligoaromatics. The lignin streams,
e.g., from the pulp and paper industry, must be depolymerized

Fig. 1 Schematic representation of the lignin microbial niche. In this
model of the niche, lignin is mineralized by two subgroups: lignolytic
species and aromatic degrading species. Some species degrade or modify
lignin to access the hemi-/cellulose onwhich they grow (subgroup 1), and
other species catabolize the aromatic lignin fragments that result from the

enzymatic depolymerization (subgroup 2). There is also some overlap
between the subgroups, with species capable of both lignolysis and
aromatic degradation. Yellow circles represent the different origins of
isolation reported for this niche. The poplar lignin structure was adapted
from Vanholme et al. (2010)
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to yield mono- and oligomeric aromatic compounds
(Ragauskas et al. 2014; Zakzeski et al. 2010) that are then
fed to suitable microbes (natural or engineered) for bioconver-
sion into value-added products. However, most knowledge on
the microbial side of this process comes from natural de-
graders, and little is currently known about microbial growth
and utilization on the cocktail of aromatic compounds found
in depolymerized technical lignin. Furthermore, although dif-
ferent lignocellulosic feedstocks (e.g., softwood, hardwood,
agricultural residues) are known to contain different amounts
and types of aromatic building blocks (Gellerstedt and
Henriksson 2008; Ragauskas et al. 2014), it is very challeng-
ing to predict the chemical composition of the mixture
resulting from a depolymerization process, especially for tech-
nical lignins (Abdelaziz et al. 2016). Consequently, it is diffi-
cult to a priori select a suitable microbial host until chemical
analysis has been performed on the depolymerized (low mo-
lecular weight) lignin stream.

The literature on microbial lignin catabolism is vast and
combines fundamental microbiology and applied studies that
have in particular seen a surge in popularity during the last
decade. However, there has been little effort yet to facilitate an
overview of the large amount of publications in this field,
especially regarding intracellular microbial events. For this
reason, we have created a new database named The eLignin

Microbial Database (www.elignindatabase.com) for
collection of data from scientific literature on the catabolism
of lignin and lignin-derived aromatic compound by microor-
ganisms. The eLignin database was launched online in
March 2017 and aims to bring together the bibliome of this
field in one self-contained searchable platform, and thus fill a
gap presently not covered by other online biological data-
bases, as well as to demonstrate the high diversity of this
microbial niche (Fig. 1). As the database primarily focuses
on intracellular conversion steps, information on extracellular
enzymes with lignolytic activities are currently not covered
and the readers are redirected to, e.g., the following reviews
(Janusz et al. 2017; Sigoillot et al. 2012).

The present minireview will introduce the design philoso-
phy of the eLignin database and present our outcome of the
diversity analysis with prime focus on intracellular microbial
events. What sets this paper apart from other recent reviews
discussing the diversity of microbial lignin degradation (Bugg
et al. 2011a; Tian et al. 2014) is that we have been able to use
the established content of the database (Table 1) to make pat-
tern recognitions over the indexed publications in eLignin (for
instance using relational SQL queries and Python scripts).

Scope and design of the eLignin database

The eLignin database was created because there is, to our
knowledge, no currently available database dedicated to

microbial lignin catabolism. A literature survey showed that
there have been published databases on lignin biochemistry in
the past, but they are, at the time of writing, all unavailable
and/or discontinued: FOLy, a database on fungal oxidoreduc-
tases for lignin catabolism (Levasseur et al. 2008); LD2L, a
database similar in scope as eLignin (Arumugam et al. 2014);
and an NMR database for lignin structures (Ralph et al. 2004),
with the latter not treating microbial catabolism. The objective
of eLignin is to collect data on strains of microorganisms
(bacteria, yeasts, and fungi) known to degrade and/or catabo-
lize lignin and lignin-derived aromatic compounds.
Specifically, the database content includes microorganisms,
substrates, pathways, genes, metabolic reactions, and en-
zymes related to the topic (Table 1). So far, its prime focus
has been on collecting data on microbial diversity and
intracellular events; however, the database can later be ex-
panded with extracellular enzymes and reactions (such as
laccases and peroxidases), as these play an important role in
microbial degradation of native lignin and can be applied for
enzymatic depolymerzation of technical lignins (Bourbonnais
et al. 1995; Pardo et al. 2018; Zhao et al. 2016).

In practice, the data in eLignin is retrieved from scientific
literature (peer-reviewed articles, reviews, and books), manu-
ally curated and supplemented with links to relevant entries in
other well-established biological and chemical databases (e.g.,
GenBank (Benson et al. 2012), KEGG (Kanehisa and Goto
2000), PubChem (Kim et al. 2015), and ChEBI (Hastings
et al. 2012)). The initial dataset was collected by performing
a systematic literature review according to the Kitchenham
protocol (Kitchenham 2004), where 561 articles (title, ab-
stract, and keywords) were screened and analyzed for their
inclusion in the database bibliome. Since the eLignin dataset
originates from scientific literature, users are encouraged to
read the primary references for any data of interest, since there
will be aspects of the data that are not indexed or reviewed by
eLignin (such as experimental conditions). Due to the nature
of the data collection for eLignin (scientific publications),
there will be some overlap with other biological databases
such as MetaCyc (Caspi et al. 2015), GenBank (Benson
et al. 2012), or UniProt (UniProtConsortium 2017), when it
comes to information on pathways, genes, and enzymes. As
we do not strive to master features that already established
databases already do, eLignin entries are annotated with links
to specialized databases where possible.

Two major entry points were considered for eLignin: a
microorganism- and a substrate-oriented search (Fig. 2).
This design choice was made in order to cater to what we
foresee are the two most common information needs both in
fundamental and applied lignin microbial conversion: (i)
What substrates can my microbe of choice breakdown and/
or utilize?; (ii) What microorganism can I use to consume the
lignin and lignin-derived aromatics in my substrate stream?
Using these entry points, we will now describe the current
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state of the bibliome and use eLignin content to map and
discuss the presently known diversity of the lignin microbial
niche.

The microbial diversity in the lignin niche,
as reported in the eLignin bibliome

Lignocellulose degradation through cellulolytic activity has
been found to be distributed in a wide range of genera within
the Bacteria, Archaea, Fungi, and Animalia kingdoms (Cragg
et al. 2015). However, the known lignin-degrading subset of

lignocellulose degraders is so far limited to a few bacterial and
fungal phyla (Janusz et al. 2017; Tian et al. 2014).
Mineralization of the lignin requires two main steps: (1)
breakdown of the lignin macropolymer to yield smaller aro-
matic compounds and (2) ring fission of the resulting aromatic
compounds (Tuor et al. 1995). The first step is carried out by
microbes able to secrete extracellular enzymes with lignolytic
and/or lignin-modifying activities such as laccases and
peroxidases—typically wood-decaying fungi and certain bac-
terial species (Bugg et al. 2011b; Janusz et al. 2017; Sigoillot
et al. 2012) (Fig. 1). The resulting heterogeneous mixture of
aromatic breakdown products is then metabolized by the

Fig. 2 Schematic overview of the eLignin database. The figure illustrates that eLignin is a microorganism- and substrate-focused database and that
every entry type (organism, substrate, gene, enzyme, pathway, reaction) is accessible from each of these point-of-entries

Table 1 Content of the eLignin
database as of the time of writing Entry Count

Organisms 261 organisms (171 prokaryotes, 85 eukaryotes, 5 archaea)

Substrates 141

Metabolic pathways 26

Genes 90

Enzymes 59

Reactions 76

Total entries 653

References 330

Please note that these figures are subject to increase over time, as more data and references (both past and newly
published scientific literature) are continuously added
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lignolytic secreters themselves or by other microorganisms in
the vicinity capable of aromatic catabolism (Cragg et al.
2015). This leads to the establishment of a microbial niche
that favors microbes with matching substrate specificity for
the resulting aromatic compounds and with tolerance to the
often inhibitory or toxic nature of the aromatics (Díaz et al.
2013; Krell et al. 2012; Schweigert et al. 2001). During catab-
olism, the aromatic breakdown products are typically shunted
through a number of reactions that are collectively referred to
as funneling pathways (Harwood and Parales 1996)—or
sometimes upper pathways (Linger et al. 2014)—that eventu-
ally converge on a couple of conserved ring fission pathways
where the aromatic rings are cleaved and the subsequent me-
tabolites enter the central carbon metabolism (Fuchs et al.
2011). Because of these two main steps (depolymerization
and ring fission), the lignin microbial niche can be said to
contain two main groups of microbes: lignin macropolymer
degraders and degraders of lignin-derived aromatic com-
pounds (with the former often being capable of the latter
(Nakamura et al. 2012)), from here on referred to as niche
subgroups 1 and 2 (Fig. 1). The eLignin database aims to
index both, and for the remainder of the minireview, the con-
cept of the lignin microbial niche will be used to refer to all
microbes that are capable of degrading lignin and lignin-
derived aromatic compounds. Subgroup 2 is of importance
for applied studies aiming to, e.g., valorize chemically
depolymerized lignin, or to perform in situ bioremediation,
and thus, an extra effort has been put on this group in the
eLignin database.

Within the applied side of lignin bioconversion, a quick
survey of the recent literature shows that a substantial amount
of research articles focus on a few commonly used model
organisms such as Pseudomonas putida (Linger et al. 2014),
Sphingobium sp. (Masai et al. 1999), Rhodococcus jostii

(Sainsbury et al. 2013), and Rhodococcus opacus (Kosa and
Ragauskas 2012). Reviews on microbial lignin degradation
that often include large tables with important isolates
(Abdelaziz et al. 2016; Bugg et al. 2011a; Tian et al. 2014)
are seldom listing more than ~ 50 different microbes. Still,
over 250 microorganisms with lignin and lignin-derived aro-
matics catabolic activity are currently mapped in the eLignin
bibliome (Tables 1, 2, and 3), which indicates its usefulness
for meta-analysis of the field.

The listed species in the current dataset of eLignin are
distributed over 90 different genera, which in turn can be
classified into six bacterial phyla (Acidobacteria ,
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria,
and Spirochaetes) and two fungal phyla (Ascomycota and
Basidiomycota) (see Tables 2 and 3). However, the majority
of the microbes belong to five of the eight observed phyla:
Proteobacteria (114 species/strains), Basidiomycota (58 spe-
cies/strains), Actinobacteria (31 species/strains), Ascomycota
(27 species/strains), and Firmicutes (22 species/strains)

(Tables 2 and 3). Evidence of some aromatic-degrading ar-
chaea (of the kingdom of Euryarchaeota) is also beginning
to emerge (Emerson et al. 1994; Erdoğmuş et al. 2013;
Khemili-Talbi et al. 2015). Overall, the large occurrence of
Proteobacteria is noteworthy, and the species of this phylum
are indeed enriched in studies of isolates found from lignin-
rich environments and selected on growth on lignin and aro-
matic compounds (Jimenez et al. 2002; Jurková and Wurst
1993; Kuhnigk and Konig 1997; Narbad and Gasson 1998;
Overhage et al. 1999; Perestelo et al. 1996; Ravi et al. 2017).
Likewise, when the same organisms were analyzed for their
origin of isolation, it was clear that a majority originated from
soil and from the forest ground layer (Table 4), which is prob-
ably the most expected ecosystem for the lignin microbial
niche (Cragg et al. 2015; Harwood and Parales 1996) given
the abundance of lignocellulose in different states of decay
found in there.

The following subsections will discuss the outcome of the
analysis of the database content in terms of fungal, bacterial,
and archaeal diversity. Also, in order to complement the pure
isolate approach of the database, the last subsection will dis-
cuss microbial communities.

Fungal diversity

The fungi listed in the database are either of the wood rot-type
or yeasts.Wood-decaying, or wood-rot, fungi are foundwithin
the Basidiomycota and Ascomycota phyla and can be divided
into three different types that all have lignin-modifying activ-
ities to various extent: soft-rot, brown-rot, and white-rot fungi
(Hatakka 2005; Janusz et al. 2017). Soft-rot fungi tend to
prefer hardwood and seem to only weakly affect lignin
(Sigoillot et al. 2012), but a few species have been reported
to exhibit white-rot–like activity toward the end of the wood
decay (Pildain et al. 2005). Brown-rot fungi, which are mainly
found in the Basidiomycota phylum, selectively attack hemi-
cellulose and cellulose and leave a modified (e.g., dealkylated,
demethoxylated, and/or demethylated) lignin signified by its
brown color (hence the name of this group of wood de-
graders); they are primarily found in softwood ecosystems
(Hatakka 2005; Sigoillot et al. 2012). Finally, white-rot fungi
can degrade all three main components of lignocellulose, i.e.,
hemicellulose, cellulose, and lignin, and leave a decayed
wood with a bleached color (Blanchette 1984; Eriksson et al.
1980; Sigoillot et al. 2012). White-rots are the only wood-
decaying fungi that can completely degrade lignin to CO2

and H2O; however, it has been proposed that lignin cannot
be used as the sole carbon source by white-rots; rather, the
lignin degradation is probably a process that the fungi use to
access the cellulose and hemicellulose (ten Have and
Teunissen 2001). Like brown-rot fungi, white-rot fungi mostly
belong to the Basidiomycota phylum and to a smaller extent to
the Ascomycota (Sigoillot et al. 2012).
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Table 2 Distribution of bacterial genera in the dataset of known degraders of lignin and/or lignin-derived aromatics index in the eLignin database

Genus (sorted by
phylum)

Number of species
in eLignin

References

Acidobacteria (Gram stain differs with species)

Holophaga 1 Bak et al. (1992)

Actinobacteria (Gram-positive)

Amycolatopsis 1 Sutherland (1986)

Arthrobacter 1 Kerr et al. (1983)

Corynebacterium 1 Qi et al. (2007)

Microbacterium 1 Song (2009), Taylor et al. (2012)

Micrococcus 1 Taylor et al. (2012)

Nocardia 2 Crawford et al. (1973), Kuhnigk and Konig (1997)

Pelobacter 1 Schink and Pfennig (1982)

Rhodococcus 11 Chong et al. (2018), Chung et al. (1994), Eulberg et al. (1997), Henson et al. (2018), Karlson et al.
(1993), Kosa and Ragauskas (2012), Sainsbury et al. (2013), Song (2009), Taylor et al. (2012)

Streptomyces 10 Antai and Crawford (1981), Aoyama et al. (2014), Chow et al. (1999), Davis and Sello (2010), Giroux
et al. (1988), Ishiyama et al. (2004), Kuhnigk and Konig (1997), Watanabe et al. (2003), Yang et al.
(2012), Zeng et al. (2013)

Thermobifida 1 Chang et al. (2014)

Thermomonospora 1 McCarthy and Broda (1984)

Bacteroidetes (Gram-negative)

Dysgonomonas 1 Duan et al. (2016b)

Sphingobacterium 1 Taylor et al. (2012)

Firmicutes (mostly Gram-positive)

Acetoanaerobium 1 Duan et al. (2016a)

Acetobacterium 2 Bache and Pfennig (1981), Kaufmann et al. (1998)

Aneurinibacillus 1 Raj et al. (2007)

Bacillus 10 Chandra et al. (2007), Huang et al. (2013), Kuhnigk and Konig (1997), Perestelo et al. (1989), Zhu et al.
(2017)

Brevibacillus 2 Hooda et al. (2015, 2018)

Clostridium 2 Daniel et al. (1988), Mechichi et al. (1999)

Paenibacillus 3 Chandra et al. (2007), Crawford et al. (1979), Mathews et al. (2014)

Papillibacter 1 Defnoun et al. (2000)

Spirochaetes (Gram stain differs with species)

Treponema 1 Lucey and Leadbetter (2014)

Proteobacteria (Gram-negative)

Achromobacter 1 Benjamin et al. (2016)

Acinetobacter 7 Delneri et al. (1995), Fischer et al. (2008), González et al. (1993), Kuhnigk and Konig (1997), Mazzoli
et al. (2007), Van Dexter and Boopathy (2018), Vasudevan and Mahadevan (1992)

Aeromonas 2 Deschamps et al. (1980), Gupta et al. (2001)

Agrobacterium 1 Parke (1997)

Alcaligenes 1 Kuhnigk and Konig (1997)

Aromatoleum 1 Rabus and Widdel (1995)

Azoarcus 1 Gorny et al. (1992)

Azotobacter 2 Hirose et al. (2013), Groseclose and Ribbons (1981)

Bradyrhizobium 1 Sudtachat et al. (2009)

Burkholderia 7 Hamzah and Al-Baharna (1994), Harazono et al. (2003), Kato et al. (1998), Kuhnigk and Konig (1997),
Song (2009), Woo et al. (2014b), Yang et al. (2017)

Citrobacter 3 Chandra and Bharagava (2013), Harazono et al. (2003)
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Both brown-rot and white-rot fungi invade the wood cell
lumen by hyphal growth and secrete their lignocellolytic en-
zymes (Kirk and Farrell 1987; Leonowicz et al. 1999). The
lignolytic mechanisms of white-rot fungi secretome have been
thoroughly studied (Leonowicz et al. 1999; ten Have and
Teunissen 2001). The known lignolytic enzymes (e.g., lignin
peroxidases, manganese peroxidases, versatile peroxidases,
and laccases (Janusz et al. 2017)) work by nonspecific oxida-
tion, and although nucleophilic cleavage can be used for
chemical depolymerization of lignin (e.g., in kraft pulping),

the highly variable tertiary structure of lignin could explain
why no nucleophilic lignolytic enzymes have been described
(Hammel and Cullen 2008). The level and patterns of decay
vary between different fungal species and the type of wood
(Worrall et al. 1997) as well as the state of decay of the wood.
Fukasawa and colleagues subjected beech wood in varying
levels of decay to different fungal species and were able to
demonstrate that the Basidiomycota caused its highest weight
loss in nondecayed wood, whereas the assayed Ascomycota

caused more weight loss in predecayed wood (Fukasawa et al.

Table 2 (continued)

Genus (sorted by
phylum)

Number of species
in eLignin

References

Comamonas 5 Chen et al. (2012c), Kamimura et al. (2010), Kuhnigk and Konig (1997), Ni et al. (2013), Providenti
et al. (2006)

Cupriavidus 5 Hughes and Bayly (1983), Perez-Pantoja et al. (2008), Sato et al. (2006), Shi et al. (2013a)

Desulfobacterium 2 Bak and Widdel (1986), Szewzyk and Pfennig (1987)

Enterobacter 5 DeAngelis et al. (2013), Deschamps et al. (1980), Grbić-Galić (1985), Yoshida et al. (2010)

Flavimonas 1 Song (2009)

Flavobacterium 1 Hirose et al. (2013)

Klebsiella 4 Hirose et al. (2013), Jones and Cooper (1990), Woo et al. (2014a), Xu et al. (2018)

Marinobacterium 1 González et al. (1997)

Mesorhizobium 1 Tian et al. (2016)

Microbulbifer 1 González et al. (1997)

Moraxella 1

Novosphingobium 2 Chen et al. (2012b), Liu et al. (2005)

Oceanimonas 1 Numata and Morisaki (2015)

Ochrobactrum 6 Hirose et al. 2013), Kuhnigk and Konig (1997), Taylor et al. (2012), Tsegaye et al. (2018), Xu et al.
(2018)

Pandoraea 3 Bandounas et al. (2011), Kumar et al. (2015), Shi et al. (2013b)

Pantoea 3 Song (2009), Xiong et al. (2014), Zeida et al. (1998)

Pseudomonas 27 Chapman and Ribbons (1976), Chowdhury et al. (2004), Cronin et al. (1999), Gao et al. (2005), Hirose
et al. (2013), Hirose et al. (2018), Iwabuchi et al. (2015), Jimenez et al. (2002), Jurková and Wurst
(1993), Kuhnigk and Konig (1997), Li et al. (2010), Mahiudddin and Fakhruddin (2012), Maruyama
et al. (2004), Murray et al. (1972), Narbad and Gasson (1998), Nikodem et al. (2003), Ornston and
Parke (1976), Overhage et al. (1999), Perestelo et al. (1996), Ravi et al. (2018), Shettigar et al.
(2018), Tian et al. (2016), Xu et al. (2018)

Rhizobium 1 Jackson et al. (2017)

Rhodopseudomonas 2 Harwood and Gibson (1988), Salmon et al. (2013)

Sagittula 1 Gonzalez et al. (1997)

Serratia 5 Haq et al. (2016), Perestelo et al. (1990), Rhoads et al. (1995), Tian et al. (2016)

Sinorhizobium 1 MacLean et al. (2006)

Sphingobium 1 Masai et al. (2007)

Sphingomonas 1 Balkwill et al. (1997)

Stenotrophomonas 1 Tian et al. (2016)

Sulfuritalea 1 Sperfeld et al. (2018)

Thauera 2 Mechichi et al. (2005), Tschech and Fuchs (1987)

Tolumonas 1 Billings et al. (2015)

Trabulsiella 1 Suman et al. (2016)
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Table 3 Distribution of fungal genera in the dataset of known degraders of lignin and/or lignin-derived aromatics index in the eLignin database

Genus (sorted by phylum) Number of species in eLignin References

Ascomycota

Aspergillus 3 Barapatre and Jha (2017), Martins et al. (2015), Yang et al. (2011)

Brettanomyces 1 Edlin et al. (1995)

Candida 7 Fialova et al. (2004), Gérecová et al. (2015), Krug et al. (1985)

Emericella 1 Barapatre and Jha (2017)

Exophiala 1 Middelhoven (1993)

Fusarium 5 Chang et al. (2012), Falcon et al. (1995), Korniłłowicz-Kowalska
and Rybczyńska (2015), Michielse et al. (2012)

Oudemansiella 1 Fukasawa et al (2011)

Geotrichum 1 Sláviková and Košíková (2001)

Penicillium 1 Rodriguez et al. (1994)

Pestalotia 1 Falcon et al. (1995)

Petriellidium 1 Eriksson et al. (1984)

Phialophora 1 Eriksson et al. (1984)

Phoma 1 Bi et al. (2016)

Trichoderma 3 Korniłłowicz-Kowalska and Rybczyńska (2015), Ryazanova et al. (2015)

Basidiomycota

Agaricus 1 Saha et al. (2016)

Anthracophyllum 1 Acevedo et al. (2011)

Auricularia 1 Liers et al. (2011)

Bjerkandera 3 Fukasawa et al. (2011), Liers et al. (2011), Saha et al. (2016)

Ceriporiopsis 1 Rüttimann-Johnson et al. (1993)

Cryptococcus 1 Bergauer et al. (2005)

Cyathus 3 Saha et al. (2016), Sethuraman et al. (1999)

Daedalea 1 Arora and Sandhu (1985)

Hymenochaete 1 Saito et al. (2018)

Dichomitus 1 Périé and Gold (1991)

Irpex 2 Saha et al. (2016), Xu et al. (2009)

Leucosporidium 1 Middelhoven (1993)

Marasmius 1 Saito et al. (2018)

Mastigobasidium 1 Bergauer et al. (2005)

Microbotryomycetidae 1 Bergauer et al. (2005)

Mycena 1 Liers et al. (2011)

Nematoloma 1 Hofrichter et al. (1999)

Phanerochaete 4 Eriksson et al. (1983), Hiratsuka et al. (2005), Saha et al. (2016), Vares et al. (1994)

Phlebia 5 Bi et al. (2016), Liers et al. (2011), Saito et al. (2018), Vares et al. (1994)

Pleurotus 1 Liers et al. (2011)

Polyporus 1 Saha et al. (2016)

Pycnoporus 3 Eggert et al. (1996), Saha et al. (2016)

Rhodosporidium 2 Bergauer et al. (2005), Yaegashi et al. (2017)

Rhodotorula 8 Bergauer et al. (2005), Durham et al. (1984), Gupta et al. (1986), Hainal et al. (2012),
Huang et al. (1993), Sampaio (1999)

Rigidoporus 1 Saha et al. (2016)

Sporobolomyces 1 Bergauer et al. (2005)

Stropharia 2 Liers et al. (2011), Saito et al. (2018)

Trametes 3 Alexieva et al. (2010), Fukasawa et al. (2011), Knežević et al. (2018)

Trichosporon 4 Middelhoven 1993), Sietmann et al. (2001), Sláviková et al. (2002), Yaguchi et al. (2017)
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2011), which implicates that there is a sequential order within
the lignin microbial niche with different types of fungi taking
turns for degrading the (residual) wood. A very thorough
indexing of microbes (primarily fungi) that secrete lignolytic
enzymes can be found in a supplemental table of the review of
Janusz et al. (2017).

The 85 eukaryotes (fungi and yeasts from 43 different gen-
era) currently listed in eLignin are distributed between
Ascomycota and Basidiomycota (Table 3) and were primarily
isolated from soil and forest environments (Table 4), which is
in accordance with other reviews of the ecological occurrence
(Janusz et al. 2017). The clinical isolates reported in Table 4
are mainly different species of Candida yeasts, which aside
from their opportunistic pathogenicity in humans, are known
degraders of lignocellulose-derived compounds such as xy-
lose and different aromatics (Gérecová et al. 2015; Holesova
et al. 2011; Jeffries 1981; Krug et al. 1985). In general, the
yeasts species in the database are aromatic degraders and not
lignin degraders (Bergauer et al. 2005; Holesova et al. 2011;
Middelhoven 1993; Yaegashi et al. 2017) and, therefore, play
a role in the niche as degraders of lignin breakdown products.
Three species in the dataset have, however, been reported to
have activity on lignin: Rhodotorula sp. R2 modified wheat
straw and Sarkanda grass (Hainal et al. 2012), whereas
Geotrichum klebahnii CCY 74-6-2 and Trichosporon

pullulans CCY 30-1-10 acted on beechwood lignin fraction-
ated from the prehydrolysis step of kraft pulping (Sláviková
and Košíková 2001; Sláviková et al. 2002).

When it comes to lignin-degrading activity, fungi tend to be
more studied than bacteria because of their higher prevalence
of lignolytic secretomes (Janusz et al. 2017). However, if the
system boundaries are expanded to include the whole lignin
aromatic niche, i.e., the species that lack delignification activ-
ities but grow on the lignin-derived aromatic compounds (Fig.
1), the ratio between fungi and bacteria could be rather differ-
ent. In eLignin, which was built on this niche principle, there
are about two times as many bacterial isolates listed as fungal
ones (Tables 1, 2, and 3). We cannot determine if this is a bias
in the literature, comes from the database boundaries (which
were initially created with a focus on intracellular events, and
not on secreted enzymes), or if the Btrue^ diversity holds less
fungal species than bacterial. The number of wood-rotting
Basidiomycetes has been estimated to up to 1700 species in
North America only, but the number of lignolytic fungi is
unknown (Gilbertson 1980; Janusz et al. 2017).

Bacterial diversity

By using the holistic ecological approach to list both de-
graders of lignin and lignin-derived aromatic compounds,
171 different bacteria distributed over 63 different genera have
been indexed in eLignin at the time of writing (Table 2). As
mentioned above, three main phyla encompasses the bulk of
the dataset (Proteobacteria, Actinobacteria, and Firmicutes),
with Proteobacteria dominating the list with its 114 entries
(Table 2). Within these Proteobacteria, γ-Proteobacteriawas
the main class (66 species/strains), followed by β-
Proteobacteria (27 species/strains), α-Proteobacteria (18
species/strains), and δ-Proteobacteria (3 species/strains),
again highlighting that certain types of microbes are greatly
enriched in the eLignin bibliome. It can also be noted that
many of the organisms in this particular niche have undergone
one or several taxonomical reclassifications since they were
first isolated and described (see, e.g., Cupriavidus necator

which was previously known as, e.g., Ralstonia eutropha

and Wautersia eutropha (Vandamme and Coenye 2004)),
meaning that the binomial names in articles from the 1960–
1980s may be different from the currently prevailing names.
Therefore, the organism entry in the database has, when pos-
sible, been harmonized with links to the corresponding entry
in the NCBI Taxonomy Database (https://www.ncbi.nlm.nih.
gov/taxonomy; Acland et al. 2014).

The Gram stain distribution tends to follow the phyla and,
thus, is dominated by Gram-negative bacteria (121 species/
strains), with the remainder being Gram-positive (46 species/
strains) and unknown/Gram-indeterminate (4 species/strains).
This may have implication on studies focusing on, e.g., trans-
port of compounds over membranes (discussed in a separate
section below), or when expanding a species’ substrate range
by metabolic engineering. In the latter case, the difference in
total GC content in the genome that is in general seen between

Table 4 Origin of isolation of the 261 organisms listed in the eLignin
database as of November 2018

Origin of isolation Number of organisms

Total Bacteria Fungi Archaea

Aquatic 8 5 1 2

Caves and mines 6 1 5 0

Clinical isolate 6 0 6 0

Compost 5 5 0 0

Forest and wood samples 40 17 23 0

Industrial plants 5 1 2 2

Lab-made derivative 4 4 0 0

Other 2 1 1 0

Pulp and paper mill effluent 16 15 1 0

Sediment 15 15 0 0

Seeds and hulls 2 2 0 0

Soil 92 70 21 1

Termite gut 22 22 0 0

Unknown or not specified 27 3 24 0

Wastewater sludge 11 10 1 0

The organisms have been sorted in 15 main clusters in order to facilitate
the clustering, and the specific details can be found in the database entry
for each organism
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Gram-positives and Gram-negatives (Muto and Osawa 1987)
will affect the feasibility of heterologous expression if using
traditional PCR-based cloning.

Although fungi are known as the main degraders of the
lignin macropolymer (as described in the previous subsec-
tion), there are a substantial number of studies that describe
delignifying bacteria. Tian et al. reviewed the topic and per-
formed phylogeny on 57 lignin-degrading and 463 laccase-
encoding prokaryotes that led them to propose that screening
for laccases genes may be a good way to detect new lignin-
degrading species (Tian et al. 2014). Furthermore, the authors
suggest that aromatic metabolism is a prerequisite for but not a
proof of lignolytic activity (Tian et al. 2014), which is in line
with our division of the lignin bacterial niche into subgroups 1
and 2 that specialize in different aspects of the full lignin
catabolism (Fig. 1). The metabolism of the resulting lignin
breakdown products, which mainly takes place intracellularly,
will be discussed in the BDistribution of metabolic pathways
and substrate specificities^ section below.

Soil is absolutely the most common origin of isolation
mapped in the database (Table 4), which also reflects how
popular this environment has been for studies on isolation of
lignin and aromatic degraders. Other than soil, termite guts are
a main origin of isolation. There seems to be no clear evidence
that the termites themselves are able to degrade lignin (instead
they live of the hydrolysis products of hemicellulose and cel-
lulose) (Brune and Ohkuma 2010). The lignin barrier is over-
come by the termites by a symbiotic relationship with a di-
verse microbial community, e.g., by exosymbiotic fungi and
endosymbiotic gut flora (Maurice and Erdei 2018). Examples
of aromatic degrading bacteria isolated from the gut flora in-
clude Proteobacteria (Harazono et al. 2003; Kuhnigk and
Konig 1997; Suman et al. 2016; Tsegaye et al. 2018; Van
Dexter and Boopathy 2018), Actinobacteria (Chung et al.
1994; Kuhnigk and Konig 1997; Watanabe et al. 2003), and
Firmicutes (Kuhnigk and Konig 1997), as well as the only
Spirochaetes entry in the database (Lucey and Leadbetter
2014). Another enrichment reported in Table 4 for bacteria
is the isolates from different man-made environments. One
example is pulp and paper mill effluents that contain residual
lignins and aromatics and have been a source of many isolates
(Chandra et al. 2007; Duan et al. 2016b; González et al. 1997;
Hooda et al. 2015; Mathews et al. 2014; Nishikawa et al.
1998; Ravi et al. 2018); likewise, sludge from waste water
treatment plants has been a source of a number of isolates,
some of which are strictly anaerobic (Gorny et al. 1992;
Mechichi et al. 1999, 2005; Ni et al. 2013; Traunecker et al.
1991; Tschech and Fuchs 1987).

Anaerobic aromatic degrading bacteria are in a minority
compared to the aerobic fission bacteria and were even for a
long time believed to be impossible (Kirk and Farrell 1987).
However, with recent advances in the field, the molecular
biology of these pathways has begun to be understood

(Durante-Rodríguez et al. 2018). Some examples found in
the database include, e.g., Pelobacter acidigallici Ma Gal2
(Schink and Pfennig 1982), Desulfobacterium phenolicum

Ph01 (Bak and Widdel 1986), Rhodopseudomonas palustris
CGA001 (Harwood and Gibson 1988), Clostridium

thermoaceticum ATCC 39073 (Daniel et al. 1988), and
Dysgonomonas sp. WJDL-Y1 (Duan et al. 2016b);
Holophaga foetida TMBS4 is also worthy of mention as it
the only observed species in the Acidobacteria phylum report-
ed in the database, and it grows anaerobically on a couple of
typically lignin-derived aromatics such as ferulic acid and
syringic acid (Bak et al. 1992).

Archaeal diversity

Of the three domains in the Woeseian system (Woese et al.
1990), archaea is the most underrepresented in the lignin mi-
crobial niche. To our knowledge, there are no reported archae-
al single culture isolates with lignolytic capacity at the time of
writing. Recently, by enrichment cultures from estuarine sed-
iment, it was possible to infer growth of Bathyarchaeota on
alkali lignin by the increase in gene-copy number and the
incorporation of inorganic carbon in the archaeal lipids over
11 months (Yu et al. 2018). Likewise, putative laccase genes
have been reported in some archaeal species (Ausec et al.
2011; Sharma and Kuhad 2009; Tian et al. 2014). A laccase
from Haloferax volcanii DS70 has been purified with activity
on model compounds such as syringaldazine and ABTS
(Uthandi et al. 2010). However, to our understanding, the
in vivo lignolytic activity of these putative and purified
laccases remains to be assayed.

Five archaeal isolates—classified in niche subgroup 2
(growth on aromatics; Fig. 1)—have so far been indexed in
eLignin, all of them being halophiles, i.e., extremophiles that
prefer high salt concentration. Haloferax sp. D1227 was iso-
lated from soil and grew on benzoic, cinnamic, and
phenylpropanoic acid (Emerson et al. 1994). Haloferax sp.
C-24, Halorubrum ezzemoulense C-46, and Haloarcula sp.
D1 were isolated from high-saline samples and grew on,
e.g., 4-hydroxybenzoic acid (Erdoğmuş et al. 2013; Fairley
et al. 2002). Natrialba sp. C21 degraded phenol (Khemili-
Talbi et al. 2015). The halophilic nature of these isolates and
the lack of known lignolytic activity seem to suggest that they
contribute with the degradation of aromatic breakdown prod-
ucts that have ended up in saltwater environments, which
could be speculated to be a downstream (or downriver) exten-
sion of the lignin microbial niche.

The communities of the lignin microbial niche

Lignin degradation is a community effort and is in itself often
a subpart of a lignocellulose-degrading niche (de Boer et al.
2005). Microbial communities—organisms that live and
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interact within a contiguous environment (Konopka 2009)—
are in a way what we are illustrating by looking at the isolates
from the point of the niche subgroups (Fig. 1). It has been
proposed that lignin degradation is more rapid with consortia
than single isolates due to synergism (Wang et al. 2013).
Furthermore, studies on fungal–bacterial interactions in the
lignin microbial niche have reported examples of commensal-
ism as well as amensalism between certain species: some bac-
teria have been reported to promote growth of a white-rot
fungi when co-cultivated (Harry-asobara and Kamei 2018),
and there is a report showing two different white-rot species
outcompeting opportunistic bacteria (Folman et al. 2008). At
the moment, consortia are not mapped in eLignin but are nev-
ertheless important for the understanding of the lignin
microbiology.

Many studies have reported physiological characterization
of a community with unknown or partly known composition,
either because it was not possible to isolate single cultures
with the desired phenotype—for instance, 99% of the bacteria
in soil have been estimated to be unculturable (Pham and Kim
2012)—or because the aimwas to study the community effort.
Examples include communities capable of degrading lignin
(DeAngelis et al. 2011; Wang et al. 2013; Wu and He 2013),
syringic acid (Kaiser and Hanselmann 1982; Phelps and
Young 1997), resorcinol and catechol (Milligan and
Häggblom 1998), coniferyl alcohol (Grbić-Galić 1983), and
plant lignin–soil community studies (Bennett et al. 2015;
Bradley et al. 2007), to name a few. Many of these studies
were reported under anaerobic conditions.

Another approach to analyze microbial communities is to
consider the makeup of the metagenome as a unique property
of a given community (Konopka 2009). 16S rRNA sequenc-
ing can be used to taxonomically identify members of a com-
munity (González et al. 1996). A common methodology is to
divide the results of the 16S rRNA sequencing of a
metagenome into operational taxonomic units (OTUs) to at-
tempt to resolve, e.g., phylum level abundances (Moraes et al.
2018); this is similar to what is done here with the eLignin
database using single isolates (Tables 2 and 3). In addition to
taxonomical metagenomics, Moraes and colleagues recon-
structed draft bacterial genomes from a lignin-degrading con-
sortium and could identify conserved domains related to lig-
nin degradation in their metagenome (Moraes et al. 2018).

Distribution of metabolic pathways
and substrate specificities

The lignin macropolymer is primarily depolymerized by ex-
tracellular enzymes secreted by lignolytic microbes. Due to its
heterogeneity, the resulting depolymerization products are
commonly a mixture of different mono- and di- and
oligoaromatic compounds (Bugg et al. 2011b). This has led

to the evolution of a panel of intracellular funneling pathways,
i.e., metabolic routes that connect substituted aromatic com-
pounds with a ring fission pathway leading to the central car-
bon metabolism, often (but not always) via acetyl-CoA
(Fig. 3). In this section, the eLignin database was used to
assess the diversity of substrates and metabolic routes within
the lignin microbial niche.

Reported substrate specificities

Similar to how fundamental and applied studies on lignin
focus on a few model organisms, many studies use a few
common model aromatic model compounds that represent
different funneling pathways (e.g., 4-hydroxybenzoic acid,
vanillic acid, ferulic acid, p-coumaric acid, and benzoic acid)
to evaluate the physiology of the microbial niche (see, e.g.,
Fischer et al. 2008; González et al. 1997; Kosa and Ragauskas
2012; Ravi et al. 2017; Vardon et al. 2015). However, from
browsing eLignin, there appears to be a much higher substrate
diversity in this niche than just these model compounds. This
is illustrated in Fig. 4a, showing a meta-analysis of the Bmost
popular^ substrates in the eLignin bibliome in terms of the
number of different microbes that have been reported in the
literature to degrade them. Evidently, the model aromatics are
in the top, which both suggest that they indeed are goodmodel
compounds for the different funneling pathways and that they
have been popular choices for the experimental work that has
been published on this topic. In addition, some natural and
technical lignins (corn stover, kraft, Klason, and alkaline lig-
nin), Bsynthetic^ oligoaromatics (dehydropolymerisate), and
dimers (biphenol, benzylvanillin) are among these top 32 sub-
strates (Fig. 4a). The number of microbes in the database that
have been reported to degrade natural and technical lignins
and di-/oligoaromatics is presented in Fig. 4b. The results
show that fungi are the most prevalent degraders of natural
lignins, which is reasonable given the high diversity of
lignolytic fungi. The reported technical lignins include chem-
ically modified lignin polymers as well as chemically
depolymerized lignin (i.e., a mixture of both high
(polymeric) and low molecular weight lignins (mono- and
oligomers)) which explains the high number of bacteria that
have been reported to grow on technical lignins. Di- and
oligoaromatic compounds were primarily reported in
Proteobacteria in eLignin, but this is likely a literature bias
since (model) monoaromatic compounds tend to be more
commonly studied across all phyla. Note that there are no
Acidobacteria or Spirocheates in the eLignin bibliome that
have been reported to degrade natural/technical lignins and
di-/oligoaromatics.

It is equally important to know the substrates that cannot be
used by a given organism, as this will give the limitations of its
metabolism. In fact, many isolation papers both list substrates
that can and that cannot support growth (for a few examples,
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see Bache and Pfennig 1981; Defnoun et al. 2000; Harwood
and Gibson 1988; Song 2009) and thereby present a valuable
hint to which funneling pathways can and cannot be expected
in the organism. At the moment, the indexing in eLignin has
been focused on the substrates that can be used, but a logical
next step for the database development is to also include sub-
strates that an organism cannot use.

Prediction of funneling pathway distributions

Lignin consists of three primary building blocks known as
monolignols that plants produce from the amino acid phenyl-
alanine: sinapyl alcohol (called syringyl, or S, unit when in-
corporated in the lignin polymer), coniferyl alcohol (guaiacyl

unit; G), and p-coumaryl alcohol (p-hydroxyphenyl unit; H)
(Vanholme et al. 2010). The ratio of units in the polymer
differs depending on the lignin source, with softwood
consisting of mainly G units with a small fraction of H units,
hardwood having a combination of almost exclusively S and
G, and monocots all three (Gellerstedt and Henriksson 2008;
Gosselink et al. 2010). Recent reports have also shown that a
caffeyl alcohol homopolymer (caffeyl unit; C) can be found in
seed coats of, e.g., vanilla orchard and some cacti species
(Barsberg et al. 2018; Chen et al. 2012a). Consequently, the
composition of aromatics in the depolymerized lignin will
differ greatly between different lignocellulose feedstocks.

Following the S, G, and H types, three main funneling
pathways for monoaromatic catabolism have been defined,

Fig. 3 Schematic distribution of the known pathways for aromatic
catabolism currently indexed in the eLignin database. Please note that
this representation should be seen as a hypothetical map of the existing
possibilities within aromatic catabolism, and not as a map of a
Bsuperbug.^ Funneling pathways refer to routes that reduce larger/more

substituted aromatic compounds down to the different catabolic nodes
from where ring fission occurs (here called fission pathways). The three
routes that funnel compounds derived from the primary monolignols (S,
H, G) are indicated in dotted boxes: the sinapyl (S), p-coumaryl (H), and
coniferyl (G) branches
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based on which of the main lignin units (or derivatives there-
of) they catabolize: the sinapyl branch (two methoxy groups),
coniferyl branch (one methoxy group), and the p-coumaryl

branch (no methoxy groups) (see Fig. 3). Within eLignin,
these branches were further divided into one or more sequen-
tial pathways in order to better specify which reactions a
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Fig. 4 a Substrates that can be utilized by > 10 organisms listed in the
database; the numbers represent the number of strains in the database that
utilize each compound. Total number of substrates that satisfied the > 10
cutoff—32; total number of substrates in dataset—141. b Number of

species that can degrade natural and technical lignins, and di- and oligo-
meric aromatic compounds, sorted by phylum. To distinguish the bacteria
from the representatives of the other two kingdoms, the fungal phyla are
presented with stripes and the only archaeal phylum is in solid black
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species have been characterized with, i.e., a bacteria with a
vanillin degradation pathway will not necessarily have the
pathway for ferulic acid, although these pathways are sequen-
tial in the coniferyl branch. Microbial aromatic catabolism is
also not limited to the S, G, and H funneling branches, mean-
ing that there is a need for naming of other routes as well,
including aromatics that are derived from other origins than
lignins (e.g., other plant matter). Some examples include the
caffeic acid, benzoyl, resorcinol, and cresol pathways (Fig. 3).
Funneling pathways for di- and oligomeric aromatics, the
study of which has started emerging in certain species (Bugg
et al. 2011b; Kamimura et al. 2017), is another example of
essential catabolic routes.

In a lot of bibliome studies, the substrate specificity of a
species is presented without going into the intracellular con-
version mechanisms nor reporting evidence of a specific
funneling pathway. Therefore, in order to be able to use the
eLignin dataset to look at pathway diversity, we developed a
prediction algorithm to infer funneling branches from reported
substrates from the literature. This is possible since many of
the funneling branches are linear, e.g., ferulic acid is degraded
via vanillin, and any species that have been reported to grow
on these compounds and their intermediates can then be the-
oretically inferred to have the coniferyl branch (Fig. 3).
Cinnamic acid is reported to be catabolized by 18 organisms
(Fig. 4a), but due to the alternate metabolic routes for its deg-
radation—e.g., via benzoic acid, 3-phenylpropionic acid, or
styrene (Chamkha et al. 2001; Defnoun et al. 2000; Monisha
et al. 2018; Mäkelä et al. 2015)—it was omitted from the
prediction model. Also, according to current knowledge, an-
aerobic aromatic catabolism frequently (but not exclusively)
relies on pathways that converge on benzoyl-CoA, that is
further subjected to ATP-dependent hydrolysis to open the
aromatic ring (Durante-Rodríguez et al. 2018; Fuchs et al.
2011); but since the exact mechanisms are largely unknown
for the species in the dataset, all anaerobic microbes have been
put in an Banaerobic branch (es)^ cluster (Fig. 5).

The result of the theoretical prediction is presented in Fig. 5.
The main conclusion is that, of the three main funneling
branches (S, G, H), the coniferyl (G) and p-coumaric (H)
branches seem by far to be the most abundant in niche 2. This
might be correlated to the number of methoxy groups (none in
the H unit, one in the G unit, two in the S unit; Fig. 3), as ring
fission usually seems to occur after the methoxy groups have
been demethylated to hydroxyl groups (Gupta et al. 1986;
Nishikawa et al. 1998; Sampaio 1999). As the demethylation
often requires a cofactor such as tetrahydrofolic acid (Masai
et al. 2004) and NADH and FAD (Mallinson et al. 2018), the
degradation of methylated aromatics may be limited by the rate
of cofactor recycling. Furthermore, it is noteworthy that there is
no caffeic acid degrading Actinobacteria yet in the eLignin
database, despite the fact that they are the prokaryotic phylum
that is commonly the second most abundant for most branches

in the dataset (Fig. 5). Another observation is that metabolites of
the resorcinol branch (Fig. 3) seem to be degraded by fungi to a
larger extent than the other branches according to the current
data (Fig. 5). Resorcinols are part of the phenolics in plants and
soil humic acids (Burges et al. 1964; Kluge et al. 1990) and do
not seem to be derived from lignin per se, which would put this
compound within niche subgroup 2.

Predicting organisms that can catabolize a given
depolymerization mix

Many lignin valorization studies apply chemical depolymeri-
zation since microbial enzymatic breakdown of lignin is a
very slow process taking many weeks (Fackler et al. 2006;
Hedges et al. 1988; Liers et al. 2011). Therefore, from an
applied point-of-view, it would be of interest to run the pre-
diction model Bbackwards^ in order to identify which organ-
ism(s) would be likely to grow on the mixture of aromatic
monomers resulting from chemical depolymerization. The
outcome of the depolymerization is highly dependent on pro-
cess conditions and lignin source (Sun et al. 2018), and
predicting the monomeric yield is beyond the scope of this
review. However, the distribution of H, G, and S units in a
given lignin might be indicative of the possible monomeric
composition in the depolymerisate. Using this assumption,
depolymerized softwood lignin would need microbes with
funneling pathways for coniferyl- (G) and p-coumaric (H)-
derived monomers. Spruce lignosulfonate has for instance
been reported to yield vanillin, guaiacol, acetovanillone, and
vanillic acid (Pérez and Tuck 2018). Some examples of organ-
isms that can catabolize both vanillic acid and guaiacol in-
clude Amycolatopsis sp. ATCC 39116 (Pometto III et al.
1981), Comamonas sp. B-9 (Chen et al. 2012c), and
Rhodotorula rubra IFO 889 (Huang et al. 1993). Hardwood
depolymerisates would require species that can handle mono-
mers derived from S and G units, and therefore, organisms
with the syringyl (S) and coniferyl (G) branches would be
needed, such as Sphingobium sp. SYK-6 (Katayama et al.
1988), Acetobacterium woodii NZva16 (Bache and Pfennig
1981), or Rhizobium sp. YS-1r (Jackson et al. 2017). Species
that seem able to degrade compounds from all the S, G, and H
branches, which would be representative of grass lignins,
would include Oceanimonas doudoroffii JCM21046T
(Numata and Morisaki 2015) and Exophiala jeanselmei CBS
658.76 (Middelhoven 1993). Please note that these predic-
tions do not take culture and process conditions into account,
meaning that some of these species might be better suited for
process applications than others.

Transport proteins

Although the chemical structure of many aromatic com-
pounds allow them to passively diffuse through the lipid
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bilayers of biological membranes (Engelke et al. 1996), many
microorganisms have dedicated transport channels or proteins
for aromatic compounds—reviewed, e.g., by Parales and by
Kamimura and their colleagues (Kamimura et al. 2017;
Parales and Ditty 2017; Parales et al. 2008). In fact, transporter
genes are commonly found within the catabolic operons for
aromatic acids (Parales et al. 2008) which could suggest that
the natural diffusion rate of certain aromatics is too limited for
growth on aromatics as a sole carbon source. Transporters are
of interest for metabolic engineering purposes, as a part of
uptake optimization and/or expansion of the substrate range
of a given strain. As more andmore of the metabolic pathways
for aromatic degradation are now elucidated, there seems to be
an emerging effort within the fundamental molecular biology
studies on lignin degradation to look into transport proteins.
We have begun indexing transport proteins as part of the or-
ganism pages in eLignin, and we anticipate that this section
will grow as this field expands.

Current knowledge on bacterial aromatic transporters
mostly focuses on Gram-negative bacteria which have a cell
envelope with two lipid bilayers separated by a periplasmic
space: the outer and the inner membrane (Nikaido 2003).
Some Gram-negatives have been reported to have substrate-
specific diffusion channels for aromatic compounds on the
outer membrane (Hearn et al. 2008; Nikaido 2003). Inner
membrane transport of aromatic acids seems to be achieved

by active transporters and not by diffusion in many species.
This may be explained by the fact that these compounds are
commonly protonated at neutral pH and—due to the hydro-
phobic charge—can partition into the membrane and damage
the structure (Kamimura et al. 2017; Parales and Ditty 2017).
Gram-negative bacteria with reported aromatic transporters
include Acinetobacter baylyi ADP1 (Collier et al. 1997;
D’Argenio et al. 1999), Bradyrhizobium japonicum

USDA110 (Michalska et al. 2012), Klebsiella pneumoniae

M5a1 (Xu et al. 2012), Pseudomonas putida KT2440
(Nishikawa et al. 2008) and PRS2000 (Nichols and
Harwood 1997), Rhodopseudomonas palustris CGA009
(Giuliani et al. 2011; Michalska et al. 2012), Sinorhizobium
meliloti 1024 (Michalska et al. 2012), and Sphingobium sp.
SYK-6 (Mori et al. 2018). Gram-positives, on the other hand,
only have a single cell membrane in their envelope: the cyto-
plasmic membrane (Parales and Ditty 2017). There seem to be
less studies on Gram-positive than Gram-negative species
with regard to aromatic transport. Some examples include
Corynebacterium glutamicum ATCC 13032 (Chaudhry et al.
2007; Xu et al. 2006), Lactobacillus plantarum WCFS1
(Reverón et al. 2017), and Rhodococcus jostii RHA1 (Otani
et al. 2014). It is also worthwhile to note that in addition to the
mechanisms for transport of aromatics into the cell, many
species also have efflux pumps in order to cope with the often
cytotoxic properties of aromatic compounds (Parales and
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Ditty 2017), or as a means to excrete detoxified compounds.
Ravi and colleagues have for instance described a
Pseudomonas isolate that excreted vanillyl alcohol during
growth on vanillin as a tolerance mechanism to handle excess
vanillin that was not catabolized to vanillic acid fast enough,
but the mechanism by which vanillyl alcohol was transported
out of the cell has not been elucidated yet (Ravi et al. 2018).

Conclusions and outlook

The interest for lignin as an underexploited carbon source has
markedly increased during the last two decades, as evidenced
by the exponential increase in published papers on lignin val-
orization (Abejón et al. 2018). In this minireview, we used our
recently created resource, the eLignin database, to analyze the
diversity of the lignin microbial niche, which we have defined
as all microbes that can either degrade lignin or lignin-derived
aromatic compounds. It should, however, be kept in mind that
the data in eLignin encompasses the diversity in the bibliome,
meaning that it reflects what people have reported in the liter-
ature. The papers that are indexed in the database concern
microbial isolates, i.e., species that were cultivable. It is, there-
fore, inevitable that this approach does not represent the over-
all diversity of the lignin microbial niche, as there are many
species within the niche community that cannot be detected
and sustained with the common isolation methodologies.
Although the aim of this minireview is to show the diversity
of the niche, it also reveals the diversity and fashions within
the scientific community, whichmay ormay not correlate with
the biological diversity. We can also conclude that the litera-
ture is enriched with physiological characterization, i.e., aro-
matic substrate specificities of different organisms are rather
well known. The molecular biology of specific metabolic
routes is, in contrast, less well elucidated, which will be an
important next step both for the fundamental understanding of
the biology and for the many projects that apply microbes in a
value chain for lignin valorization. The prediction algorithm
for aromatic pathways presented in this review can hopefully
generate new hypotheses on the molecular biology of the
niche and pave the way for future studies.

The microbiological aspects of lignin and aromatics degra-
dation have a long history with a vast bibliome, and the need
for resources such as the eLignin database will continue to
grow as the field expands. In the future, we expect to further
implement in eLignin a number of discussed features includ-
ing improved prediction algorithms, lignolytic communities,
and substrates that cannot be converted by a given organism.
Economically feasible lignin valorization will require ad-
vanced metabolic engineering and thorough knowledge on
microbial physiology. In that context, the objective of
eLignin is not only to generate new overviews of the field
but also to fuel new research ideas and engineering strategies

and thus become an operational tool for studies on the micro-
biological aspect of lignin degradation, catabolism, and
valorization.
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